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Available at: http://www.pmf.ni.ac.rs/filomat

The Actions on the Generating Functions for the Family
of the Generalized Bernoulli Polynomials

Mustafa Alkana, Yilmaz Simseka

aUniversity of Akdeniz, Faculty of Arts and Science, Department of Mathematics, 07058 Antalya, Turkey

Abstract.
In this paper, we study the generalization Bernoulli numbers and polynomials attached to a periodic

group homomorphism from a finite cyclic group to the set of complex numbers and derive new periodic
group homomorphism by using a fixed periodic group homomorphism. Hence, we obtain not only
multiplication formulas, but also some new identities for the generalized Bernoulli polynomials attached
to a periodic group homomorphism.

1. Introduction

The theory of the family of the Bernoulli polynomials and numbers have played a very important role
in many branches of mathematics such as analytic number theory, combinatorics, special functions and in
the other sciences such as , engineering, computer, geometric design and mathematical physics.

Recently in [1], the authors study the periodic function to decompose the q–Eulerian numbers and
polynomials. This decomposition provided us to compute q-Apostol-type Frobenius-Euler polynomials
and numbers more easily. Moreover, in [5], Cangul et al and in [10], Cevik et al studied some new
relationship between the subgroup and monoid presentation and special generating functions (such as
Stirling numbers, Array polynomials etc.).

There are many useful Raabe type or multiplication formula for Bernoulli numbers and polynomials in
the literature (cf. [24], [25]- [26]). Unfortunately so far we have not find any very useful Raabe type formulas
related to the generalized Bernoulli numbers and polynomials attached to a character. Therefore, in this
paper, our main aim is to obtain some multiplication formulas for the generalized Bernoulli polynomials
attached to a periodic group homomorphism. For this aim, we define new generating functions for
the generalized Bernoulli numbers and polynomials attached to a periodic group homomorphism and
investigative the relations among them. These relations let us verify some identities among the Bernoulli
numbers, the Euler numbers, the Apostol-Bernoulli polynomials and the Frobenius-Euler number and
polynomials. Moreover, we decompose the generalized Bernoulli numbers and polynomials attached to a
periodic group homomorphism and as a results of them, we drive some equations to more easily compute
of the nth generalized Bernoulli polynomials attached to a periodic group homomorphism.
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Throughout our paper, we use the following standard notations:N,Z,R andC denotes the set of natural
numbers, the set of integer numbers, the set of real numbers and the set of complex numbers respectively.

Now we recall the following well-known generating functions:
The classical Bernoulli polynomials Bn(x) and the classical Euler polynomials En(x) are usually defined

by means of the following generating functions, respectively (cf. [1]-[23]):

F(t, x) =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π) (1)

and

2
et + 1

ext =

∞∑
n=0

En(x)
tn

n!
(|t| < π) .

The classical Bernoulli numbers Bn and the classical Euler numbers En of order n are defined by

Bn = Bn(0)

and

En = En(0),

respectively (cf. [1]-[23]). By using Equation (1), we easily have

Bn(x) =

n∑
k=0

(
n
k

)
xn−kBk. (2)

Apostol [3] gave some interesting analogues of the classical Bernoulli polynomials and numbers. Here
we also recall Apostol-Bernoulli polynomials Bn(x, λ) which are given by means of the following generating
functions:

text

λet − 1
=

∞∑
n=0

Bn(x, λ)
tn

n!
(3)

(|t| < 2π if λ = 1; |t| <
∣∣∣logλ

∣∣∣ if λ , 1 and λ ∈ C). Then

Bn(x) = Bn(x, 1)

and

Bn(λ) = Bn(0, λ),

where Bn(λ) denotes the so-called Apostol-Bernoulli Bernoulli polynomials (cf. [1]-[23]). The Frobenius-
Euler numbers Hn(u) are defined by means of the following generating function:

1 − u
et − u

=

∞∑
n=0

Hn(u)
tn

n!
(4)

where u is an algebraic number (cf. [23]). If we substitute u = (−1) into Equation (4), we have the following
well-known result:

En = Hn(−1).
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Following [2], we recall a Dirichlet character χ module a natural number f which is a function from the set
of integers to the set of complex numbers and satisfies the following two conditions:

i) χ is a multiplicative function with the period f ∈N;
ii) if (a, f ) = 1 where a, f ∈N, then χ(a) is non zero and if (a, f ) , 1 then χ(a) = 0.
In the literature, the generalized Bernoulli numbers Bn,χ attached to a Dirichlet character χ module a

natural number f are defined by the following generating function:

Fχ(t) =

f−1∑
j=0

χ( j)te jt

e f t − 1
=

∞∑
n=0

Bn,τ
tn

n!
(|t| < 2π) . (5)

In this paper, we modify Equation (5) with a group homomorphism τ instead of a Dirichlet character
since the properties of τ allows us to get new relations among the Bernoulli , Euler and Apostol-Bernoulli
numbers and also obtain some multiplication formula for the generalized Bernoulli numbers attached to
a group homomorphism. A group homomorphism τ with the period f is from the additive integer group
(Z,+) to the multiplicative complex group (C − {0}, ·). Now, we note the following fundamental properties
of a group homomorphism τ;

i) τ(0) = 1,
ii) τ(a) = τ(1)a for a integer a,
iii) τ( f ) = τ(0) f = 1 and τ(0) is a roof of unity.
It is clear that there exist a group homomorphism with a period f which is not a character and so our

generating function in Equation (6) is clearly different to the generating function in Equation (5).

2. The Generalized Bernoulli Numbers and Polynomials Attached to Any Group Homomorphism

We define a new family of the generalized Bernoulli numbers Bn,τ attached to a group homomorphism
τ with the period f ∈N by the following generating functions:

Fτ(t) =

f−1∑
j=0

τ( j)te jt

e f t − 1
=

∞∑
n=0

Bn,τ
tn

n!
, (|t| < 2π) . (6)

The generalized Bernoulli polynomials Bn,τ(x) attached to a group homomorphism τ with the period
f ∈N are defined by the following generating functions:

Fτ(t, x) = Fτ(t)ext =

∞∑
n=0

Bn,τ(x)
tn

n!
. (7)

By using the second property of a group homomorphism τ and applying the finite geometric series to
Equation (6), we modify Equation (7) and so obtain our first relation:

Fτ(t) =
t

e f t − 1

f−1∑
j=0

τ( j)e jt =
t

τ(1)et − 1
. (8)

By combining Equation (8) with Equation (3) for x = 0, we arrive at the following proposition which
gives us a relation between the generalized Bernoulli numbers attached to the group homomorphism τ and
Apostol-Bernoulli numbers :

Proposition 2.1. Let n ∈N. Then

Bn,τ = Bn(τ(1)),

where Bn(τ(1)) denotes the Apostol-Bernoulli numbers.
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Since

1 = τ(0) = τ(1)τ(−1),

we get the following

Fτ(t) =
t

τ(1)(1 − τ(−1))
(1 − τ(−1))
(et − τ(−1))

.

By combining Equations (8) and (4) with the above equation, we have

∞∑
n=0

Bn,τ
tn

n!
=

t
τ(1)(1 − τ(−1))

∞∑
n=0

Hn(τ(−1))
tn

n!

=
1

τ(1) − 1

∞∑
n=0

Hn(τ(−1))
tn+1

n!
,

where Hn(τ(−1)) is the nth Frobenius-Euler numbers. By comparing the coefficient of tn

n! on both sides of
the above equation, we find the relation between the generalized Bernoulli numbers attached to the group
homomorphism τ and Frobenius-Euler numbers by the following theorem:

Theorem 2.2. Let n be a positive integer and for n ≥ 1. Then we have

Bn,τ =
nHn−1(τ(−1))
τ(1) − 1

. (9)

It is easy to get the following well known result:

Bn,τ = f n−1
f−1∑
a=0

τ(a)Bn

(
a
f

)
(10)

where Bn(x) is nth Bernoulli polynomial.
Combining Equation (9) and Equation (10), we get

f n−1
f−1∑
n=0

τ(a)Bn

(
a
f

)
=

1
τ(1) − 1

nHn−1(τ(−1)).

Therefore, we find the relation between the Bernoulli polynomials attached to the group homomorphism τ
and Frobenius-Euler number by the following theorem:

Theorem 2.3. Let n be a positive integer and for n ≥ 1. Then we have

Hn−1(τ(−1)) =
(τ(1) − 1) f n−1

n

f−1∑
a=0

τ(a)Bn

(
a
f

)
.

As a results of Theorem 2.3, we derive a relation between the classical Euler numbers and the classical
Bernoulli numbers in the following result:

Corollary 2.4. Let n be a positive integer and for n ≥ 1. Then we have

En−1 =
2n

n

(
Bn

(1
2

)
− Bn

)
(11)
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Proof. If the period τ is 2, then τ(−1) = τ(1) = −1. Then by Equation (4), it follows that

Hn−1(τ(−1)) = En−1.

Therefore, by using Theorem 2.3, we get the assertion Equation (11).

We know the multiplication formula (or Rabbe’s formula) for the Bernoulli polynomials given by

Bn(rx) = rn−1
r−1∑
j=0

Bn

(
x +

j
r

)
. (12)

Thus, the Bernoulli polynomials Bn(x) are the normalized polynomials, which have many applications in
analytic number theory. Substituting r = 2 and x = 0 into Equation (12), we get the following

Bn = 2n−1
(
Bn + Bn

(1
2

))
.

Therefore, it follows that

Bn

(1
2

)
= (21−n

− 1)Bn

and so we get the following known result:

Corollary 2.5. Let n be a positive integer and for n ≥ 1. Then we have

En−1 =
1
n

(2 − 2n+1)Bn.

3. Some Properties of the Generating Functions

In this section, we define new group homomorphisms and obtain the relations between the generalized
Bernoulli numbers attached to these group homomorphisms which are obtained from τ. Moreover, we
compare two generalized Bernoulli numbers attached to group homomorphisms with the period f . We
also find sum of the generalized Bernoulli numbers attached to different group homomorphisms with the
period f .

Theorem 3.1. Let Ω be a periodic group homomorphism with the period f and k a positive integer. Then Ωk( j) :=
Ω(kj) is a periodic group homomorphism with the period p =

f
( f ,k) where ( f , k) is 1cd( f , k).

Proof. Let k be a positive integer and ( f , k) = d. Then f = pd and k = p′d for some p, p′ ∈N.
Clearly, Ωk is a group homomorphism. For z, j ∈N, it is proved that

Ωk( j + z) = Ω(k( j + z)) = Ω(kj + kz) = Ω(kj)Ω(kz) = Ω(kj) = Ωk( j)

if and only if Ω(kz) = 1 if and only if f divides kz.
If the period of Ωk is z then f divides kz and so

p′dz = kz = f n = pdn

for some n ∈N and so p′z = pn. This means that p divides z since (p, p′) = 1.
On the other hand, using the equality kp = f p′, we get

Ωk( j + p) = Ω(k( j + p)) = Ω(kj + kp) = Ω(kj)Ω(kp) = Ω(kj) = Ωk( j).

Therefore, z dives p and so z = p.



M. Alkan, Y. Simsek / Filomat 31:1 (2017), 35–44 40

Let h be a positive integer and ( f , h) = d and so f = f ′d for f ′ ∈N. By using Equation (8) and Theorem
3.1, we investigate the relations between Fτ and Fτh;

Fτh (t) =

(
τ(1)et

− 1
τ(h)et − 1

)
Fτ(t). (13)

We note that if h ≡ 1 mod f then , it is easy to observe that

Fτh (t) = Fτ(t)

by applying Equation (13).
Using Theorem 3.1 and Equation (13), our aim is to find relations between two different generating func-

tions for the generalized Bernoulli numbers and polynomials attached to different group homomorphisms
with the period f .

Let ∆ be a group homomorphism with ∆(a) = exp
(

2πia
f

)
for all a ∈ Z. If τ(1) = exp

(
2πiv

f

)
for v ∈ Z, then

we get ( f , v) = 1. Therefore, we get

τ(1) = ∆v(1).

Using Equation (13), we have the following relation;

Fτ(t) = F∆v (t) =

(
∆(1)et

− 1
∆(v)et − 1

)
F∆(t). (14)

Let Fµ(t) be the generating function for the generalized Bernoulli numbers attached to the group homo-
morphism µ with the period f and

µ(1) = exp
(

2πiy
f

)
.

Then we arrive at the following result:

Theorem 3.2. With the above notations, we have that

Fτ(t) =

(
∆(y)et

− 1
∆(v)et − 1

)
Fµ(t). (15)

Let L be the set of group homomorphisms with the period f . Now, we are ready to give sum of all
generating functions for the generalized Bernoulli numbers with the period f . By using Equation (15), we
get the following theorem:

Theorem 3.3. With the above notations, we have that for all n ∈N,∑
η∈L

Bn,η =
1

n − 1

n∑
r=0

(
n
r

)
Br−1,∆

 ∑
(v, f )=1,v≤ f

(
∆(1)Bn−r,∆(v)(1) − Bn−r,∆(v)

) .

Proof. By using Equation (14), we get∑
η∈L

Fη(t) =
∑

(v, f )=1,v≤ f

F∆v (t) =
∑

(v, f )=1,v≤ f

(
∆(1)et

− 1
∆(v)et − 1

)
F∆(t)

=
∑

(v, f )=1,v≤ f

(
∆(1)tet

∆(v)et − 1
−

t
∆(v)et − 1

)
1
t

F∆(t)

=
∑

(v, f )=1,v≤ f

1
t

F∆(t)
[
∆(1)F∆v (t, 1) − F∆v (t)

]
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where F∆v (t, 1), F∆v (t) are the generating functions for the Apostol-Bernoulli polynomials and numbers.
Then, applying Cauchy product in the above equations, we obtain that

∑
η∈L

Fη(t) =
∑

(v, f )=1,v≤ f

 ∞∑
n=0

Bn,∆
tn−1

n!


 ∞∑

n=0

(
∆(1)Bn,∆(v)(1) − Bn,∆(v)

) tn

n!


=

∞∑
n=0

 ∑
(v, f )=1,v≤ f

1
n − 1

n∑
r=0

(
n
r

)
Br−1,∆

(
∆(1)Bn−r,∆(v)(1) − Bn−r,∆(v)

) tn

n!
.

Hence, comparing the coefficient tn

n! on both sides yields the assertion of the desired results.

Now we want to decompose the generalized Bernoulli numbers attached to a group homomorphism
with the period f with respect to the integer k where f = pk and (p, k) = 1. The decomposition is that

Fτ(t) =

p−1∑
j=0

k−1∑
r=0

τ(kj + r)te(kj+r)t

e f t − 1
(16)

=
1
k

 k−1∑
r=0

τ(r)ert

 Fτk (kt).

If f = 2p then using the finite geometric sequence, Equation (16) make efficient the following result.

Theorem 3.4. Let n be a positive integer and τ a group homomorphism with the period f = 2p. Then we have

Bn,τ = 2n−1

Bn,τ2 + τ(1)
n∑

j=0

(
n
j

)
B(n− j),τ2

 .
Proof. Using Equation (16), we get

Fτ(t) =
1
2

Fτ2 (2t)
(
1 + τ(1)et

)
.

Hence applying the Cauchy product, it follows that

Fτ(t) =

 ∞∑
n=0

(2n−1Bn,τ2 )
tn

n!


1 + τ(1)

∞∑
n=0

tn

n!


=

∞∑
n=0

2n−1Bn,τ2 + τ(1)
n∑

j=0

(
(
n
j

)
)(2n−1B(n− j),τ2 )

 tn

n!

By comparing the coefficient of tn

n! on both sides above, we get the desired results.

On the other hand, from Equation (16), we obtain a formula for the nth generalized Bernoulli numbers.

Theorem 3.5. Let f = pk for some p, k ∈ Z such that (p, k) = 1. Then for a positive integer n, we have

Bn,τ =

n∑
v=0

(
n
v

)
Bv,τk k

v−1
k−1∑
r=0

τ(r)rn−v. (17)
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Proof. By using Equation (16), we get

Fτ(t) =
1
k

k−1∑
r=0

τ(r)ertFτk (kt) =
1
k

k−1∑
r=0

τ(r)

 ∞∑
n=0

rn tn

n!


∑

n=0

Bn,τk k
v tn

n!


=

1
k

∞∑
n=0

 n∑
v=0

(
n
v

) k−1∑
r=0

τ(r)rn−vkvBv,τk

 tv

v!
.

Hence, comparing the coefficient tv

v! on both sides yields the assertion of this theorem.

Now, we try to find the similar relations for the generalized Bernoulli polynomials. Firstly, by using
Equation (16), we observe the following;

Fτ
( t

k
, kx

)
=

∞∑
n=0

Bn,τ(kx)k−n tn

n!
=

1
k

k−1∑
r=0

τ(r)Fτk

(
t, x +

r
k

) (18)

=

∞∑
n=0

1
k

k−1∑
r=0

τ(r)Bnτk

(
x +

r
k

) tn

n!

By comparing the coefficient of the last Equation, we have the following results which are similar to the
multiplication formula:

Theorem 3.6. Let f = pk for some p, k ∈ Z such that (p, k) = 1. Then for all positive integer n, we have that

Bn,τ(kx) = kn−1
k−1∑
r=0

τ(r)Bn,τk (x +
r
k

). (19)

For Bnτ(kx), we also find the different formula from Equation (19) in the following Theorem.

Theorem 3.7. Let f = pk for some p, k ∈N such that (p, k) = 1. Then for all positive integer n, we have

Bn,τ(kx) =

n∑
l=0

(
n
l

)
Bl,τk (x)kl−1

k−1∑
i=0

τ(i)in−l. (20)

Proof. For the generalized Bernoulli polynomials, we have the following the generating function;

Fτ(t, x) =

k−1∑
i=0

1
k
τ(i)eitFτk (kt,

x
k

) =

 k−1∑
i=0

1
k
τ(i)

∞∑
n=0

in
tn

n!


 ∞∑

n=0

Bn,τk (
x
k

)kn tn

n!


=

∞∑
n=0

 n∑
l=0

(
n
l

) k−1∑
i=0

1
k
τ(i)in−lBl,τk

(x
k

)
kl

 tn

n!
.

By the comparing of the coefficient in above Equation, we get the result.

The classical multiplicative formula for the generalized Bernoulli polynomials has been given in Equa-
tion (12). Unfortunately so far, we have found some Formulas in Equations (19-20) under some conditions.
And now, our aim is to obtain more general formula. For this aim, we need to define new group homo-
morphisms and study the generating functions for the generalized Bernoulli polynomials attached to these
group homomorphisms.

Let h be a positive integer. We define the group homomorphism ρ(v) = exp( 2πiv
h ) with the period h for an

integer v.
Let us define the function λ from Z to C such that λ( j) := τ( j)ρ( j) for all integer j. It is clearly a group

homomorphism and also its period is lcm( f , h). Then we have the following result.
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Theorem 3.8. Let h be a positive integer. Then for all integer j, λ( j):= τ( j)ρ( j) is a group homomorphism with the
period f where ρ(v) = exp( 2πiv

h ).

Now, we show the relations between the generalized Bernoulli numbers attached to the group homo-
morphisms λ and τh. Then we try to obtain the formula like the multiplicative formula for the generalized
Bernoulli polynomials attached group homomorphisms τ and τh.

Firstly, we note that lcm( f , h) gcd( f , h) = f h and so f = f ′ gcd( f , h) for f ′ ∈N.
Let H = lcm( f , h) and so H = f ′h. Then by Theorem 3.1, the period of τh is f ′ and so we have the

following;

Fλ(t, x) = Fλ(t)ext =

f ′−1∑
j=0

h−1∑
r=0

τ(hj)τ(r)ρ(r)te(hj)tert+xt

eHt − 1
(21)

Therefore, by Equation (21), we arrive at the following theorem.

Theorem 3.9. For a positive integer n, with the above notations, we have

Bn,λ(hx) = hn−1
h−1∑
r=0

λ(r)Bn,τh (x +
r
h

). (22)

Proof. By using Equation (21), we have the following;

Fλ(t, x) =
1
h

h−1∑
r=0

λ(r)Fτh(ht,
x + r

h
).

Then we get the generalized Bernoulli polynomials and so the results by comparing the coefficient of tn

n!
in the following equation;

∞∑
n=0

Bnλ(x)
tn

n!
=

∞∑
n=0

hn−1
h−1∑
r=0

λ(r)Bn,τh (
x + r

h
)

 tn

n!
.

To find the relations between the generalized Bernoulli polynomials attached to group homomorphisms
τ and λ directly, we may focus on the Equation (13) and (21). Thus we get interesting multiplication
formula.

Fλ(t, x) =

 h−1∑
r=0

λ(r)
(
τ(1)et

− 1
τ(h)et − 1

)
Fτ

(
ht,

x + r
h

) .
Maybe, the above equation is not useful in general case, but if h ≡ 1 mod f , then we get

∞∑
n=0

Bn,λ(x)
tn

n!
=

h−1∑
r=0

λ(r)Fτ
(
ht,

x + r
h

)
=

∞∑
n=0

h−1∑
r=0

λ(r)hnBn,τ

(x + r
h

) tn

n!
.

Therefore, by comparing the coefficient of tn

n! on both sides in Equation (21), we get the following theorem
which gives us the modification of Equation (22).

Theorem 3.10. Let h be a positive integer and h ≡ 1 mod f . Then for all n ∈N0, we have

Bn,λ(hx) = hn
h−1∑
r=0

λ(r)Bn,τ

(
x +

r
h

)
.
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