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I−Lacunary Summability Function of Order α

Ekrem Savaşa

aIstanbul Ticaret University, Department of Mathematics, Sutluce -Istanbul, Turkey

Abstract. In this paper, we further generalize recently introduced summability methods in [23](where
ideals of N were used to extend certain important summability methods) and introduce new notions,
namely, I−statistical convergence of order α, where 0 < α < 1 by taking nonnegative real-valued Lebesque
measurable function in the interval (1,∞). We mainly investigate their relationship and also make some
observations about these classes. The study leaves a lot of interesting open problems.

1. Introduction

The idea of statistical convergence was formerly given under the name almost convergence by Zygmund
[25] in the first editon of his celebrated monograph published in Warsaw in 1935. The concept was formally
introduced by Steinhaus [24] and Fast [8] and later was introduced by Schoenberg [26]. If K is subset ofN,
N, the set of natural numbers, then the asymptotic density of K , denoted by δ(K) ,is given by

δ (K) = limn
1
n
{k ≤ n : k ∈ K} |

when ever the limits exists, where |A| denotes the cardinality of the set A. A sequence x = (xk) of numbers
is statistically convergent to L if

δ ({k : |xk − L| ≥ ε}) = 0

for every ε > 0. Statistical convergence turned out to be one of the most active areas of research in
summability theory after the works of Fridy [9] and Šalát [15]. Over the years and under different names
statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory and number
theory.
The idea of statistical convergence was further extended to I-convergence in [11] using the notion of ideals
of N with many interesting consequences. More investigations in this direction and more applications of
ideals can be found in [7, 16–21].
A lacunary sequence θ = (kr)

∞

k=0 is an increasing sequence of integers such that k0 = 0 and hr = kr−kr−1 →∞,

as r→∞. Let Ir = (kr−1, kr] and qr = kr
kr−1
.

Lacunary statistical convergence was introduced in [10] as follows.
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A sequence (xk) of reals numbers is said to be lacunary statistical convergent to L (or, Sθ-convergent to L) if
for any ε > 0,

lim
r→∞

1
hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In [10] the relation between lacunary statistical convergence and statistical convergence was established
among other things.
Recently in [6], we used ideals to introduce the concepts of I-statistical convergence and I-lacunary
statistical convergence which naturally extend the notions of the above mentioned convergence.
A generalized statistically convergent function via ideals was given by Savas in [22]. On the other hand in
[1, 4, 5] a different direction was given to the study of statistical convergence where the notion of statistical
convergence of order α, 0 < α < 1 was introduced by replacing n by nα in the denominator in the definition
of statistical convergence.
In this short paper we shall introduce the concept of I-statistical convergence and I-lacunary statistical
convergence of order α, where 0 < α < 1 by taking nonnegative real-valued Lebesque measurable function
in the interval (1,∞). It should be note that Braha et al. [2] introduced a new Λ2-weighted statistical
convergence and also Braha et al. [3] proved a Krovkin type theorem for the test function 1, cosx and sinx in
the space C2π(R) of all continuous 2π-periodic functions on the real line R respectivly. Further Mursaleen
et al. [13] defined certain new spaces of statistical convergence and strongly summable sequences of fuzzy
numbers.

In this paper we mainly investigateI−statistical convergence of order α, where 0 < α < 1 by taking non-
negative real-valued Lebesque measurable function in the interval (1,∞) and also make some observations
about these classes and most importantly the study leaves a lot of interesting open problems.

2. Main Results

The following definitions and notions will be needed.

Definition 2.1. A family I ⊂ 2N is said to be an ideal ofN if the following conditions hold:

(a) A,B ∈ I implies A ∪ B ∈ I,
(b) A ∈ I, B ⊂ A implies B ∈ I.

Definition 2.2. A non-empty family F ⊂ 2N is said to be a filter ofN if the following conditions hold:

(a) φ < F,
(b) A,B ∈ F implies A ∩ B ∈ F,
(c) A ∈ F, A ⊂ B implies B ∈ F.

If I is a proper ideal ofN (i.e.,N < I), then the family of sets F (I) = {M ⊂N : ∃ A ∈ I : M =N \ A} is
a filter ofN. It is called the filter associated with the ideal.

Definition 2.3. A proper ideal I is said to be admissible if {n} ∈ I for each n ∈N.

Throughout I will stand for a proper admissible ideal ofN.

Definition 2.4. (See [11]) Let I ⊂ 2N be a proper admissible ideal inN. The sequence x = (xn) of elements of R is
said to be I-convergent to L ∈ R if for each ε > 0 the set A (ε) = {n ∈N : |xn − L| ≥ ε} ∈ I.

We now ready to give the main definitions.

Definition 2.5. A function x(t) is said to be I-statistically convergent of order α to L or S(I)α−convergent to L,
where 0 < α ≤ 1, if for each ε > 0 and δ > 0{

n ∈N :
1

nα
|{t ≤ n : |x (t) − L| ≥ ε}| ≥ δ

}
∈ I.
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In this case we write x (t) → L
(
S(I)α

)
. The class of all I-statically convergent function of order α will be

denoted by simply S(I)α.

Remark 2.6. If we takeI = I f = {A ⊆N : A is a finite subset} .Then S(I)α-convergence coincides with statistical
convergence function of order α. For an arbitrary ideal I and for α = 1 it coincides with I-statistical convergence of
function. When I = I f in and α = 1 it becomes only statistical convergence of function.

Definition 2.7. Let θ be a lacunary sequence. A function x(t) is said to be I-lacunary statistically convergent of
order α to L or Sθ(I)α-convergent to L if for any ε > 0 and δ > 0{

r ∈N :
1
hαr
|{k ≤ Ir : |x (t) − L| ≥ ε}| ≥ δ

}
∈ I.

In this case we write x (t)→ L
(
Sθ(I)α

)
. The class of all I-lacunary statistically convergent function of order

α will be denoted by Sθ(I)α.

Remark 2.8. Forα = 1 the definition coincides withI-lacunary statistically convergent function(see, [23]). If we take
I = I f = {A ⊆N : A is a finite subset} and α = 1, lacunary statistical convergence is a special case of I-lacunary
statistical convergence of order α, (see, [14]). Further it must be noted in this context that lacunary statistical conver-
gence function of order α has not been studied till now. Moreover, if we takeI = I f = {A ⊆N : A is a finite subset},
obviously lacunary statistical convergence of order α is a special case of I-lacunary statistical convergence of order
α. So properties of lacunary statistical convergence of order α can be easily obtained from our results with obvious
modifications.

Theorem 2.9. Let 0 < α ≤ β ≤ 1. Then S(I)α ⊂ S(I)β and the inclusion is strict for at least those α, β for which
there is a k ∈N such that α < 1

k < β and when I = I f in.

Proof. Let 0 < α ≤ β ≤ 1. Then

|{t ≤ n : |x (t) − L| ≥ ε}|
nβ

≤
|{t ≤ n : |x (t) − L| ≥ ε}|

nα

and so for any δ > 0,{
n ∈N :

|{t ≤ n : |x (t) − L| ≥ ε}|
nβ

≥ δ

}
⊂

{
n ∈N :

|{t ≤ n : |x (t) − L| ≥ ε}|
nα

≥ δ

}
.

Hence if the set on the right hand side belongs to the idealI then obviously the set on the left hand side also
belongs to I. This shows that S(I)α ⊂ S(I)β. To prove that the inclusion is strict for the above mentioned α,
β consider the sequence x = x(t) defined by

x (t) = 1, if t = Jk

x (t) = 0, if t , jk, j ∈N.

Then S(I)β − lim x (t) = 0 i.e. x ∈ S(I)β but x < S(I)α where I = I f in.

Corollary 2.10. If a sequence is I-statistically convergent of order α to L for some 0 < α ≤ 1 then it is I-statistically
convergent to L i.e. S(I)α ⊂ S (I)

Similarly we can show that

Theorem 2.11. Let 0 < α ≤ β ≤ 1. Then

(i) Sθ(I)α ⊂ Sθ(I)β.
(ii) In particular Sθ(I)α ⊂ Sθ(I),
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and the inclusion is strict for at least those α, β for which there is a k ∈N such that α < 1
k < β and when I = I f in.

Definition 2.12. Let θ be a lacunary sequence. Then x = x(t) is said to be Nθ(I)α-convergent to L if for any ε > 0{
r ∈N :

1
hr
α

∫
t∈Ir

|x (t) − L| ≥ ε
}
∈ I.

It is denoted by x (t)→ L
(
Nθ(I)α

)
and the class of such sequences will be denoted by simply Nθ(I)α.

In the following we prove a result in line of Theorem 1 in [23] regardingI-lacunary statistical convergence
of order α.

Theorem 2.13. Let θ = (kr) be a lacunary sequence, then

(i)(a) x (t)→ L
(
Nθ(I)α

)
⇒ x (t)→ L

(
Sθ(I)α

)
, and

(b) Nθ(I)α is a proper subset of Sθ(I)α.

Proof. (i)(a) If ε > 0 and x (t)→ L
(
Nθ(I)α

)
, we can write∫

t∈Ir

|x (t) − L| dt ≥
∫

t∈Ir,|x(t)−L|≥ε
|x (t) − L| dt ≥ ε |{t ∈ Ir : |x (t) − L| ≥ ε}|

and so
1
ε.hαr

∫
t∈Ir

|x (t) − L| dt ≥
1
hαr
|{t ∈ Ir : |x (t) − L| ≥ ε}| .

Then for any δ > 0{
r ∈N :

1
hαr
|{t ∈ Ir : |x (t) − L| ≥ ε}| ≥ δ

}
⊆

{
r ∈N :

1
hαr

∫
t∈Ir

|x (t) − L| dt ≥ ε.δ
}
∈ I.

This proves the result.

(b) In order to establish that the inclusion Nθ(I)α ⊂ Sθ(I)α is proper, let θ be given and x(t) to be
1, 2, ...,

[√
hαr

]
at first

[√
hαr

]
integers in Ir and x(t) = 0 otherwise for all r = 1, 2, 3, ....

Then for any ε > 0,

1
hr
α |{t ∈ Ir : |x (t) − 0| ≥ ε}| ≤

[√
hαr

]
hαr

and any δ > 0 we get {
r ∈N :

1
hr
α |{t ∈ Ir : |x (t) − 0| ≥ ε}| ≥ δ

}
⊆

r ∈N :

[√
hαr

]
hαr

≥ δ

 .
Since the set on the right hand side is a finite set and so belongs to I, it follows that x (t)→ 0

(
Sθ(I)α

)
.

On the other hand
1

hr
α

∫
t∈Ir

|x (t) − 0| dt =
1

hr
α .

[√
hαr

] ([√
hαr

]
+ 1

)
2

.

Then {
r ∈N :

1
hr
α

∫
t∈Ir

|x (t) − 0| dt ≥
1
4

}
=

r ∈N :

[√
hαr

] ([√
hαr

]
+ 1

)
hr
α ≥

1
2


= {m,m + 1,m + 2, ...}

for some m ∈Nwhich belongs to F(I) since I is admissible. So x (t)9 0
(
Nθ(I)α

)
.
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Remark 2.14. In Theorem 1 [23] it was further proved that

(ii) x(t) ∈ B(X,Y) and x (t)→ L (Sθ (I))⇒ x (t)→ L (Nθ (I)) ,
(iii) Sθ (I) ∩ B (X,Y) = Nθ (I) ∩ B (X,Y) , B (X,Y) , is set of bounded functions.

However whether these results remain true for 0 < α < 1 is not clear and we leave them as open problems.

In the following we investigate relationship between I-statistical and I-lacunary statistical convergence of
order α for function.

Theorem 2.15. Let I be an ideal and θ = (kr) be a lacunary sequence with lim inf qαr > 1, then I-statistical
convergence of order α implies I-lacunary statistical convergence of order α.

Proof. Suppose first that lim inf qαr > 1 . Then there exists σ > 0 such that qαr ≥ 1 + σ for sufficiently large r
which implies that

hαr
kαr
≥

σ
1 + σ

.

Since x (t)→ L
(
S(I)α

)
, then for every ε > 0 and for sufficiently large r, we have

1
kr
α |{t ≤ kr : |x (t) − L| ≥ ε}| ≥

1
kr
α |{k ∈ Ir : |x (t) − L| ≥ ε}|

≥
σ

1 + σ
.

1
hr
α |{t ∈ Ir : |x (t) − L| ≥ ε}| .

Then for any δ > 0, we get {
r ∈N :

1
hr
α |t ∈ Ir : |x(t) − L| ≥ ε| ≥ δ

}
⊆

{
r ∈N :

1
kr
α |{t ≤ kr : |x (t) − L| ≥ ε}| ≥

δσ
(1 + σ)

}
∈ I.

This completes the proof.

Remark 2.16. The converse of this result is true for α = 1 (see Theorem 2 [23]). However for α < 1 it is not clear
and we leave it as an open problem.

When I-lacunary statistical convergence of order α implies I-statistical convergence of order α?
The following theorem gives the answer: For the next result we assume that the lacunary sequence θ
satisfies the condition that for any set C ∈ F (I) , ∪ {n : kr−1 < n < kr, r ∈ C} ∈ F (I) .

Theorem 2.17. For a lacunary sequence θ satisfying the above condition, I-lacunary statistical convergence of order

α implies I-statistical convergence of order α, 0 < α < 1, if sup
r

r−1∑
i=0

hαi+1
(kr−1)α = B(say) < ∞.

Proof. Suppose that x (t)→ L
(
Sθ(I)α

)
and for ε, δ, δ1 > 0 define the sets

C =

{
r ∈N :

1
hr
α |{t ≤ Ir : |x (t) − L| ≥ ε}| < δ

}
and

T =
{
r ∈N :

1
nα
|{t ≤ n : |x (t) − L| ≥ ε}| < δ1

}
.

It is obvious from our assumption that C ∈ F (I), the filter associated with the ideal I. Further observe that

A j =
1
hαj

∣∣∣∣{t ∈ I j : |x (t) − L| ≥ ε
}∣∣∣∣ < δ
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for all j ∈ C. Let n ∈N be such that kr−1 < n < kr for some r ∈ C. Now

1
nα
|{t ≤ n : |x (t) − L| ≥ ε}| ≤

1
kαr−1
|{t ≤ kr : |x (t) − L| ≥ ε}|

=
1

kαr−1
|{t ∈ I1 : |x (t) − L| ≥ ε}| + ... +

1
kαr−1
|{t ∈ Ir : |x (t) − L| ≥ ε}|

=
kα1

kαr−1

1
hα1
|{t ∈ I1 : |x (t) − L| ≥ ε}| +

(k2 − k1)α

kαr−1

1
hα2
|{t ∈ I2 : |x (t) − L| ≥ ε}| + ...+

+
(kr − kr−1)α

kαr−1

1
hαr
|{t ∈ Ir : |x (t) − L| ≥ ε}|

=
kα1

kαr−1
A1 +

(k2 − k1)α

kαr−1
A2 + ... +

(kr − kr−1)α

kαr−1
Ar

≤ sup
j∈C

A j. sup
r

r−1∑
i=0

(ki+1 − ki)
α

kαr−1
< Bδ.

Choosing δ1 = δ
B and in view of the fact that ∪ {n : kr−1 < t < kr, r ∈ C} ⊂ T where C ∈ F (I) it follows from

our assumption on θ that the set T also belongs to F (I) and this completes the proof of the theorem.

Theorem 2.18. Let θ = (θr) and θ′ = (sr) be two lacunary sequences such that Ir ⊂ Jr for all r ∈N and let α and β
be fixed real numbers such that 0 < α ≤ β ≤ 1,

(i) If

lim
r→∞

inf
hαr
`
β
r

> 0 (1)

then Sβ
θ′

(I) ⊆ Sαθ (I) ,

(ii) If

lim
r→∞

`r

hβr
= 1 (2)

then Sαθ (I) ⊆ Sβ
θ′

(I) .

Proof. (i) Easy, and omitted.
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(ii) Let x = x(t) ∈ Sαθ (I) and (2) be satisfied. Since Ir ⊂ Js, for ε > 0 we may write

1

`
β
r

|{k ∈ Jr : |x(t) − L| ≥ ε}| =
1

`
β
r

|{sr−1 < k ≤ kr−1 : |x(t) − L| ≥ ε}|

+
1

`
β
r

|{kr < k ≤ sr : |x(t) − L| ≥ ε}|

+
1

`
β
r

|{kr−1 < k ≤ kr : |x(t) − L| ≥ ε}|

≤
kr−1 − sr−1

`
β
r

+
sr − kr

`
β
r

+
1

`
β
r

|{k ∈ Ir : |x(t) − L| ≥ ε}|

=
`r − hr

`
β
r

+
1

`
β
r

|{k ∈ Ir : |x(t) − L| ≥ ε}|

≤
`r − hr

`
β
r

+
1

hβr
|{k ∈ Ir : |x(t) − L| ≥ ε}|

≤

 `r

hβr
− 1

 +
1
hαr
|{k ∈ Ir : |x(t) − L| ≥ ε}|

for all r ∈N. Hence we haver ∈N :
1

`
β
r

|{k ∈ Jr : |x(t) − L| ≥ ε}| ≥ δ

 ⊆
{

n ∈N :
1
hαr
|{k ∈ Ir : |x(t) − L| ≥ ε}| ≥ δ

}
∈ I.

This implies that Sαθ (I) ⊆ Sβ
θ′

(I) .

From Theorem 2.8 we have the following.

Corollary 2.19. Let θ = (kr) and θ′ = (sr) be two lacunary sequences such that Ir ⊂ Jr for all r ∈N.
If (1) holds, then

(i) Sα
θ′

(I) ⊆ Sαθ (I)for each α ∈ (0, 1] ,
(ii) Sθ′ (I) ⊆ Sαθ (I) for each α ∈ (0, 1] ,
(iii) Sθ′ (I) ⊆ Sθ (I)

If (2) holds then,

(i) Sαθ (I) ⊆ Sα
θ′

(I) for each α ∈ (0, 1] ,
(ii) Sαθ (I) ⊆ Sθ′ (I) for each α ∈ (0, 1] ,
(iii) Sθ (I) ⊆ Sθ′ (I) .
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