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Abstract. In this paper, a new weighting sum method for multi-criteria decision making is presented. The
main advantage of this method is that it is easier for understanding and it can effectively be handled by a
decision maker, so the obtained solution best suits his goal and his understanding of the problem.

1. Introduction

All criteria in a multi-criteria decision making problem can be classified into two categories. Criteria
that are to be maximized (highest value is best value) and criteria that are to be minimized (lowest value
is best value). An ideal solution to a multi-criteria decision making problem would maximize all criteria
of the first type and minimize all criteria of the second type, but usually this solution is not possible to
obtain. So, the question is what would be the best satisfying solution? This question may not always have a
conclusive or unique answer. Whether a solution is satisfying depends on the level of the decision makers
expectation. The goal of every analyst (the person using the method) is for his suggestion to be accepted as
a valid solution by the decision maker. In order to reach that goal (and for the analyst to justify his work and
achieve success), it is required to include the decision maker as much as possible, directly or indirectly, in
the calculation process for solving the problem. Sometimes, this is not possible because of the limited time
or the structure and complexity of the method from mathematical point of view. Therefore, it is necessary
to find a solution reaching method where the decision maker can give his subjective judgments and to be
included successfully and with ease.

There are many multi-criteria decision making methods available in the literature. Some of the most
commonly used approaches are the Weighted sum model [7], the Weighted product model [2, 13], the
analytic hierarchy process [17–20], the ELECTRE method [3, 16], the TOPSIS method [9], the PROMETHEE
method [1], the VIKOR method [14], etc. There are also a number of papers, which are devoted to
comparison of their characteristics and performances. Multi-criteria decision making methods differ in
normalization processes performed to convert all criteria into a same unit [4, 11, 12], weighting techniques
used for determination of the criteria importance [10, 22], method of aggregation of value functions assigned
to each criterion [5], etc. This affects the core complexity of a method.
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In this article, we will present a new multi-criteria decision method where it is relatively easy to include
the decision maker, his personal preference and his view on the problem. The method is consisted of two
main parts, normalization and weighing processes. Finally, to illustrate the feasibility of our approach, we
will apply our proposed method on a real application problem.

For an overview of the available methods for solving multi-criteria decision problems we refer to
Figueira et al. [6], Hwang and Yoon [9], Radojičić and Žižović [15], Triantaphyllou [21] and Zeleny [23],
and for an insight into practical applications we refer to [8].

2. Normalization of the Multi-Criteria Model

We will observe a multi-criteria model for ranking m alternatives (A1, . . . ,Am) by n criteria (C1, . . . ,Cn)
presented in Table 1. In this model, the degree in which alternative Ai (i = 1, . . . ,m) satisfies criterion C j,
( j = 1, . . . ,n) is denoted by ai j. Without lost of generality, we can assume that the criteria are ordered based
on importance, from the most important criterion C1 to the least important criterion Cn.

Table 1: Decision matrix
C1 C2 · · · Cn

A1 a11 a12 · · · a1n
A2 a21 a22 a2n
...

...
...

. . .
...

Am am1 am2 · · · amn

For different criteria, the performance values of alternatives can be measured by different units. In
order to have a valid comparisons, all elements of decision matrix need to be transferred into a same
unit (the interval [0,1] is usually used as the basic unit interval). A lot of normalization methods have
been developed. Some of most popular are vector normalization method, linear max-min normalization,
linear sum based normalization, linear max normalization, Gaussian normalization, etc. The review of the
literature on normalization methods can be found in [11].

Applying different normalization methods on a decision-making matrix can lead to different numerical
results and finally affect alternatives order of preference. Therefore, a normalization method affects the
quality of decision-making (see for example [12]). In this section, we will present one new normalization
method and we will point out some of its advantages over most commonly known normalization methods.

Values of alternatives with respect to every criterion C j, ( j = 1, . . . ,n) are given in the jth column of Table
1. Clearly, these values can have different importance for the decision maker. Some values are extremely
important for the decision maker, some are acceptable, some are barely acceptable, while some values are
totally unacceptable. It is therefore, logical to define levels of acceptability for possible alternative values
(this can be done even before observing the model itself in Table 1).

For each criterion C j, ( j = 1, . . . ,n) of maximization type, the decision maker defines r, (r ∈ N) values
Q j1 > Q j2 > · · · > Q jr, such that Q j1 is assumed to be the decision makers ideal alternative value, Q j2
represents the lower limit of ideal values for decision maker, Q j,r−1 represents the upper limit for barely
acceptable values for decision maker, and Q jr is a lowest acceptable value for the decision maker.

Analogously, for each criterion of minimization type, the decision maker defines r, (r ∈ N) values
Q j1 > Q j2 > · · · > Q jr whose meanings are in reverse order with respect to previous list, i.e. Q j1 is assumed
to be the decision maker nadir alternative value, while Q jr is the ideal one.

For a criterion C j, ( j = 1, . . . ,n) of maximization type, these values Q jk, (1 ≤ k ≤ r) specify r − 1 intervals

I j1 = [Q j2,Q j1], I j2 = (Q j3,Q j2], · · · , I j,r−1 = (Q jr,Q j,r−1],

and for a criterion of minimization type the corresponding intervals are

I j1 = [Q j2,Q j1), I j2 = [Q j3,Q j2), · · · , I j,r−1 = [Q jr,Q j,r−1].
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In general, the number of these intervals can be different for different criteria and it depends on the decision
maker preference on the criterion.

In the case that C j is a criterion of maximization type, let p jk : I jk → (0, 1], ( j = 1, . . . ,n, k = 1, 2, . . . , r−1) be
a non-decreasing functions given by the decision maker and the analysts such that they satisfy the condition
p jk(x) > p j,k+1(y), for every x ∈ I jk and y ∈ I j,k+1, (k = 1, 2, . . . , r − 2). Further, let the functions f j : R≥0 → [0, 1]
be such that

f j(a) =


1, a ≥ Q j1;
p jk(a), a ∈ I jk, k = 1, 2, . . . , r − 1;
0, a ≤ Q jr.

(1)

In the case that C j is a criterion of minimization type, then functions p∗jk : I jk → (0, 1], ( j = 1, . . . ,n, k =

1, 2, . . . , r− 1) are required to be non-increasing and to satisfy p jk(x) < p j,k+1(y), for every x ∈ I jk and y ∈ I j,k+1,
(k = 1, 2, . . . , r − 2). Further, let the functions f ∗j : R≥0 → [0, 1] be defined as

f ∗j (a) =


0, a ≥ Q j1;
p∗jk(a), a ∈ I jk, k = 1, 2, . . . , r − 1;

1, a ≤ Q jr.

(2)

Now, we normalize the decision matrix given in Table 1, by

qi j = f j(ai j), if C j is a criterion of maximization type;

qi j = f ∗j (ai j), if C j is a criterion of minimization type.

By this procedure, we obtain normalized decision matrix given by Table 2. All values in this matrix are
elements of the real unit interval [0,1]. Moreover, all the criteria of minimization type are converted into
the criteria of maximization type.

Table 2: Normalized decision matrix
C1 C2 · · · Cn

A1 q11 q12 · · · q1n
A2 q21 q22 · · · q2n
...

...
...

. . .
...

Am qm1 qm2 · · · qmn

3. Weighted Coefficients

In this section, we will present a new procedure for calculation of weighting coefficients in a multi-
criteria decision making model. This procedure is based on the pairwise comparisons between the most
important criterion C1 and the remaining n − 1 criteria C2, . . . ,Cn.

Let p1k ∈ (0, 100], (k = 2, · · · ,n) be the value of importance of the criterion C1 with respect to the criterion
Ck. Then pk1 = 100− p1k represent the value of importance of criterion Ck with respect to criterion C1. These
values are given in Table 3.

Table 3: The most important criterion w.r.t. other criteria
p12 p13 p14 · · · p1n
p21 p31 p41 · · · pn1
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Clearly, the following holds

50 ≤ p12 ≤ p13 ≤ · · · ≤ p1n < 100 and 50 ≥ p21 ≥ p31 ≥ · · · ≥ pn1 > 0.

As we assumed above, criteria C1, . . . ,Cn are listed in order of importance, and thus Ci is of greater or
equal importance as Ci+1, for each i = 1, . . . ,n− 1. Now, using Table 3, it is possible to calculate the value of
importance of the criterion C2 with respect to criteria C3, . . . ,Cn, further, the value of importance of criterion
C3 with respect to criteria C4, . . . ,Cn, etc., and finally the value of importance of criterion Cn−1 with respect
to criterion Cn. This procedure is given by following recursive formula:

p j+1,k =
100(p jk : pkj) : (p j, j+1 : p j+1, j)
1 + (p jk : pkj) : (p j, j+1 : p j+1, j)

, pk, j+1 = 100 − p j+1,k, for j = 2, . . . ,n − 1, k = j + 1, . . . ,n. (3)

In this way we can form a triangular Table 4 (which also includes Table 3).

Table 4: Pairwise comparison of criteria
p12 p13 p14 · · · p1,n−1 p1n
p21 p31 p41 · · · pn−1,1 pn1

p23 p24 · · · p2,n−1 p2n
p32 p42 · · · pn−1,2 pn2

p34 · · · p3,n−1 p3n
p43 · · · pn−1,3 pn3

· · ·

pn−2,n−1 pn−2,n
pn−1,n−2 pn,n−2

pn−1,n
pn,n−1

Theorem 3.1. The following holds for every j = 1, 2, . . . ,n − 1:

50 ≤ p j, j+1 ≤ p j, j+2 ≤ · · · ≤ p j,n < 100 and 50 ≥ p j+1, j ≥ p j+2, j ≥ · · · ≥ pn, j > 0. (4)

Proof. Clearly, the assertion holds for j = 1 and suppose that the assertion holds for some j−1 ∈ {1, 2, . . .n−1}.
Then by (4) we obtain

p j, j+1 =
100δ
1 + δ

, for δ =
p j−1, j+1

p j−1, j
·

p j, j−1

p j+1, j−1
.

Since p j−1, j ≤ p j−1, j+1 and p j, j−1 ≥ p j+1, j, holds δ ≥ 1, and therefore p j, j+1 = 100 − 100
1+δ ≥ 50. Further, from

p j−1, j+k ≤ p j−1, j+k+1 and p j+k, j−1 ≥ p j+k+1, j, for every k = 1, 2, . . . ,n − j − 1 it follows that

p j−1, j+k+1

p j−1, j
·

p j, j−1

p j+k+1, j−1
≥

p j−1, j+k

p j−1, j
·

p j, j−1

p j+k, j−1
,

which implies p j, j+k+1 ≥ p j, j+k. The inequality p j,n < 100 is satisfied according to (3). Thus, 50 ≤ p j, j+1 ≤

p j, j+2 ≤ · · · ≤ p j,n < 100 holds.
Further, from pkj = 100 − p jk, for k = j + 1, . . . ,n − j = 1, we have 50 ≥ p j+1, j ≥ p j+2, j ≥ · · · ≥ pn, j > 0.

The weighted coefficient W j is given by

W j =

∑n
k=1,k, j p jk

50n(n − 1)
, (5)

for each criterion C j ( j = 1, 2, . . . ,n) Also, the following statement is true for weighted coefficients.
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Theorem 3.2. The following properties of the weighted coefficients W j ( j = 1, 2, . . . ,n) are satisfied:

(i)
n∑

j=1

W j = 1,

(ii) W1 ≥W2 ≥ · · · ≥Wn.

Proof. (i) Using (5) we have

n∑
j=1

W j =

n∑
j=1

∑n
k=1,k, j p jk

50n(n − 1)
=

1
50n(n − 1)

· {(p12 + p13 + · · · p1n) + (p21 + p23 + · · · p2n)+

+ · · · + (pn1 + pn2 + · · · pn,n−1)} =
1

50n(n − 1)
· {(p12 + p21) + (p13 + p31) + · · · + (pn−1,n + pn,n−1)} =

=
1

50n(n − 1)
·

100n(n − 1)
2

= 1.

(ii) This assertion holds by definition of weighted coefficients (5) and Theorem 3.1.

Corollary 3.3. W1 = · · · = Wn = 1
n if and only if pi j = 50, for all i, j = 1, 2 . . . n, i , j.

Proof. Follows immediately by (5).

4. Ranking of Alternatives

For i = 1, 2, . . . ,m, j = 1, 2, . . . ,n, let qi j be the normalized performance value of the alternative Ai by the
criterion C j and let W j be the weighted coefficient associated to the criterion C j according to formula (5).
By multiplying qi j with weight W j, we obtain preference value ei j associated to criterion C j, i.e.

ei j = W j ∗ qi j, for all i = 1, . . . ,m, j = 1, . . . ,n. (6)

In this way, we form Table 5.

Table 5: Preference values associated to criteria
C1 C2 · · · Cn

A1 e11 e12 · · · e1n
A2 e21 e22 · · · e2n
...

...
...

. . .
...

Am em1 em2 · · · emn

Further, we sum up the values ei j ( j = 1, 2, . . . ,n) to obtain the overall value of the alternative Ai
(i = 1, 2, . . . ,m), i.e.

V(Ai) =

n∑
j=1

ei j. (7)

The ranking of alternatives Ai (i = 1, 2, . . . ,m) is based on the aggregation value function (7) and fulfilment
of criteria in order of their importance. In other words, for two alternatives Ai and A j (i, j = 1, 2, . . .m) we
say that A j is preferred over Ai, in notation A j → Ai, if:

V(Ai) < V(A j) or

V(Ai) = V(A j) , ei1 < e j1 or
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V(Ai) = V(A j), ei1 = e j1, ei2 < e j2 or

· · ·

V(Ai) = V(A j), ei1 = e j1, . . . , ei,n−1 = e j,n−1, ein < e jn.

Two alternatives Ai i A j (i, j = 1, 2, . . .m) are equivalents if all their values are equal, i.e. eik = e jk, for all
k = 1, 2, . . . ,n.

It is well known fact that many multi-criteria decision making methods suffer from phenomena called
rank reversal. Namely, the order of alternatives can be changed when an alternative is added to the model.
The main reason for rank reversal is the use of an inappropriate normalization method. Actually, all most
commonly used methods such as vector normalization method, linear max-min normalization, linear sum
based normalization, linear max normalization, Gaussian normalization are based on vector normalization,
or choice of ideal or nadir solutions created from alternatives, which basically depend on all alternatives
included into the model. Normalization process presented in this paper depends only on treated alternative
and hypothetical ideal (nadir) solution given by the decision maker. This proves the following.

Theorem 4.1. The rank of alternatives from the set {A1,A2, . . . ,An} remains the same in the case that the starting
set of alternatives is expanded by a new alternative A.

Proof. Let A = {A1,A2, . . . ,An} and B = {A1,A2, . . . ,An,A}, and let VA and VB denote the value functions
on A and B (respectively) calculated by (7), and→A and→B denote the preference order relations on A
andB (respectively). Then VA(Ai) = VB(Ai), for all i = 1, 2, · · · ,n. Therefore, for every i, j = 1, 2, · · · ,n holds
Ai →A A j if and only if Ai →B A j.

Corollary 4.2. Adding a new alternative into the multi-criteria model can not lead to a rank reversal.

Example 4.3. In this example, we will rank five alternatives A1,A2,A3,A4 and A5 by four criteria C1,C2,C3
and C4. This multi-criteria decision making model is given by Table 6. The criterion C1 is dominant. The
criteria C1,C2 and C3 are to be maximized and criterion C4 is to be minimized.

Table 6: Decision matrix of Example 4.3
C1 C2 C3 C4

A1 10 7 6 9
A2 8 8 7 8
A3 6 6 10 8
A4 7 6 9 7
A5 4 10 3 5

We will assume that the following values are given by decision maker

Q j1 = 10, Q j2 = 8.5, Q j3 = 6.5, Q j4 = 4.5, Q j5 = 2, for j = 1, 2, 3,

Q41 = 10, Q42 = 8.5, Q43 = 6.5, Q44 = 3.5, Q45 = 1.

Thus we have four intervals of importance for all criteria. Also, it is assumed that the decision maker has
provided the values of importance in relation to to the first criterion (Table 7).

Table 7: The most important criterion w.r.t. other criteria in Example 4.3
p12 = 50 p13 = 60 p14 = 70
p21 = 50 p31 = 40 p41 = 30
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In this example, we will use linear functions for normalization process. In relation to a maximizing
criterion C j ( j = 1, 2, 3), the functions f j are defined in the following way:

f j(ai j) =


1, ai j ≥ Q j1;

ai j −Q j5

Q j1 −Q j5
, ai j ∈ I jk, k = 1, 2, 3, 4;

0, ai j ≤ Qi5.

(8)

and in relation to the minimizing C4 criterion, the function f ∗4 can be defined by:

f ∗j (ai j) =


0, ai j ≥ Q j1;

Q j1 − ai j

Q j1 −Q j5
, ai j ∈ I jk, k = 1, 2, 3, 4;

1, ai j ≤ Q j5.

(9)

In this way, we obtain normalized decision matrix given by Table 8.

Table 8: Normalized decision matrix of Example 4.3
C1 C2 C3 C4

A1 1 0.625 0.5 0.111
A2 0.75 0.75 0.625 0.222
A3 0.5 0.5 1 0.222
A4 0.625 0.5 0.875 0.333
A5 0.25 1 0.125 0.556

Further, starting with Table 7 and using formula (3), we obtain Table 9. Now, by (5) we have

Table 9: Pairwise comparison of criteria in Example 4.3
p12 = 50 p13 = 60 p14 = 70
p21 = 50 p31 = 40 p41 = 30

p23 = 60 p24 = 70
p32 = 40 p42 = 30

p34 = 61
p43 = 39

W1 = 0.300, W2 = 0.300, W3 = 0.235 and W4 = 0.165.

Finally, by (6) we obtain Table 10 with overall values of the alternatives.

Table 10: Preference values associated to criteria and overall scores of alternatives in Example 4.3
C1 C2 C3 C4 Σ

A1 0.300 0.188 0.118 0.018 V(A1) = 0.624
A2 0.225 0.225 0.147 0.037 V(A2) = 0.634
A3 0.150 0.150 0.235 0.037 V(A3) = 0.572
A4 0.188 0.150 0.206 0.055 V(A4) = 0.599
A5 0.075 0.300 0.029 0.092 V(A5) = 0.496

Since all values V(Ai) (i = 1, 2, . . . , 5) are different we have the total order of alternatives

A2 → A1 → A4 → A3 → A5,

and therefore, A2 is the best alternative solution.
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5. Conclusion

The suggested method allows a high level of influence of personal preferences of the decision maker
and helps him to find a solution that best suits his goal and his understanding of the problem. This results
in higher quality of decisions reached. Also, the advantage of this method is that it is easier to understand
and it can effectively handle both qualitative and quantitative data. It can be expected that this method will
be applicable in many areas (science, technology, business decision making, military doctrine, etc.) because
introducing new alternatives does not require additional calculations and comparisons to previously intro-
duced alternatives and does not change the established order. It can be noticed that complexity of methods
such as AHP, PPOMETHEE, and others, depends on number of mutually comparisons of alternatives,
while this is not a case with the complexity of the proposed new method, since it linearly depends on the
number of alternatives included into the model.
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