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Abstract. Constacyclic codes are preferred in engineering applications due to their efficient encoding
process via shift registers. The class of constacyclic codes contains cyclic and negacyclic codes. The relation
and presentation of cyclic codes as group algebras has been considered. Here for the first time, we establish
a relation between constacyclic codes and group algebras and study their algebraic structures. Further, we
give a method for constructing constacyclic codes by using zero-divisors in group algebras. Some good
parameters for constacyclic codes which are derived from the proposed construction are also listed.

1. Introduction

A linear code C of length n over Fq, the finite field with q elements, is a vector subspace of Fn
q . A linear

code of length n, dimension k, and minimum (Hamming) distance d over Fq is termed as an [n, k, d]q code
[9]. A linear code C whose parameters satisfy k + d = n + 1 is called maximum distance separable or MDS.
Constacyclic codes are preferred in engineering due to their efficient encoding process via shift registers.
The class of constacyclic codes contains cyclic and negacyclic codes which have been studied for a long
time [2]. On the other hand, in the literature there exist a few papers which study group ring encodings [8].

Algebraic structures of constacyclic codes are described in detail in [1, 2]. Here, we review only the
definition of constacyclic codes which is sufficient to serve for our purpose.

Let m be a positive integer and α be a non-zero element of Fq.A linear code C of length m over Fq is said
to be α−constacyclic if for any codeword (c0, c1, . . . , cm−1) ∈ C we have that (αcm−1, c0, c1, . . . , cm−2) ∈ C. Let Fq
be a finite field with q elements and m a positive integer. It is known that α−constacyclic codes of length m
are ideals of quotient ring Fq[x]/ 〈xm

− α〉 where 0 , α ∈ Fq. In particularly, if we take α = 1, then the class
of constacyclic codes are called cyclic codes.

There are many papers in the literature that studied the structure of constacyclic codes. The majority
of these papers are devoted to obtain α−constacyclic codes of length m over certain algebraic structures
(fields, rings etc.) based on the factorization of xm

− α (for instance see [4, 5, 11]).
The cyclic codes of length m can be viewed as ideals in the group algebra FqCm, where Cm is a cyclic

group of order m. It is known that the quotient ring Fq[x]/ 〈xm
− 1〉 is isomorphic to the group algebra

FqCm [10]. In the light of this fact, the problem of determining the structure of constacyclic codes as group
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This research is supported by Yıldız Technical University Scientific Research Projects Coordination Unit. Project Number: 2016-

01-03-DOP01.
Email addresses: mkoroglu@yildiz.edu.tr (Mehmet E. Koroglu), irfan.siap@gmail.com (Irfan Siap)



M. E. Koroglu, I. Siap / Filomat 31:10 (2017), 2917–2923 2918

algebras has been open one till this paper. In other words, constructing a group algebra FqG, which is
isomorphic to the quotient ring Fq[x]/ 〈xm

−e〉 , where e ∈ Fq and e , 0, 1 has not been addressed yet. In this
paper we address this problem and show up to which extent this is possible with the method introduced
here.

The rest of paper is organized as follows. In the next section, we review some of the basics about group
rings and group ring encodings. In Section 3, we introduce the structure of e−constacyclic codes of length
ϕ (n) over group algebras. In Section 4, we give some illustrative examples. Further, some of the heretofore
known the best parameter codes are tabulated. The last section, concludes this study.

2. Group Rings and Encodings

In this section, we present some of basic facts about group rings and group ring encodings that are more
relevant to our research. For further and detailed theory readers can refer to the references in [7, 8, 10].

Let R be a ring and G a group. Then the group ring RG is the set of all linear combinations in the form
u =

∑
1∈G

α11 such that α1 ∈ R and only finitely many of the α1’s are non-zero. The addition and multiplication

are defined as

u + v =
∑
1∈G

α11 +
∑
1∈G

β11 =
∑
1∈G

(
α1 + β1

)
1 and uv =

∑
1∈G

α11


∑

h∈G

βhh

 =
∑
1,h∈G

α1βh1h. (1)

respectively. RG is a ring with respect to the binary operations defined above. The commutativity of RG
depends on the commutativity of the ring R and the group G. If the ring R is chosen as a field then the
group ring RG is called a group algebra. A non-zero element u ∈ RG is a zero-divisor if and only if there
exists a non-zero v ∈ RG such that uv = 0.

For a fixed listing
{
11, 12, . . . , 1n

}
of the elements of G the RG matrix of u =

n∑
i=1
α1i1i ∈ RG is an element of

Rn×n (the ring of n × n matrices over R) and defined as

U =


α1−1

1 11
α1−1

1 12
. . . α1−1

1 1n

α1−1
2 11

α1−1
2 12

. . . α1−1
2 1n

...
...

...
...

α1−1
n 11

α1−1
n 12

. . . α1−1
n 1n

 . (2)

A group ring RG is isomorphic to a subring of Rn×n[7].

Example 2.1. Let R = Z2 = {0, 1} be the finite field of two elements, and G = C3 be a cyclic group of order 3. Then

the RG matrix of the element u = 1 + 12 in the group ring Z2C3 is U =

0 1 1
1 0 1
1 1 0

 .
The rank of an element u =

∑
1∈G

α11 in RG is the rank of the RG matrix U i.e., rank(u) = rank(U). The

transpose of an element u =
∑
1∈G

α11 in RG is uT =
∑
1∈G

α11−1 or equivalently uT =
∑
1∈G

α1−11. Given an element

α =
∑
α11
1∈G

∈ RG, its support is the set supp (α) =
{
1 ∈ G

∣∣∣α1 , 0
}
. The Hamming weight of an element α ∈ RG

is the number of nonzero coefficient group elements in its support of α i.e. w (α) =
∣∣∣supp (α)

∣∣∣ . The minimum

weight of a submodule M in RG is w (M) = min
{ ∣∣∣supp (α)

∣∣∣∣∣∣ 0 , α ∈M
}
. The map

θ : RG→ Rn, θ

 n∑
i=1

αi1i

 = (α1, α2, . . . , αn) (3)
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is an isomorphism from RG to Rn. Thus, every element in RG can be considered as an n-tuple in Rn.
Let W be a submodule of RG. For a fixed element u ∈ RG the map f : W → RG, such that f (x) = xu

or f (x) = ux is called a group ring encoding [8]. Here x is the information message and xu is the encoded
message i.e. the codeword. Hence, the code is then the set

C = {ux| x ∈W} or C = {xu| x ∈W} (4)

where the former is a right group ring encoding code and the latter is a left group ring encoding code.

Definition 2.2. [8] Let u be a zero-divisor in RG i.e. uv = 0 for some non-zero v ∈ RG. Let W be a submodule of RG
with basis of group elements S ⊆ G. Then, a zero-divisor code is C = {ux| x ∈W} = uW or C = {xu| x ∈W} = Wu.

The code is thus constructed from a zero-divisor u and a submodule W. The element u is called a
generator element of the code C = Wu relative to the submodule W.

A set of group ring elements T ⊂ RG is linearly independent if, for αx ∈ R,
∑
x∈T
αxx = 0 only when αx = 0

for all x ∈ T.Otherwise T is linearly dependent. The rank (T) is defined as the maximum number of linearly
independent elements of T.

Note that a zero-divisor code C = Wu, where W is generated by S, is the submodule of RG consisting of
all elements of the form

∑
1∈S
α11u. The dimension of this submodule is thus the rank of Su, and denoted as

rank (Su) .

Example 2.3. Let RG = Z2C3 =
{
0, 1, 1, 12, 1 + 1, 1 + 12, 1 + 12, 1 + 1 + 12

}
, u = 1 + 1 and v = 1 + 1 + 12. Also,

let W be the submodule of Z2C3 generated by S =
{
1, 1

}
i.e. W = 〈S〉 =

{
0, 1, 1, 1 + 1

}
. Then (Su) =

{
1, 1

} (
1 + 1

)
={

1 + 1, 1 + 12
}

and so rank (Su) = 2. Moreover, the zero-divisor code generated by u with respect to the submodule

W is C = Wu =
{
0, 1 + 1, 1 + 12, 1 + 12

}
. By using the map given in (3) we get C as θ (C) = {000, 110, 011, 101} .

Thus, θ (C) is a [3, 2, 2] binary cyclic linear code.

Definition 2.4. [8] A zero-divisor u with rank(u) = r is called a principal zero-divisor if and only if there exists a
v ∈ RG such that uv = 0 and rank(v) = n − r .

Example 2.5. The elements u = 1 + 1 and v = 1 + 1 + 12 in Z2C3 are principal zero-divisors because

U =

1 1 0
0 1 1
1 0 1

 ∼
(
1 1 0
0 1 1

)
and V =

(
1 1 1

)
. (5)

Theorem 2.6. [8] Let C = {xu| x ∈W} where W is generated by S such that Su is linearly independent and
|S| =rank(u) = r. Suppose further that uv = 0 in the group ring RG so that rank(v) = n − r. Then, y is a codeword if
and only if yv = 0.

The element v ∈ RG is called the check element of the code C.

Corollary 2.7. [8] C = {xu| x ∈W} has a unique check element if and only if u is a principal zero divisor.

Let x =
∑
α11

1∈G
, and y =

∑
β11
1∈G

be two elements in the group ring RG. Then the inner product of x and y is

given by the term-by-term multiplication of the coefficients of x and y, namely
〈
x, y

〉
=

∑
1∈G

α1β1. Thus, the

dual of a code forms a group ring encoding as C⊥ =
{

y ∈ RG
∣∣∣ 〈ux, y

〉
= 0,∀x ∈W

}
.

Theorem 2.8. [8] Let u, v ∈ RG such that uv = 0. Let rank(u) = r and rank(v) = n− r. Let W be a submodule over a
basis S ⊂ G of dimension r such that Su is linearly independent and W⊥ denote the submodule over basis G\S. Then
the dual of the code C = {xu| x ∈W} is C⊥ =

{
xvT

∣∣∣ x ∈W⊥
}

=
{

y ∈ RG
∣∣∣ yuT = 0

}
.
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3. Constacyclic Codes over Group Algebras

Here we extend the notion of cyclic group ring codes to constacyclic group ring codes. Throughout this
section we assume that p is an odd prime, Fq is a finite field of q elements, n = 2pk and gcd

(
q, ϕ

(
2pk

))
=

1, pk + 1 , 0, 1
(
mod q

)
. Moreover, ϕ(.) is the Euler totient function.

Prior giving the definitions and the results, we present a concrete and illustrative construction over an
example.

Let Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be the set of integers modulo 10 and G = 2Z∗10 = {2, 4, 6, 8} ⊂ Z10 be
the set of all doubled elements in Z∗10. The set G is a cyclic multiplicative group with identity element 6.
Thus, there exists an element 1 ∈ G such that 14 = e and 1i , e for i = 1, 2, 3. Let F7 be the finite field of

characteristic 7. Then the group algebra F7G is the set of all elements of the form
3∑

i=0
αi1

i, where αi ∈ F7

for i = 0, 1, 2, 3. Let u = 1 + 31 + 12 and v = 1 + 41 + 12 be principle zero-divisors in F7G. Then uv = 0 and
rank (u) + rank (v) = 2 + 2 = 4. The set (F7G) u = {xu| x ∈ F7G} ⊂ F7G is an ideal of F7G with dimension
2. θ ((F7G) u) is a two dimensional subspace of the vector space F4

7. We see that the set θ ((F7G) u) is a

6−constacyclic code generated by the matrix G′ =

(
1 0 6 4
0 1 3 1

)
with the parameters [4, 2, 3]7 . The dual

code of this code is the two sided ideal (F7G) vT =
{
xvT

∣∣∣ x ∈ F7G
}
⊂ F7G with parameters [4, 2, 3]7 and the

generator matrix H =

(
1 0 6 3
0 1 4 1

)
. Both the code and its dual are MDS.

Let Zn be the set of integers modulo n, where n = 2pk, p is an odd prime and k be a positive integer. Let
G = 2Z∗n ⊂ Zn be the set of all doubled elements in Z∗n. As shown in the illustrative example above, the
choice of n for which doubled elements of Z∗n form a group is crucial. The answer to this fact is given by
the following series of lemmas.

Lemma 3.1. The set G = 2Z∗n is closed under multiplication.

Proof. Let p be an odd prime and n = 2pk. By the Gauss Theorem we know that the multiplicative groupZ∗n
of integer modulo n, Zn is cyclic if n = 2, 4, pk and 2pk. Therefore, for n = 2pk there exists an element 1 ∈ Z∗n
such that 1ϕ(2pk) ≡ 1

(
mod 2pk

)
and so we have

〈
1
〉

= Z∗n =
{
1, 1, 12, . . . , 1ϕ(pk)−1

}
. We can rewrite the set G

as 2Z∗n =
{
a ∈ Zn|gcd

(
a, 2pk

)
= 2

}
=

{
2, 21, 212, . . . , 21ϕ(pk)−1

}
. Let x, y be any two elements in 2Z∗n. Then, for

some integer i, j such that 0 ≤ i, j ≤ ϕ
(
2pk

)
, we have x = 21i and y = 21 j. By multiplying these elements we

get xy = 21i21 j = 41i1 j. If xy = 21i21 j = 41i1 j < 2Z∗n, then p
∣∣∣ 41i1 j. But this is a contradiction, since

(
p, 4

)
= 1

and
(
p, 1i1 j

)
= 1. Thus, we have p - 41i1 j and whence for some integer t, such that 0 ≤ t ≤ ϕ

(
2pk

)
, we have

that xy = 21t
∈ 2Z∗n. This shows that the set 2Z∗n is closed under multiplication.

Lemma 3.2. The multiplicative identity of the set G = 2Z∗n is e = pk + 1.

Proof. Let G =
{
a ∈ Zn|gcd

(
a, 2pk

)
= 2

}
. Choose an arbitrary element x ∈ G. Then, for some integer i, such

that 0 ≤ i ≤ ϕ
(
2pk

)
, we have that x = 21i. Multiply the element x by e to get xe = 21i

(
pk + 1

)
= 21ipk + 21i

≡

21i
(
mod 2pk

)
. Therefore, e = pk + 1 is the multiplicative identity of the set G = 2Z∗n.

The following corollary is a direct result of Lemma 3.2.

Corollary 3.3. e ≡ 1
(
mod p

)
.

Lemma 3.4. Let p be an odd prime and n = 2pk, where k is a positive integer. Then, for some positive integer r such
that r|ϕ

(
pk

)
the congruence 2r

≡ pk + 1
(
mod 2pk

)
holds.
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Proof. By the definition of G clearly 2 is an element in G. If 2 is a primitive element in G = 2Z∗n, then
2ϕ(pk) ≡ pk + 1

(
mod 2pk

)
. On the other hand, if 2 is not a primitive element in G = 2Z∗n, then for some

positive integer r such that r|ϕ
(
pk

)
we have 2r

≡ pk + 1
(
mod 2pk

)
.

Lemma 3.5. Every element in G = 2Z∗n has a multiplicative inverse.

Proof. Let G = 2Z∗n =
{
2, 21, 212, . . . , 21ϕ(pk)−1

}
. Then, every one of the element y in G is of the form y = 21 j

for 0 ≤ j ≤ ϕ
(
2pk

)
. By multiplying all elements of 2Z∗n with x = 21i we get

{
2 · 21i, 21 · 21i, . . . , 21ϕ(pk)−1

· 21i
}
.

Choose an element z = xy = 21 j21i in G such that 0 ≤ j ≤ ϕ
(
2pk

)
. Since G is closed under multiplication,

for some integer l, such that 0 ≤ l ≤ ϕ
(
2pk

)
we have that z = 21l or z = pk + 1 = e. The last case shows that

every element y in G = 2Z∗n has a multiplicative inverse.

Corollary 3.6. Let x = 21i and y = 21 j, 0 ≤ i, j ≤ ϕ
(
2pk

)
such that xy ≡ pk + 1

(
mod 2pk

)
. Then the multiplicative

inverse of x = 21i is y and y = 2r−11ϕ(pk)−i−1, where r|ϕ
(
pk

)
and 2r

≡ pk + 1
(
mod 2pk

)
.

Theorem 3.7. The set G = 2Z∗n is a cyclic multiplicative group with identity element e such that e ≡ 1
(
mod p

)
.

Proof. By Lemma 3.1, 3.2, 3.4 and 3.5 we know that the set G = 2Z∗n is a multiplicative group with identity
element e. Now, it is enough to show that the group G has a generator element. By the Gauss Theorem we
know that Z∗n is cyclic if n = 2, 4, pk and 2pk. Therefore, for n = 2pk there exists an element 1 ∈ Z∗n such that
1ϕ(2pk) ≡ 1

(
mod 2pk

)
and so we have

〈
1
〉

= Z∗n. Additionally, since
(
2, p

)
= 1 we have 2ϕ(pk) ≡ 1

(
mod pk

)
.

Further, since (1, 2) = 1 for some h ∈ 2Z∗n we have 〈h〉 = 2Z∗n = G.

The following corollary is an immediate result of Theorem 3.7.

Corollary 3.8. G = 2Z∗n is a cyclic multiplicative group with identity element e such that e ≡ 1
(
mod p

)
.

Hence, an e−constacyclic code of length ϕ
(
pk

)
over Fq can be viewed as an ideal in the group algebra

FqG, where G denotes the cyclic group of order ϕ
(
pk

)
in Theorem 3.7 with identity element e and where

e = pk + 1
(
mod q

)
.

Theorem 3.9. Let Fq be the finite field of q elements and G the cyclic group given in Theorem 3.7 such that
gcd

(
ϕ

(
pk

)
, q

)
= 1. Let u, v ∈ FqG be principle zero divisors. Then

(
FqG

)
u is an e−constacyclic code of length ϕ

(
pk

)
and dimension rank (u) .

Proof. The proof follows from Theorem 3.7 and Definition 2.2.

Corollary 3.10. The dual code of the code given in the Theorem 3.9 is an e−1
−constacyclic code of length ϕ

(
pk

)
and

dimension rank (v) .

Now, for a given ϕ
(
pk

)
positive integer, we can construct an e−constacyclic code of length s over Fq

where s is a divisor of ϕ
(
pk

)
and e = pk + 1

(
mod q

)
. The following corollary states this fact.

Corollary 3.11. Let p be an odd prime n = 2pk, where k is a positive integer such that gcd
(
ϕ

(
pk

)
, q

)
= 1. Then, for

each positive divisors of ϕ
(
pk

)
, we have an e−constacyclic code.

Example 3.12. Let p = 3, k = 6, and q = 7 be. Then e = pk + 1 = 730 ≡ 2 (mod 7) , and so we have 2−constacyclic
codes of lengths

1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243 and 486. (6)

If, we pick p = 5, k = 5, and q = 7, then e = pk + 1 = 3126 ≡ 4 (mod 7), and so we get 4−constacyclic codes of lengths

1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500, 625, 1250 and 2500. (7)
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4. An Example

Most of the code parameters given in Table 1 and Table 2 are the heretofore known best parameter codes
in the Grassl’s online table [6]. All of them are obtained directly via the construction method presented
above. Though most of the results presented in Grassl’s online table are obtained indirectly by shortening,
puncturing, etc., here we have a direct construction. The computations for searching and computing the
parameters is carried by MAGMA [3]. In Table 1 and 2 we prefer to represent a group element via a row
matrix in order to save space. For instance, 12 + 101 + 2 is presented only by the ordered coefficients such
as 1102. In all tables the parameters marked with ” ∗ ” are MDS.

Table 1: Some parameters of 3−constacyclic codes of length 12 over F11.

u v C C⊥

186290643110 133 [12, 2, 10] [12, 10, 2]
1956169662 12104 ∗ [12, 3, 10] ∗ [12, 9, 4]
1925074107 12269 [12, 4, 8] [12, 8, 3]
168509537 15649 [12, 4, 6] [12, 8, 4]
1167005582 11064 [12, 3, 8] [12, 9, 2]
183000647 13699 [12, 4, 6] [12, 8, 2]
18691038 133411 [12, 5, 4] [12, 7, 4]
15302106 16040105 [12, 6, 4] [12, 6, 4]
19984828 126881 ∗[12, 5, 8] ∗[12, 7, 6]

1310558488 18106101 [12, 5, 6] [12, 7, 4]
12100346 19410445 [12, 6, 6] [12, 6, 4]

Table 2: Some parameters of e−constacyclic codes obtained from FqG.

q p k e u v C C⊥

7 5 1 6 131 141 ∗ [4, 2, 3]7
∗ [4, 2, 3]7

11 5 1 6 157 167 ∗ [4, 2, 3]11
∗ [4, 2, 3]11

5 7 1 8 123 13144 ∗[6, 4, 3]5
∗[6, 2, 5]5

11 7 1 8 149 17784 ∗ [6, 4, 3]11
∗ [6, 2, 5]11

13 7 1 8 17 1610 [6, 4, 2]13 [6, 2, 3]13
7 11 1 12 11232 1660321 [10, 6, 4]7 [10, 4, 6]7

13 11 1 12 181251 1500081 [10, 6, 2]13 [10, 4, 4]13
11 3 2 10 161 15251 ∗ [6, 4, 3]11

∗ [6, 2, 5]11
13 3 2 10 1007 1006 [6, 3, 2]13 [6, 3, 2]13
3 13 1 14 112 11202210112 [12, 10, 2]3 [12, 2, 9]3

11 13 1 14 133 186290643110 [12, 10, 2]11 [12, 2, 10]11
11 17 1 18 100020002 100090002 [16, 8, 3]11 [16, 8, 3]11
7 5 2 26 1003005 1004004003006002006 [24, 18, 3]7 [24, 6, 7]7

Below we present an example constructed in Table 1 and 2 explicitly.

Example 4.1. Let F11 be the finite field of characteristic 11 and G = {2, 4, 6, 8, 10, 12} ⊂ Z14 be the multiplicative
cyclic group stated in Corollary 3.8. Let u = 4+31+712 +413 +14 and v = 9 + 71 + 12 be two principal zero divisors
in the group algebra F11G such that rank (u) + rank (v) = 6. Then the two sided ideal (F11G) u = {xu| x ∈ F11G} ⊂
F11G is a 8−constacyclic code of parameters [6, 2, 5]11 . The generator matrix of this code can be found as G′ =
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1 0 6 10 5 6
0 1 9 10 1 3

)
. The dual code of this code is the two sided ideal (F11G) vT =

{
xvT

∣∣∣ x ∈ F11G
}
⊂ F11G with

parameters [6, 4, 3]11 and its generator matrix is H =


1 0 0 0 8 5
0 1 0 0 0 6
0 0 1 0 1 1
0 0 0 1 2 5

 . Both the code and its dual are MDS.

5. Conclusion

In this work, we introduce the structure of a class of constacyclic codes of length ϕ
(
pk

)
over group

algebras. We give a method to construct e−constacyclic codes from zero-divisors in group algebras. Some
of the heretofore known best parameter codes in the Grassl’s online table ([6]) can be directly obtained by
using our construction method. The given construction can be generalized to the group rings RG for a given
ring R. Further, this method allows us to construct constacyclic codes over some specific lengths. A further
study on non restricted length constacyclic codes over group rings awaits attention from the researchers.
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