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Abstract. In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring
with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ∈ I with a <

√
0, then

b ∈ I for every a, b ∈ R. We investigate some properties of n-ideals analogous with prime ideals. Also, we
give many examples with regard to n-ideals.

1. INTRODUCTION

Throughout this study, all rings are assumed to be commutative with nonzero identity. Let R be a ring.
If I is an ideal of R with I , R, then I is called a proper ideal. Suppose that I is an ideal of R. We denote the
radical of I by

√
I = {a ∈ R : an

∈ I for some n ∈N}. In particular, we mean
√

0 by the set of all nilpotents in
R, i.e, {a ∈ R : an = 0 for some n ∈N}. Let S be a nonempty subset of R. Then the ideal {a ∈ R : aS ⊆ I},which
contains I, will be designated by (I : S).

The notion of prime ideal plays a key role in the theory of commutative algebra, and it has been
widely studied. See, for example, [4, 8]. Recall from [2], a prime ideal P of R is a proper ideal having
the property that ab ∈ P implies either a ∈ P or b ∈ P for each a, b ∈ R. In [10], Mohamadian defined a
proper ideal I of R as an r-ideal if whenever a, b ∈ R with ab ∈ I and ann(a) = 0 imply that b ∈ I, where
ann(a) = {r ∈ R : ra = 0}. Motivated from this concept, in section 2, we give the notion of n-ideals and we
investigate many properties of n-ideals with similar prime ideals. A proper ideal I of R is said to be an
n-ideal if the condition ab ∈ I with a <

√
0 implies b ∈ I for every a, b ∈ R.Among many results in this paper,

it is shown (in Theorem 2.7) that a proper ideal I of R is an n-ideal of R if and only if I = (I : a) for every
a <
√

0. In Proposition 2.5, we show that every n-ideal is also an r-ideal. Furthermore, in Theorem 2.14, we
characterize the integral domains with n-ideal. Also, we show that (in Theorem 2.15) a ring R is a field if
and only if R is von Neumann regular and 0 is an n-ideal. In Proposition 2.20 we show that if I is an n-ideal
of R, then S−1I is an n-ideal of S−1R, where S is a multiplicatively closed subset of R and S−1R is the ring of
fraction on S. Moreover, in Proposition 2.25, we characterize the all rings in which every proper ideal is an
n-ideal.

Let M be an R-module. Then the set R(+)M = {(r,m) : r ∈ R,m ∈ M}, which is called the idealization
of M in R, is a commutative ring with coordinate-wise addition and the multiplication (r1,m1)(r2,m2) =
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(r1r2, r1m2 + r2m1) for each r1, r2 ∈ R and m1,m2 ∈ M [11]. From Proposition 2.27 to Corollary 2.33 we study
the n-ideals of R(+)M. Finally, in section 3, counter examples are given.

2. n-Ideals of Commutative Rings

Definition 2.1. A proper ideal I of R is called an n-ideal if whenever a, b ∈ R with ab ∈ I and a <
√

0, then b ∈ I.

Example 2.2. (i) Suppose that (R,M) is a local ring with unique prime ideal. Then every ideal is an n-ideal.
(ii) In any integral domain D, the zero ideal is an n-ideal.
(iii) Any ring R need not have an n-ideal. For instance, Z6 has not any n-ideal.

Proposition 2.3. If I is an n-ideal of R, then I ⊆
√

0.

Proof. Assume that I is an n-ideal but I *
√

0. Then there exists an a ∈ I such that a <
√

0. Since a.1 = a ∈ I and
I is an n-ideal, we conclude that 1 ∈ I, so that I = R, a contradiction. Hence I ⊆

√
0.

Proposition 2.4. Let {Ii}i∈∆ be a nonmepty set of n-ideals of R, then
⋂
i∈∆

Ii is an n-ideal of R.

Proof. Let ab ∈
⋂
i∈∆

Ii with a <
√

0 for a, b ∈ R. Then ab ∈ Ii for every i ∈ ∆. Since Ii is an n-ideal of R, we get

the result that b ∈ Ii and so b ∈
⋂
i∈∆

Ii.

Recall that a proper ideal I of R is an r-ideal if the condition ab ∈ I with ann(a) = 0 implies b ∈ I for each
a, b ∈ R. In the following proposition, we show that every n-ideal is also an r-ideal.

Proposition 2.5. Let R be a ring. If I is an n-ideal of R, then it is an r-ideal.

Proof. Suppose that I is an n-ideal of R and ab ∈ I with ann(a) = 0 for a, b ∈ R. Since a <
√

0 and I is an
n-ideal, we conclude that b ∈ I. Consequently, I is an r-ideal of R.

Recall from [12], a proper ideal Q of R is a primary ideal if whenever a, b ∈ R with ab ∈ Q, then a ∈ Q or
b ∈
√

Q.

Remark 2.6. It is well known that every nilpotent element is also a zero divisor. So zero divisors and nilpotent
elements are equal in case 〈0〉 is a primary ideal of R. Thus the n-ideals and r-ideals are equivalent in any commutative
ring whose zero ideal is primary.

Remember that a proper ideal P of R is prime if and only if P = (P : a) for every a < P. Now, we give a
similar result for n-ideals.

Theorem 2.7. Let R be a ring and I a proper ideal of R. Then the followings are equivalent:
(i) I is an n-ideal of R.
(ii) I = (I : a) for every a <

√
0.

(iii) For ideals J and K of R, JK ⊆ I with J ∩ (R −
√

0) , ∅ implies K ⊆ I.

Proof. (i)⇒ (ii) : Assume that I is an n-ideal of R. For every a ∈ R, the inclusion I ⊆ (I : a) always holds. Let
a <
√

0 and b ∈ (I : a). Then we have ab ∈ I. Since I is an n-ideal, we conclude that b ∈ I and thus I = (I : a).
(ii)⇒ (iii) : Suppose that JK ⊆ I with J∩ (R−

√
0) , ∅ for ideals J and K of R. Since J∩ (R−

√
0) , ∅, there

exists an a ∈ J such that a <
√

0. Then we have aK ⊆ I, and so K ⊆ (I : a) = I by (ii).
(iii) ⇒ (i) : Let ab ∈ I with a <

√
0 for a, b ∈ R. It is sufficient to take J = aR and K = bR to prove the

result.
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Proposition 2.8. For a prime ideal I of R, I is an n-ideal of R if and only if I =
√

0.

Proof. Suppose that I is a prime ideal of R. It is clear that
√

0 ⊆ I. If I is an n-ideal of R, then by Proposition
2.3, we have I ⊆

√
0 and so I =

√
0. For the converse, assume that I =

√
0.Now we show that I is an n-ideal.

Let ab ∈ I and a <
√

0 for a, b ∈ R. Since I is a prime ideal and a <
√

0, we get b ∈ I and so I is an n-ideal of
R.

Corollary 2.9. (i)
√

0 is an n-ideal of R if and only if it is a prime ideal of R.
(ii) Any reduced ring R, which is not integral domain, has no n-ideals.
(iii) Let R be a reduced ring. Then R is an integral domain if and only if 0 is an n-ideal of R.

Proof. (i) If
√

0 is a prime ideal of R, then
√

0 is an n-ideal of R by Proposition 2.8. Assume that
√

0 is an
n-ideal of R. Let ab ∈

√
0 and a <

√
0. Since

√
0 is an n-ideal of R, we conclude that b ∈

√
0. Hence

√
0 is a

prime ideal of R.
(ii) Let R be a reduced ring which is not integral domain. Then

√
0 = 0 is not prime ideal of R and so by

(i) it is not an n-ideal. On the other hand, if I is a nonzero n-ideal of R, then by Proposition 2.3 I ⊆
√

0 = 0
and so I = 0 which is a contradiction.

(iii) Suppose that R is a reduced ring. If R is an integral domain, then 0 =
√

0 is a prime ideal, and so by
(i) 0 is an n-ideal of R. For the converse if 0 is an n-ideal of R, then by (ii) R is an integral domain.

Proposition 2.10. Let R be a ring and S a nonempty subset of R. If I is an n-ideal of R with S * I, then (I : S) is an
n-ideal of R.

Proof. It is easy to see that (I : S) , R. Let ab ∈ (I : S) and a <
√

0. Then we have abs ∈ I for every s ∈ S. Since
I is an n-ideal of R, we conclude that bs ∈ I and thus b ∈ (I : S).

Theorem 2.11. If I is a maximal n-ideal of R, then I =
√

0.

Proof. Let I be a maximal n-ideal of R. Now we show that I is a prime ideal of R. And so by Proposition
2.8, we have I =

√
0. Let ab ∈ I and a < I for a, b ∈ R. Since I is an n-ideal and a < I, (I : a) is an n-ideal by

Proposition 2.10. Thus b ∈ (I : a) = I by the maximality of I. Hence I is a prime ideal of R.

Theorem 2.12. Let R be a ring. Then there exists an n-ideal of R if and only if
√

0 is a prime ideal of R.

Proof. Suppose that I is an n-ideal of R and Ω = {J : J is an n-ideal of R}. Since I ∈ Ω, Ω , ∅. It is clear
that Ω is a partially ordered set by the set inclusion. Suppose I1 ⊆ I2 ⊆ ... ⊆ In ⊆ ... is a chain of Ω. Now,

we show that
∞⋃

n=1
Ii is an n-ideal of R. Let ab ∈

∞⋃
n=1

Ii with a <
√

0 for a, b ∈ R. Then we have ab ∈ Ik for some

k ∈N. Since Ik is an n-ideal, we conclude b ∈ Ik ⊆
∞⋃

n=1
Ii. So

∞⋃
n=1

Ii is a upper bound of the chain {Ii : i ∈N} . By

Zorn’s Lemma Ω has a maximal element K. Then by the previous theorem, we get the result that K =
√

0 is
a prime ideal of R. For the converse, assume that

√
0 is a prime ideal of R. Then by Corollary 2.9(i),

√
0 is

an n-ideal of R.

We recall from [1] that an ideal I of R is called weakly primary if whenever 0 , ab ∈ I for some a, b ∈ R, then
a ∈ I or b ∈

√
I. Also, we recall from [5] ([6]) that a proper ideal I of R is a 2-absorbing primary (weakly

2-absorbing primary) if whenever abc ∈ I (0 , abc ∈ I) for some a, b, c ∈ R, then ab ∈ I or ac ∈
√

I or
bc ∈

√
I (ab ∈ I or ac ∈

√
I or bc ∈

√
I). In view of Proposition 2.3 and Theorem 2.12, we have the following

result. Since its proof is straightforward, we omit the proof.
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Corollary 2.13. Let I be an ideal of R such that I ⊆
√

0.
1) The following statements are equivalent:
(i) I is an n-ideal.
(ii) I is a primary ideal of R.
2) If I is an n-ideal of R, then I is a weakly primary (so weakly 2-absorbing primary) and 2-absorbing primary

ideal. However the converse is not true (see Example 3.5 (ii)).
3) The followings are equivalent:
(i) I is a weakly 2-absorbing primary ideal of R and

√
0 is a prime ideal.

(ii) I is a 2-absorbing primary ideal of R and
√

0 is a prime ideal.
4) Suppose that R has at least one n-ideal. Then I is a weakly 2-absorbing primary ideal of R if and only if I is a

2-absorbing primary ideal.

Theorem 2.14. For any ring R, the followings are equivalent.
(i) R is an integral domain.
(ii) 0 is the only n-ideal of R.

Proof. (i)⇒ (ii) : Suppose that R is an integral domain. Let I be an n-ideal of R. Then by Proposition 2.3, we
have I ⊆

√
0 = 0 and so I = 0. Also, by Example 2.2 we know that 0 is an n-ideal.

(ii) ⇒ (i) : Assume that 0 is only n-ideal of R. Then by Theorem 2.12 and Corollary 2.9(i)
√

0 is both
n-ideal and prime ideal. So by assumption

√
0 = 0 is a prime ideal. Hence R is an integral domain.

Recall from that a ring R is called von Neumann regular if for every a ∈ R, there exists an element x of
R such that a = a2x. Also a ring R is said to be a boolean ring if whenever a = a2 for every a ∈ R. Notice that
every boolean ring is also a von Neumann regular [2].

Theorem 2.15. Let R be a ring. Then the followings hold:
(i) R is a field if and only if R is von Neumann regular ring and 0 is an n-ideal.
(ii) Suppose that R is boolean ring. Then R is a field if and only if 0 is an n-ideal. In particular R � Z2.

Proof. (i) If R is a field, then it is clear that R is von Neumann regular. From Theorem 2.14, 0 is an n-ideal.
For the converse, suppose that R is von Neumann regular ring and 0 is an n-ideal. Let 0 , a ∈ R. Since R is
von Neumann regular, a = a2x for some x ∈ R. Also it is easy to see that

√
0 = 0. Since a(1 − ax) = 0 and 0 is

an n-ideal of R, we conclude that ax = 1 and thus a is unit. Consequently, R is a field.
(ii) Suppose that R is boolean ring. Then R is a von Neumann regular ring. So by (i) it follows that R is

a field if and only if 0 is an n-ideal. The rest is easily seen.

Proposition 2.16. Let R be a ring and K an ideal of R with K ∩ (R −
√

0) , ∅. Then the followings hold:
(i) If I1, I2 are n-ideals of R with I1K = I2K, then I1 = I2.
(ii) If IK is an n-ideal of R, then IK = I.

Proof. (i) Since I1 is an n-ideal and I2K ⊆ I1, by Theorem 2.7 (iii), we get the result that I2 ⊆ I1. Likewise, we
get I1 ⊆ I2.

(ii) Since IK is an n-ideal and IK ⊆ IK, we conclude that I ⊆ IK, so this completes the proof.

Theorem 2.17. Let f : R→ S be a ring homomorphism. Then the followings hold:
(i) If f is an epimorphism and I is an n-ideal of R containing Ker( f ), then f (I) is an n-ideal of S.
(ii) If f is a monomorphism and J is an n-ideal of S, then f−1(J) is an n-ideal of R.

Proof. (i) Let a′b′ ∈ f (I) with a′ <
√

0S for a′, b′ ∈ S. Since f is epimorphism, there exist a, b ∈ R such that
a′ = f (a) and b′ = f (b). Then a′b′ = f (ab) ∈ f (I). As Ker( f ) ⊆ I, we conclude that ab ∈ I. Also, note that
a <
√

0R. Since I is an n-ideal of R, we get the result that b ∈ I and so f (b) = b′ ∈ f (I) as it is needed.
(ii) Let ab ∈ f−1(J) and a <

√
0R. Then f (ab) = f (a) f (b) ∈ J. Since a <

√
0R and f is a monomorphism,

we get f (a) <
√

0S. Since J is an n-ideal of S, f (b) ∈ J and so b ∈ f−1(J). Consequently, f−1(J) is an n-ideal of
R.
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Corollary 2.18. Let R be a ring and J ⊆ I be two ideals of R. Then the followings hold:
(i) If I is an n-ideal of R, then I/J is an n-ideal of R/J.
(ii) If I/J is an n-ideal of R/J and J ⊆

√
0, then I is an n-ideal of R.

(iii) If I/J is an n-ideal of R/J and J is an n-ideal of R, then I is an n-ideal of R.

Proof. (i) Assume that I is an n-ideal of R with J ⊆ I. Let π : R→ R/J be the natural homomorphism. Note
that Ker(π) = J ⊆ I, and so by Theorem 2.17(i) it follows that I/J is an n-ideal of R/J.

(ii) Let ab ∈ I with a <
√

0 for a, b ∈ R. Then we have (a + J)(b + J) = ab + J ∈ I/J and a + J <
√

0R/J. Since
I/J is an n-ideal of R/J, we conclude that b + J ∈ I/J and so b ∈ I. Consequently, I is an n-ideal of R.

(iii) It follows from (ii) and Proposition 2.3.

Corollary 2.19. Let R be a ring and S a subring of R. If I is an n-ideal of R with S * I, then I ∩ S is an n-ideal of S.

Proof. Suppose that S is a subring of R and I is an n-ideal of R with S * I.Consider the injection i : S→ R.And
note that i−1(I) = I ∩ S, so by Proposition 2.17(ii), I ∩ S is an n-ideal of S.

Recall that an element a of R is called regular if ann(a) = 0. Then we denote the set of all regular elements
of R by r(R). Further, it is easy to see that r(R) is a multiplicatively closed subset of R.

Proposition 2.20. Let R be a ring and S a multiplicatively closed subset of R. Then the followings hold:
(i) If I is an n-ideal of R, then S−1I is an n-ideal of S−1R.
(ii) If S = r(R) and J is an n-ideal of S−1R, then Jc is an n-ideal of R.

Proof. (i) Let a
s

b
t ∈ S−1I with a

s <
√

0S−1R, where a, b ∈ R and s, t ∈ S. Then we have uab ∈ I for some u ∈ S. It
is clear that a <

√
0. Since I is an n-ideal of R, we conclude that ub ∈ I and so b

t = ub
ut ∈ S−1I. Consequently,

S−1I is an n-ideal of S−1R.
(ii) Let ab ∈ Jc and a <

√
0R. Then we have a

1
b
1 ∈ J. Now we show that a

1 <
√

0S−1R. Suppose a
1 ∈
√

0S−1R.
There exists a positive integer k such that ( a

1 )k = ak

1 = 0S−1R. Then we get uak = 0 for some u ∈ S. Since
ann(u) = 0, we conclude that a ∈

√
0R, a contradiction. Thus we have a

1 <
√

0S−1R. Since J is an n-ideal of
S−1R, we get the result that b

1 ∈ J and so b ∈ Jc.

Definition 2.21. Let S be a nonempty subset of R with R −
√

0 ⊆ S. Then S is called an n-multiplicatively closed
subset of R if xy ∈ S for all x ∈ R −

√
0 and all y ∈ S.

Suppose that I is an n-ideal of R. Then by Proposition 2.3 we have I ⊆
√

0 and so R −
√

0 ⊆ R − I. Let
x ∈ R −

√
0 and y ∈ R − I. Assume that xy ∈ I. Since x <

√
0 and I is an n-ideal, we conclude that y ∈ I, a

contradiction. Thus we get the result that xy ∈ R − I, and so R − I is an n-multiplicatively closed subset of
R. For the converse, suppose that I is an ideal and R− I is an n-multiplicatively closed subset of R.Now we
show that I is an n-ideal. Let ab ∈ I with a <

√
0 for a, b ∈ R. Then we have b ∈ I, or else we would have

ab ∈ R− I since R− I is an n-multiplicatively closed subset of R. So it follows that I is an n-ideal of R. By the
above observations we have the following result analogous with the relations between prime ideals and
multiplicatively closed subsets.

Corollary 2.22. For a proper ideal I of R, I is an n-ideal of R if and only if R− I is an n-multiplicatively closed subset
of R.

We remind the reader that if I is an ideal which is disjiont from a multiplicatively closed subset S of R,
then there exists a prime ideal P of R contaning I such that P ∩ S = ∅. The following Theorem states that a
similar result is true for n-ideals.

Theorem 2.23. Let I be an ideal of R such that I ∩ S = ∅, where S is an n-multiplicatively closed subset of R. Then
there exists an n-ideal J containing I such that J ∩ S = ∅.
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Proof. Consider the set Ω = {I′ : I′ is an ideal of R with I′ ∩ S = ∅}. Since I ∈ Ω, we have Ω , ∅. By using
Zorn’s lemma, we get a maximal element J of Ω.Now we show that J is an n-ideal of R. Suppose not. Then
we have ab ∈ J for some a <

√
0 and b < J. Thus we get b ∈ (J : a) and J ( (J : a). By the maximality of J, we

have (J : a) ∩ S , ∅ and thus there exists an s ∈ S such that s ∈ (J : a). So we have as ∈ J. Also sa ∈ S, because
a ∈ R−

√
0, s ∈ S and S is an n-multiplicatively closed subset of R.Thus we get S∩ J , ∅, and this contradicts

by J ∈ Ω. Hence J is an n-ideal of R.

Proposition 2.24. Suppose that I ⊆ I1 ∪ I2 ∪ ... ∪ In, where I, I1, I2, ..., In are ideals of R. If Ii is an n-ideal and the
others have non-nilpotent elements with I *

⋃
j,i

I j, then I ⊆ Ii.

Proof. We may assume that i = 1. Since I * I2 ∪ ... ∪ In, there exits an x ∈ I −
n⋃

j=2
I j. Thus we have x ∈ I1. Let

y ∈ I ∩ (I2 ∩ I3 ∩ ... ∩ In). Since x < Ik and y ∈ Ik for every 2 ≤ k ≤ n, we have x + y < Ik. Thus we have

x + y ∈ I −
n⋃

j=2
I j and so x + y ∈ I1. As x + y ∈ I1 and x ∈ I1, it follows that y ∈ I1 and so I ∩

n⋂
k=2

Ik ⊆ I1. By

the way
√

0 is a prime ideal, because R has an n-ideal. So the product of non-nilpotent elements is also a

non-nipotent element. Thus we have (
n∏

k=2
Ik) ∩ (R −

√
0) , ∅. Since I.(

n∏
k=2

Ik) ⊆ I1 and I1 is an n-ideal of R, we

have I ⊆ I1 by Theorem 2.7.

Recall from [7] a ring R is a UN-ring if every nonunit element a of R is a product a unit and a nilpotent
element.

Proposition 2.25. For any ring R, the followings are equivalent:
(i) Every element of R is either nilpotent or unit.
(ii) Every proper principal ideal is an n-ideal.
(iii) Every proper ideal is an n-ideal.
(iv) R has a unique prime ideal which is

√
0.

(v) R is a UN-ring.
(vi) R/

√
0 is a field.

Proof. (i) ⇒ (ii) : Suppose that 〈x〉 , R, where x ∈ R. Let ab ∈ 〈x〉 and a <
√

0. Since a is not nilpotent, by
(i) a is a unit in R. Then we have b = a−1(ab) ∈ 〈x〉 and so 〈x〉 is an n-ideal of R.

(ii)⇒ (iii) : Let I be a proper ideal of R and ab ∈ I, where a <
√

0. Since ab ∈ 〈ab〉 and 〈ab〉 is an n-ideal of
R, we conclude that b ∈ 〈ab〉 ⊆ I. Hence I is an n-ideal of R.

(iii) ⇒ (iv) : Let P be a prime ideal of R. By (iii) and Proposition 2.8, we get the result that P =
√

0, as
needed. Furthermore,

√
0 is a maximal ideal of R.

(iv)⇔ (v) : It follows from [7, Proposition 2 (3)].
(iv)⇒ (vi) : It is straightforward.
(vi)⇒ (i) : Suppose that R/

√
0 is a field. Let a ∈ R which is not nilpotent. Then we have a <

√
0 and a+

√
0

is nonzero element of the field R/
√

0. Thus we get the result that ab− 1 is nilpotent for some b ∈ R. Then we
have (ab − 1) + 1 = ab is unit. Hence a is unit, as needed.

Suppose that R1,R2 are two commutative rings with nonzero identities and R = R1×R2. Then R becomes
a commutative ring with coordinate-wise addition and multiplication. Also, every ideal I of R has the form
I = I1 × I2, where Ii is an ideal of Ri for i = 1, 2. Now, we give the following result.

Proposition 2.26. Let R1 and R2 be two commutative rings. Then R1 × R2 has no n-ideals.

Proof. Assume that I = I1 × I2 is an n-ideal of R1 × R2, where Ii is an ideal of Ri for i = 1, 2. Since (0, 1)(1, 0) ∈
I1 × I2, (0, 1) <

√
0R1×R2 and (1, 0) <

√
0R1×R2 , we conclude that (0, 1), (1, 0) ∈ I and so I = R1 × R2, a

contradiction.
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Let R(+)M denote the idealization of M in R,where M is an R-module. Assume that I is an ideal of R and
N is a submodule of M. Then I(+)N is an ideal of R(+)M if and only if IM ⊆ N, in that case I(+)N is called a
homogeneous ideal of R(+)M [3]. In [3, 9], the nil radical of R(+)M is characterized as follows:√

0R(+)M =
√

0(+)M.

Notice that (r,m) <
√

0R(+)M if and only if r <
√

0.

Proposition 2.27. Let I be an n-ideal of R. Then I(+)M is an n-ideal of R(+)M.

Proof. Let (r1,m1)(r2,m2) ∈ I(+)M with (r1,m1) <
√

0R(+)M. Then we have r1r2 ∈ I and r1 <
√

0. Since I is an
n-ideal of R,we conclude that r2 ∈ I and so (r2,m2) ∈ I(+)M. Consequently, I(+)M is an n-ideal of R(+)M.

Remark 2.28. Let I be an n-ideal of R and N a submodule of M with IM ⊆ N, then I(+)N need not be an n-ideal of
R(+)M. For example 0 is an n-ideal of the ring of integers and 0 is a submodule ofZ-moduleZ6. But 0(+)0 is not an
n-ideal, because (2, 0)(0, 3) ∈ 0(+)0 with (2, 0) <

√
0Z(+)Z6 but (0, 3) < 0(+)0.

Definition 2.29. Let M be an R-module. Then we say that an element a of R is nilpotent in M if whenever
anM = 0M for some positive integer n. Then the set of all nilpotents in M is denoted by Nil(M). It is clear that
√

0 ⊆ Nil(M).

Now we generalize the concept of n-ideals to modules in the following.

Definition 2.30. Let M be an R-module. Then a proper submodule N of M is called an n-submodule if for a ∈ R,m ∈
M, am ∈ N with a < Nil(M), then m ∈ N.

Theorem 2.31. Let I be an ideal of R and N a proper submodule of M. If I(+)N is an n-ideal of R(+)M, then I is an
n-ideal of R and N is an n-submodule of M.

Proof. Suppose that I(+)N is an n-ideal of R(+)M. First, we show that I is an n-ideal of R. Let ab ∈ I with
a <
√

0. Then we have (a, 0M)(b, 0M) = (ab, 0M) ∈ I(+)N with (a, 0M) <
√

0R(+)M. Since I(+)N is an n-ideal of
R(+)M, we conclude that (b, 0M) ∈ I(+)N and so b ∈ I. Now, we show that N is an n-submodule of M. Let
am ∈ N with a < Nil(M). Then we have (a, 0M)(0,m) = (0, am) ∈ I(+)N with (a, 0M) <

√
0R(+)M. Since I(+)N is

an n-ideal of R(+)M, we conclude that (0,m) ∈ I(+)N and so m ∈ N, as needed.

Theorem 2.32. Let M be an R-module with Nil(M) ⊆
√

0. If I is an n-ideal of R and N is an n-submodule of M with
IM ⊆ N, then I(+)N is an n-ideal of R(+)M.

Proof. Let (r1,m1)(r2,m2) ∈ I(+)N with (r1,m1) <
√

0R(+)M. Then r1r2 ∈ I and r1 <
√

0. Since I is an n-ideal of
R, we conclude that r2 ∈ I. Thus we have r2m1 ∈ IM ⊆ N, and so r1m2 ∈ N, because r1m2 + r2m1 ∈ N. Since
N is an n-submodule of M and r1 < Nil(M) ⊆

√
0, we conclude m2 ∈ N so that (r2,m2) ∈ I(+)N as it is

needed.

Corollary 2.33. Let M be an R-module with Nil(M) ⊆
√

0. Suppose that I is an ideal of R and N is a proper
submodule of M with IM ⊆ N. Then I(+)N is an n-ideal of R(+)M if and only if I is an n-ideal of R and N is an
n-submodule of M.

3. Examples

Proposition 3.1. Zn has an n-ideal if and only if n = pk for some k ∈ Z+, where p is prime number.



U. Tekir et al. / Filomat 31:10 (2017), 2933–2941 2940

Proof. If n = pk for some k ∈ Z+, then Zn is a local ring with unique prime ideal and so by Example 2.2
every ideal is an n-ideal. Suppose that n = pn1

1 pn2
2 ...p

nt
t ,where pi’s are distinct prime numbers with t ≥ 2. First

notice that
√

0 = 〈p1p2...pt〉. Assume that I is an n-ideal of Zn. Then we get I ⊆
√

0 = 〈p1p2...pt〉. Hence
I = 〈ps1

1 ps2
2 ...p

st
t 〉 for some positive integers si with si ≤ ni for i = 1, 2, .., t. It is easy to see that ps2

2 ...p
st
t <
√

0 =

〈p1p2...pt〉 and ps1
1 < I = 〈ps1

1 ps2
2 ...p

st
t 〉 but ps1

1 (ps2
2 ...p

st
t ) ∈ I. So it follows that I is not an n-ideal, a contradiction.

Now we give the following examples to compare with the notion of prime ideals, n-ideals and r-ideals.

Example 3.2. (i) It is clear that 3Z is a prime ideal of Z. But it is not an n-ideal of Z by Example 2.2.
(ii) In the ring Z27, 〈9〉 is an n-ideal. But 〈9〉 is not prime ideal, because 3.3 ∈ 〈9〉 and 3 < 〈9〉.
(iii) 〈3〉 is an r-ideal of Z6 but it is not an n-ideal by Proposition 3.1.

In the following example (i) we give an infinite ring having the n-ideals, and also in example (ii) we
show the converse of Proposition 2.3 is not always correct.

Example 3.3. (i) Consider the ring Z[X] and the prime ideal P = 〈X〉. Let R = Z[X]/Pn and I = P2/Pn for n > 2.
First, note that

√
0 = P/Pn. Let ( f + Pn)(1 + Pn) ∈ I and 1 + Pn <

√
0. Then f1 ∈ 〈X〉2 and 1 < 〈X〉, so that X2

divides f1 but X can not divide 1. Thus X2 divides f and so f + Pn
∈ I. Hence I is an n-ideal of R.

(ii) Let R = Z[X,Y]/〈Y4
〉 and I = 〈xy, y2

〉,where x = X+〈Y4
〉 and y = Y+〈Y4

〉. It is easy to see that
√

0R = 〈y〉 is
a prime ideal and so it is an n-ideal by Corollary 2.9(i). Furthermore, I ⊆

√
0R. Since y(x + y) ∈ I, x + y <

√
0R and

y < I, it follows that I is not an n-ideal.

Example 3.4. Consider the ring Z9[x] and note that
√

0Z9[x] = 3Z9[x]. Now, we show that
√

0Z9[x] is an n-ideal.
Let us define a homomorphism as follows:

ϕ : Z9[x]→ Z3[x], ϕ(a0 + a1x + ... + anxn) = a0 + a1x + ... + anxn.

It is clear that ϕ is an epimorphism and the Ker( f ) =
√

0Z9[x]. So we have Z9[x] /
√

0Z9[x] � Z3[x] is an integral
domain and so

√
0Z9[x] is a prime ideal of Z9[x]. Then by Corollary 2.9(i),

√
0Z9[x] is an n-ideal of Z9[x], which is

nonzero.

The following examples show that the converses of Corollary 2.18(i) and Theorem 2.31 are not always
true.

Example 3.5. (i) Let R = Z, I = 3Z and J = 9Z. Then I/J is an n-ideal of R/J but I is not an n-ideal of R.
(ii) Consider the Z-module Z9. Note that 0 is an n-ideal of Z and 0 is an n-submodule of Z9. But I = 0(+)0 is

not an n-ideal of Z(+)Z9, because (3, 0)(0, 3) = (0, 0) ∈ I, (3, 0) <
√

0Z(+)Z9 and (0, 3) < I.

Remark 3.6. Suppose that I is an n-ideal of R. Then it follows that
√

I =
√

0 is an n-ideal by Theorem 2.12 and
Corollary 2.9 (i). Example 3.3 (ii) reserves that the converse is not true, that is, I may not be an n-ideal even if

√
I is

an n-ideal of R.
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