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Abstract. Let R be a commutative ring with nonzero identity, and let M be a nonzero unital R-module. In
this article, we introduce the concept of 2-absorbing quasi primary submodules which is a generalization
of prime submodules. We define 2-absorbing quasi primary submodule as a proper submodule N of
M having the property that abm ∈ N, then ab ∈

√
(N :R M) or am ∈ radM(N) or bm ∈ radM(N). Various results

and examples concerning 2-absorbing quasi primary submodules are given.

1. Introduction

It is well known that prime submodules play an important role in the theory of modules over commu-
tative rings. So far there has been a lot of research on this issue. For various studies one can look [2-3,7-8].
One of the main interest of many researchers is to generalize the notion of prime submodule by using
different ways. For instance, 2-absorbing submodule which is a generalization of prime submodules was
firstly introduced and studied in [9], after that another generalization, which is called 2-absorbing primary
submodule was studied in [15].

Throughout this paper all rings under consideration are commutative with nonzero identity and all
modules are nonzero unital. In addition, R always denotes such a ring and M denotes such an R-module.
Suppose that I is an ideal of R and N is a submodule of M. Then the radical of I, denoted by

√
I, is defined

as intersection of all prime ideals containing I and equally consists of all elements a of R whose some power
in I, i.e, {a ∈ R : an

∈ I for some n ∈N} .Also, the ideal (N :R M) is defined as {a ∈ R : aM ⊆ N}, and for every
a ∈ R, the submodule (N :M a) is defined to be {m ∈ M : am ∈ N}. Similar to radical of an ideal, radical of a
submodule of a given R-module M can be identified. If there is any prime submodule P of M that contains
N, then the intersection of all prime submodules containing N is denoted by radM(N) . Otherwise, that is
if there is no prime submodule containing N, say radM(N) = M. Recall that a submodule N of M is a prime
submodule if whenever N , M and am ∈ N, then either a ∈ (N :R M) or m ∈ N. A proper submodule N of
M is defined as 2-absorbing submodule if for every a, b ∈ R,m ∈ M and whenever abm ∈ N, then either
ab ∈ (N :R M) or am ∈ N or bm ∈ N. Also recall that a proper submodule N of M is said to be a 2-absorbing
primary submodule if the condition abm ∈ N implies either ab ∈ (N :R M) or am ∈ radM(N) or bm ∈ radM(N).
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This paper is based on introducing a new class of submodules, which is called 2-absorbing quasi primary
submodules, and studying its properties. We define a proper submodule N of M a 2-absorbing quasi primary
submodule if whenever abm ∈ N, then either ab ∈

√
(N :R M) or am ∈ radM(N) or bm ∈ radM(N) for each

a, b ∈ R and m ∈ M. Among many other results in this paper, we show in Example 2.2 a 2-absorbing
quasi primary submodule is not necessarily 2-absorbing submodule and 2-absorbing primary submodule.
In Theorem 2.4, we characterize all homogeneous 2-absorbing quasi primary ideals of idealization of a
module. We remind the reader that an R-module M is a multiplication if every submodule N of M has the
form N = IM for some ideal I of R [6]. In addition, it is easy to see that N = (N :R M)M in case N = IM for
some ideal I of R. Suppose that M is multiplication R-module, N = IM and K = JM for ideals I, J of R, then
product of submodules N and K of M, designated by NK, is defined to be (IJ)M. In [3], it is proved that a
proper submodule N of a multiplication R-module M is prime if and only if KL ⊆ N implies either K ⊆ N or
L ⊆ N for submodules K,L of M. In Corollary 2.8, for finitely generated multiplication modules, we show
that a proper submodule N of M is a 2-absorbing quasi primary if and only if N1N2N3 ⊆ N implies either
N1N2 ⊆ radM(N) or N1N3 ⊆ radM(N) or N2N3 ⊆ radM(N) for submodules N1,N2 and N3 of M. In [6], Z, El
Bast and P. Smith showed that the followings are eqivalent for a proper submodule N of a multiplication
module M :

(i) N is a prime submodule.
(ii) (N :R M) is a prime ideal.
(iii) N = PM for some prime ideal P of R such that Ann(M) ⊆ P,where Ann(M) = (0 :R M).

In Theorem 2.12, we prove that similar result is true for 2-absorbing quasi primary submodules in finitely
generated multiplication modules. Also in Corollary 2.11, we give various characterizations of 2-absorbing
quasi primary submodules of finitely generated multiplication modules. In Theorem 2.14, we study the
2-absorbing quasi primary submodules of fractional modules. Moreover, in Thoerem 2.18, we investigate
the behaviour of 2-absorbing quasi primary submodules under the homorphism of modules. Finally, in
Theorem 2.23, all 2-absorbing quasi primary submodules of cartesian product of finitely generated multi-
plication modules are determined.
The reader may consult [5],[10] and [12] for general background and terminology.

2. 2-Abdorbing Quasi Primary Submodules

Definition 2.1. A proper submodule N of an R-module M is said to be a 2-absorbing quasi primary submodule (weakly
2-absorbing quasi primary submodule) if the condition abm ∈ N (0 , abm ∈ N) implies either ab ∈

√
(N :R M) or

am ∈ radM(N) or bm ∈ radM(N) for every a, b ∈ R and m ∈M.

In [17], a 2-absorbing quasi primary ideal is defined as a proper ideal I of R whose the radical is a
2-absorbing ideal. The authors (in Proposition 2.5) showed that a proper ideal I of R is a 2-absorbing quasi
primary ideal if and only if whenever abc ∈ I, then ab ∈

√
I or ac ∈

√
I or bc ∈

√
I for each a, b, c ∈ R. From

this aspect, we can see the 2-absorbing quasi primary submodules of an R-module R are all 2-absorbing
quasi primary ideals of R. In addition, by the definition 2.1, it is clear that every 2-absorbing submodule
and 2-absorbing primary submodule are also a 2-absorbing quasi primary submodule. However, we give
an example showing the converse fails as follows:

Example 2.2. Let R0 = {a0 + a1X + a2X2 + ... + anXn : a1 is a multiple of 3} ⊆ Z[X] and R = R0 × R0. Now,
consider the R-module R = M and the submodule N = Q × Q, where Q = 〈9X2, 3X3,X4,X5,X6

〉. First note that
radM(N) =

√
(N :R M) =

√
Q ×

√
Q, where

√
Q = 〈3X,X2,X3

〉. Since (3,X2)(X2, 3)(3, 3) = (9X2, 9X2) ∈ N but
(3,X2)(X2, 3) = (3X2, 3X2) < (N :R M) = N and (3,X2)(3, 3) < radM(N) and (X2, 3)(3, 3) < radM(N), it follows
that N is not a 2-absorbing primary submodule of M. Also, one can easily see that N is a 2-absorbing quasi primary
submodule of M.

Theorem 2.3. For a proper submodule N of M, the following statements are equivalent:
(i) N is a 2-absorbing quasi primary submodule of M.
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(ii) For every a, b ∈ R, (N :M akbk) = M for some k ∈ Z+ or (N :M ab) ⊆ (radM(N) :M a) ∪ (radM(N) :M b).
(iii) For every a, b ∈ R, (N :M akbk) = M for some k ∈ Z+ or (N :M ab) ⊆ (radM(N) :M a) or (N :M ab) ⊆

(radM(N) :M b).

Proof. (i) ⇒ (ii) : Suppose that N is a 2-absorbing quasi primary submodule of M. Let a, b ∈ R. If ab ∈√
(N :R M), then (ab)k = akbk

∈ (N :R M) for some k ∈ Z+ and so (N :M akbk) = M. Now, assume ab <√
(N :R M). Let m ∈ (N :M ab). Then we have abm ∈ N, and thus am ∈ radM(N) or bm ∈ radM(N) since N is a 2-

absorbing quasi primary submodule. Hence we get the result that (N :M ab) ⊆ (radM(N) :M a)∪(radM(N) :M b)
(ii)⇒ (iii) : It is well known that if a submodule is contained in two submodules, then it is contained in

at least one of them.
(iii) ⇒ (i) : Let abm ∈ N with ab <

√
(N :R M) for a, b ∈ R and m ∈ M. Then we have (N :M akbk) , M for

every k ∈ Z+. Thus by (iii) we get the result that m ∈ (N :M ab) ⊆ (radM(N) :M a) or m ∈ (radM(N) :M b), so we
have am ∈ radM(N) or bm ∈ radM(N) as it is needed.

Let M be an R-module. In [16], Nagata introduced the idealization of a module. Recall that the
idealization R(+)M = {(r,m) : r ∈ R,m ∈ M} is a commutative ring with the following addition and
multiplication:

(r1,m1) + (r2,m2) = (r1 + r2,m1 + m2)
(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1)

for every r1, r2 ∈ R; m1,m2 ∈ M. Suppose that I is an ideal of R and N is a submodule of M. Then
I(+)N = {(i,n) : i ∈ I,n ∈ N} is an ideal of R(+)M if and only if IM ⊆ N. In this case, I(+)N is called a
homogeneous ideal. Anderson (in [4]) characterizes the radical of homogeneous ideals as the following:√

I(+)N =
√

I(+)M.

Theorem 2.4. Let M be an R-module. For a proper ideal I of R and submodule N of M with IM ⊆ N, I(+)N is a
2-absorbing quasi primary ideal of R(+)M if and only if I is a 2-absorbing quasi primary ideal of R.

Proof. Suppose that I is a 2-absorbing quasi primary ideal of R. Let (r1,m1)(r2,m2)(r3,m3) = (r1r2r3, r1r2m3 +
r1r3m2 + r2r3m1) ∈ I(+)N, where ri ∈ R and mi ∈ M for i = 1, 2, 3. Then we have r1r2r3 ∈ I. Since I is a
2-absorbing quasi primary ideal of R, we conclude either r1r2 ∈

√
I or r1r3 ∈

√
I or r2r3 ∈

√
I. Thus we

have (r1,m1)(r2,m2) ∈
√

I(+)M =
√

I(+)N or (r1,m1)(r3,m3) ∈
√

I(+)N or (r2,m2)(r3,m3) ∈
√

I(+)N. Hence
I(+)N is a 2-absorbing quasi primary ideal of R(+)M. For the converse, assume that I(+)N is a 2-absorbing
quasi primary ideal of R(+)M. Let abc ∈ I for a, b, c ∈ R. Then we have (a, 0M)(b, 0M)(c, 0M) = (abc, 0M) ∈
I(+)N. Since I(+)N is a 2-absorbing quasi primary ideal of R(+)M, we conclude either (a, 0M)(b, 0M) ∈
√

I(+)M or (a, 0M)(c, 0M) ∈
√

I(+)M or (b, 0M)(c, 0M) ∈
√

I(+)M. Thus we have ab ∈
√

I or ac ∈
√

I or
bc ∈

√
I, this completes the proof.

Lemma 2.5. Let M be an R-module. Suppose that N is a 2-absorbing quasi primary submodule of M and abK ⊆ N for
a, b ∈ R and submodule K of M. If ab <

√
(N :R M), then aK ⊆ radM(N) or bK ⊆ radM(N).

Proof. Since K ⊆ (N :M ab) and (N :M akbk) , M for every k ∈ Z+, by Theorem 2.3 we have K ⊆ (N :M
ab) ⊆ (radM(N) :M a) or K ⊆ (N :M ab) ⊆ (radM(N) :M b). Hence we get the result that aK ⊆ radM(N) or
bK ⊆ radM(N).

Theorem 2.6. For a proper submodule N of M, the followings are equivalent:
(i) N is a 2-absorbing quasi primary submodule.
(ii) For a ∈ R, an ideal I2 of R and submodule K of M with aI2K ⊆ N, then either aI2 ⊆

√
(N :R M) or

aK ⊆ radM(N) or I2K ⊆ radM(N).
(iii) For ideals I1, I2 of R and submodule K of M with I1I2K ⊆ N, then either I1I2 ⊆

√
(N :R M) or I1K ⊆ radM(N) or

I2K ⊆ radM(N).
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Proof. (i) ⇒ (ii) : Suppose that aI2K ⊆ N with aI2 *
√

(N :R M) and I2K * radM(N). Then there exist
b2, b′2 ∈ I2 such that ab2 <

√
(N :R M) and b′2K * radM(N). Now, we show that aK ⊆ radM(N). Assume that

aK * radM(N). Since ab2K ⊆ N, by previous lemma we conclude that b2K ⊆ radM(N) and so (b2 + b′2)K *
radM(N). By using previous lemma we have a(b2 + b′2) = ab2 + ab′2 ∈

√
(N :R M), because a(b2 + b′2)K ⊆ N.

Since ab2 + ab′2 ∈
√

(N :R M) and ab2 <
√

(N :R M),we get ab′2 <
√

(N :R M).As ab′2K ⊆ N, by previous lemma
we get the result that b′2K ⊆ radM(N) or aK ⊆ radM(N),which is a contradiction.

(ii)⇒ (iii) : Assume that I1I2K ⊆ N with I1I2 *
√

(N :R M) for ideals I1, I2 of R and submodule K of M.Then
we have aI2 *

√
(N :R M) for some a ∈ I1. Now, we show that I1K ⊆ radM(N) or I2K ⊆ radM(N). Suppose

not. Since aI2K ⊆ N, by (ii) we get the result that aK ⊆ radM(N). Also there exists an element a1 of
I1 such that a1K * radM(N) because of the assumption I1K * radM(N). As a1I2K ⊆ N, we get the result that
a1I2 ⊆

√
(N :R M) and so (a + a1)I2 *

√
(N :R M). Since (a + a1)I2K ⊆ N, we have (a + a1)K ⊆ radM(N) and

hence a1K ⊆ radM(N),which is a contradiction.
(iii)⇒ (i) : Let abm ∈ N for a, b ∈ R and m ∈M. Put I1 = aR, I2 = bR and K = Rm, the rest is easy.

Lemma 2.7. Let M be a finitely generated multiplication R-module and N a submodule of M. Then (radM(N) : M) =√
(N :R M).

Proof. It follows from [15, Lemma 2.4].

Corollary 2.8. Let M be a finitely generated multiplication R-module and N a proper submodule of M. Then the
followings are equivalent:

(i) N is a 2-absorbing quasi primary submodule.
(ii) N1N2N3 ⊆ N implies either N1N2 ⊆ radM(N) or N1N3 ⊆ radM(N) or N2N3 ⊆ radM(N) for submodules

N1,N2 and N3 of M.

Proof. (i)⇒ (ii) : Suppose that N is a 2-absorbing quasi primary submodule and N1N2N3 ⊆ N for submod-
ules N1,N2 and N3 of M. Since M is multiplication, Ni = IiM for ideals Ii of Ri and 1 ≤ i ≤ 3. Then we have
N1N2N3 = I1I2(I3M) ⊆ N. By Theorem 2.6, we get I1I2 ⊆

√
(N :R M) = (radM(N) : M) or I1I3M ⊆ radM(N) or

I2I3M ⊆ radM(N). Thus we have N1N2 ⊆ radM(N) or N1N3 ⊆ radM(N) or N2N3 ⊆ radM(N).
(ii) ⇒ (i) : Suppose that I1I2K ⊆ N for ideals I1, I2 of R and submodule K of M. Put N1 = I1M, N2 =

I2M and N3 = K. Then we have N1N2N3 ⊆ N. By (ii), we get the result that N1N2 = I1I2M ⊆ radM(N) or
N1N3 = I1K ⊆ radM(N) or N2N3 = I2K ⊆ radM(N). Hence we have I1I2 ⊆

√
(N :R M) or I1K ⊆ radM(N) or

I2K ⊆ radM(N), as needed.

Theorem 2.9. Let M an R-module and N a submodule of M. Then the followings are satisfied:
(i) If M is a multiplication module and (N :R M) is a 2-absorbing quasi primary ideal of R, then N is a 2-absorbing

quasi primary submodule of M.
(ii) If M is a finitely generated multiplication module and N is a 2-absorbing quasi primary submodule of M, then

(N :R M) is a 2-absorbing quasi primary ideal of R.

Proof. (i) Suppose that M is a multiplication module, (N :R M) is a 2-absorbing quasi primary ideal of
R and I1I2K ⊆ N for ideals I1, I2 of R and submodule K of M. We have K = I3M for some ideal I3 of R
since M is multiplication. Then we get I1I2K = I1I2I3M ⊆ N and so I1I2I3 ⊆ (N :R M). As (N :R M) is
a 2-absorbing quasi primary ideal of R, by [17, Theorem 2.21] we conclude that I1I2 ⊆

√
(N :R M) or

I1I3 ⊆
√

(N :R M) ⊆ (radM(N) : M) or I2I3 ⊆
√

(N :R M) ⊆ (radM(N) : M). Thus we have I1I2 ⊆
√

(N :R M) or
I1K ⊆ radM(N) or I2K ⊆ radM(N). By Theorem 2.6, it follows that N is a 2-absorbing quasi primary submodule
of M.

(ii) Suppose that N is a 2-absorbing quasi primary submodule of a finitely generated multiplication R-
module M. Let a, b, c ∈ R such that abc ∈ (N :R M) with ab <

√
(N :R M). Then we have ab(cm) ∈ N for every

m ∈ M. Since N is a 2-absorbing quasi primary submodule of M and ab <
√

(N :R M), we conclude that
acm ∈ radM(N) or bcm ∈ radM(N) for all m ∈ M. Thus we get the result that (radM(N) :M ac) ∪ (radM(N) :M
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bc) = M and so (radM(N) :M ac) = M or (radM(N) :M bc) = M. Hence we get ac ∈ (radM(N) : M) =
√

(N :R M)
or bc ∈

√
(N :R M).

Theorem 2.10. Let M be a finitely generated multiplication R-module. For any submodule N of M, the followings
are equivalent:

(i) N is a 2-absorbing quasi primary submodule of M.
(ii) radM(N) is a 2-absorbing submodule of M.

Proof. (ii) ⇒ (i) : Suppose that radM(N) is a 2-absorbing submodule of M. Let abm ∈ N for a, b ∈ R and
m ∈ M. Then we have abm ∈ radM(N), because N ⊆ radM(N). Since radM(N) is a 2-absorbing submodule
of M, we conclude that ab ∈ (radM(N) : M) =

√
(N :R M) or am ∈ radM(N) or bm ∈ radM(N), and so N is a

2-absorbing quasi primary submodule of M.
(i) ⇒ (ii) : Suppose that N is a 2-absorbing quasi primary submodule of M. Then by previous theorem

and [17, Theorem 2.15], we conclude that
√

(N :R M) = P is a prime ideal of R or
√

(N :R M) = P1∩P2,where
P1,P2 are distinct prime ideals minimal over (N :R M). If

√
(N :R M) = P, then radM(N) = PM is a prime

submodule by [6, Corollary 2.11] and so it is a 2-absorbing submodule of M. In other case, we have
radM(N) =(P1 ∩ P2)M. Also it is easy to see that Ann(M) ⊆ P1,P2. Thus we have radM(N) = ((P1 + Ann(M) ∩
(P2 + Ann(M))M = P1M ∩ P2M, which is the intersection of two prime submodule, is also a 2-absorbing
submodule of M.

In view of Theorem 2.9 and 2.10, we have the following useful corollary to determine the 2-absorbing quasi
primary submodules of a finitely generated multiplication module.

Corollary 2.11. For any submodule N of a finitely generated multiplication R-module M, the followings are equiva-
lent:

(i) N is a 2-absorbing quasi primary submodule of M;
(ii) radM(N) is a 2-absorbing submodule of M;
(iii) radM(N) is a 2-absorbing primary submodule of M;
(iv) radM(N) is a 2-absorbing quasi primary submodule of M;
(v)
√

(N :R M) is a 2-absorbing ideal of R;
(vi)
√

(N :R M) is a 2-absorbing primary ideal of R;
(vii)

√
(N :R M) is a 2-absorbing quasi primary ideal of R;

(viii) (N :R M) is a 2-absorbing quasi primary ideal of R.

Theorem 2.12. Let M be a finitely generated multiplication R-module. For a proper submodule N of M, the followings
are equivalent:

(i) N is a 2-absorbing quasi primary submodule of M.
(ii) (N :R M) is a 2-absorbing quasi primary ideal of R.
(iii) N = IM for some 2-absorbing quasi primary ideal of R with Ann(M) ⊆ I.

Proof. (i)⇒ (ii) : It follows from Corollary 2.11.
(ii)⇒ (iii) : It is clear.
(iii)⇒ (i) : Suppose that N = IM for some 2-absorbing quasi primary ideal I of R with Ann(M) ⊆ I. Then

we have
√

(N :R M) =
√

(IM :R M) = (radM(IM) :R M) = (radM(
√

IM) :R M). By [17, Theorem 2.15] and [13,
Result 2], we conclude that either

√
(N :R M) = (radM(

√
IM) :R M) = (PM :R M) = P is a 2-absorbing quasi

primary ideal of R or
√

(N :R M) = ((P1 ∩ P2)M :R M) = (P1M ∩ P2M :R M) = (P1M :R M) ∩ (P2M :R M) =
P1 ∩ P2 is a 2-absorbing quasi primary ideal of R. Accordingly, by Corollary 2.11, N is a 2-absorbing quasi
primary submodule of M.

Remark 2.13. In Theorem 2.12 (iii) if we release the assumption Ann(M) ⊆ I, then (iii) does not imply (i). To
illustrate this, consider the finitely generated multiplicationZ-moduleZ180. Note that I = 〈0〉 is a 2-absorbing quasi
primary ideal of the ring of integers and Ann(Z180) = 180Z * I. Let N = 〈0〉Z180 = 〈0〉. Then by Corollary 2.11,
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N is not a 2-absorbing quasi primary submodule because
√

(N :R M) = 30Z is not a 2-absorbing quasi primary ideal
of Z.

Theorem 2.14. Let S be a multiplicatively closed subset of R and M an R-module. If N is a 2-absorbing quasi primary
submodule of M with S−1N , S−1M, then S−1N is a 2-absorbing quasi primary submodule of S−1M.

Proof. Assume that N is a 2-absorbing quasi primary submodule of M with S−1N , S−1M. Let a
s1

b
s2

m
s3
∈

S−1N for a, b ∈ R; si ∈ S and m ∈ M. Then we have ab(um) ∈ N for some u ∈ S. Since N is a 2-absorbing
quasi primary submodule of M, we get either ab ∈

√
(N :R M) or uam ∈ radM(N) or ubm ∈ radM(N). Thus

we have a
s1

b
s2
∈ S−1(

√
(N :R M)) ⊆

√
(S−1N :S−1R S−1M) or a

s1

m
s3

= uam
us1s3

∈ S−1(radM(N)) ⊆ radS−1M(S−1N) or
b
s2

m
s3

= ubm
us2s3

∈ S−1(radM(N)) ⊆ radS−1M(S−1N). Hence, it follows that S−1N is a 2-absorbing quasi primary
submodule of S−1M.

Lemma 2.15. Let M be a multiplication R-module and L,K be submodules of M. Then radM(L ∩ K) = radM(L) ∩
radM(K).

Proof. See [15, Proposition 2.14].

Theorem 2.16. Let M be a multiplication R-module. Suppose that N1,N2, ...,Nn are 2-absorbing quasi primary

submodules of M with radM(Ni) = radM(N j) for every 1 ≤ i, j ≤ n. Then N =

n⋂
i=1

Ni is a 2-absorbing quasi primary

submodule of M.

Proof. Suppose that N1,N2, ...,Nn are 2-absorbing quasi primary submodule of M with radM(Ni) = radM(N j) for
every 1 ≤ i, j ≤ n. By the previous lemma, we have radM(N) = radM(N j) for 1 ≤ j ≤ n. Let abm ∈ N for

a, b ∈ R and m ∈M. If ab ∈
√

(N :R M),we are done. Now, assume that ab <
√

(N :R M) =

n⋂
i=1

√
(Ni :R M).Then

we have ab <
√

(N j :R M) for some 1 ≤ j ≤ n. Since N j is a 2-absorbing quasi primary submodule and
abm ∈ N j, we conclude either am ∈ radM(N j) = radM(N) or bm ∈ radM(N j) = radM(N). Hence N is a
2-absorbing quasi primary submodule of M.

Lemma 2.17. Let f : M → M′ be an R-module epimorphism. If N is a submodule of M with Ker( f ) ⊆ N, then
f (radM(N)) = radM′ ( f (N)).

Proof. See [14, Corollary 1.3].

Theorem 2.18. Let f : M→M′ be a homomorphism of R-modules. Then the following statements hold:
(i) If N′ is a 2-absorbing quasi primary submodule of M′ with f−1(N′) , M, then f−1(N′) is a 2-absorbing quasi

primary submodule of M.
(ii) If f is epimorphism and N is a 2-absorbing quasi primary submodule of M with Ker( f ) ⊆ N, then f (N) is a

2-absorbing quasi primary submodule of M′.

Proof. (i) Suppose that N′ is a 2-absorbing quasi primary submodule of M′ with f−1(N′) , M. Let abm ∈
f−1(N′) for a, b ∈ R and m ∈M. Then we have f (abm) = ab f (m) ∈ N′. Since N′ is a 2-absorbing quasi primary
submodule of M′, we conclude either ab ∈

√
(N′ :R M′) ⊆

√
( f−1(N′) :R M) or a f (m) = f (am) ∈ radM′ (N′) or

b f (m) = f (bm) ∈ radM′ (N′). Since f−1(radM′ (N′)) ⊆ radM( f−1(N′)),we get the result that ab ∈
√

( f−1(N′) :R M)
or am ∈ radM( f−1(N′)) or bm ∈ radM( f−1(N′)). Hence f−1(N′) is a 2-absorbing quasi primary submodule of
M.

(ii) Let abm′ ∈ f (N) for a, b ∈ R and m′ ∈ M′. Since f is epimorphism, there exists m ∈ M such that
f (m) = m′ and so abm′ = ab f (m) = f (abm) ∈ f (N). As Ker( f ) ⊆ N, we have abm ∈ N. Then we get the result
that ab ∈

√
(N :R M) ⊆

√
( f (N) :R M′) or am ∈ radM(N) or bm ∈ radM(N), because N is a 2-absorbing quasi

primary submodule of M. By Lemma 2.17, we get ab ∈
√

( f (N) :R M′) or am′ ∈ f (radM(N)) = radM′ ( f (N)) or
bm′ ∈ radM′ ( f (N)) as required.
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As an immediate consequences of previous theorem, we have the following result.

Corollary 2.19. Let M be an R-module and L a submodule of M. Then the followings hold:
(i) If N is a 2-absorbing quasi primary submodule of M with L * N, then L ∩ N is a 2-absorbing quasi primary

submodule of L.
(ii) If N is a 2-absorbing quasi primary submodule of M with L ⊆ N, then N/L is a 2-absorbing quasi primary

submodule of M/L.

Theorem 2.20. Suppose that L,N are submodules of M with L ⊆ N. If L is a 2-absorbing quasi primary submodule
of M and N/L is a weakly 2-absorbing quasi primary submodule of M/L, then N is a 2-absorbing quasi primary
submodule of M.

Proof. Let abm ∈ N for a, b ∈ R and m ∈ M. If abm ∈ L, then ab ∈
√

(L :R M) ⊆
√

(N :R M) or am ∈ radM(L) ⊆
radM(N) or bm ∈ radM(L) ⊆ radM(N). Now assume that abm < L. Then we have 0, ab(m + L) ∈ N/L. Since
N/L is a weakly 2-absorbing quasi primary submodule of M/L, we conclude that ab ∈

√
(N/L : M/L) or

a(m + L) ∈ radM/L(N/L) =
radM(N)

L or b(m + L) ∈ radM/L(N/L) =
radM(N)

L . Thus we get the result that ab ∈√
(N :R M) or am ∈ radM(N) or bm ∈ radM(N), this completes the proof.

Recall from [11] a proper ideal Q of R is a quasi primary ideal if whenever
√

Q is a prime ideal of R.Also
a proper submodule N of M is called a quasi primary submodule preciesly when (N :R M) is a quasi primary
ideal of R [1].

Lemma 2.21. Let M be a multiplication R-module. Suppose that N1,N2 are quasi primary submodules of M. Then
N1 ∩N2 are 2-absorbing quasi primary submodule of M.

Proof. Suppose that N1,N2 are quasi primary submodules of M. Then we have (N1 : M) and (N2 : M) are
quasi primary ideal of R. Thus we get (N1 : M) ∩ (N2 : M) = (N1 ∩ N2 : M) are 2-absorbing quasi primary
ideal by [17, Theorem 2.17]. Therefore, by Theorem 2.9, N1 ∩N2 is a 2-absorbing quasi primary submodule
of M.

Let M1 be an R1-module and M2 be an R2-module. Then the set M = M1 ×M2 becomes an R = R1 × R2-
module with component-wise addition and multiplication. Also, all submodules of M has the form
N1 ×N2,where N1 is a submodule of M1 and N2 is a submodule of M2. Further, If M1 is a multiplication R1-
module and M2 is a multiplication R2-module, then M is a multiplication R-module. In addition, radM(N1 ×

N2) = radM1 (N1) × radM2 (N2) holds for every submodule N1 of M1 and N2 of M2 .

Theorem 2.22. Suppose that M1 is a multiplication R1-module and M2 is a multiplication R2-module. Let R =
R1 × R2 and M = M1 ×M2. Then the followings hold:

(i) N = K1 ×M2 is a 2-absorbing quasi primary submodule of M = M1 ×M2 if and only if K1 is a 2-absorbing
quasi primary submodule of M1.

(ii) N = M1 × K2 is a 2-absorbing quasi primary submodule of M = M1 ×M2 if and only if K2 is a 2-absorbing
quasi primary submodule of M2.

(iii) If K1 is a quasi primary submodule of M1 and K2 is a quasi primary submodule of M2, then N = K1 × K2 is a
2-absorbing quasi primary submodule of M.

Proof. (i) Suppose that K1 is a 2-absorbing quasi primary submodule of M1. Let (a1, a2)(b1, b2)(m1,m2) =
(a1b1m1, a2b2m2) ∈ K1 ×M2, where ai, bi ∈ Ri and mi ∈ Mi for i = 1, 2. Then we have a1b1m1 ∈ K1 and so
a1b1 ∈

√
(K1 :R1 M1) or a1m1 ∈ radM1 (K1) or b1m1 ∈ radM1 (K1). Thus we get the result that (a1, a2)(b1, b2) ∈√

(N :R M) or (a1, a2)(m1,m2) ∈ radM(N) or (b1, b2)(m1,m2) ∈ radM(N). For the converse, assume that K1×M2 is
a 2-absorbing quasi primary submodule of M. Let abm ∈ K1 for a, b ∈ R1 and m ∈ M1. Then we have
(a, 0)(b, 0)(m, 0M) ∈ K1 × M2 and so (a, 0)(b, 0) = (ab, 0) ∈

√
(K1 ×M2 :R M1 ×M2) =

√
(K1 :R1 M1) × R2 or

(b, 0)(m, 0M) = (bm, 0M) ∈ radM1 (K1) ×M2 or (a, 0)(m, 0M) = (am, 0M) ∈ radM1 (K1) ×M2. Thus we get the result
that ab ∈

√
(K1 :R1 M1)or am ∈ radM1 (K1) or bm ∈ radM1 (K1), as needed.
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(ii) The proof is similar to (i)
(iii) Suppose that K1,K2 are quasi primary submodules of M1 and M2, respectively. Then N1 = K1×M2 and

N2 = M1 × K2 are quasi primary submodules of M and so N = N1 ∩ N2 = K1 × K2 is a 2-absorbing quasi
primary submodule of M by Lemma 2.21.

Theorem 2.23. Let R = R1 × R2 and M = M1 ×M2 be a finitely generated multiplication R-module, where M1 is a
multiplication R1-module and M2 is a multiplication R2-module. If N = N1 × N2 is a proper submodule of M, then
the followings are equivalent:

(i) N is a 2-absorbing quasi primary submodule of M.
(ii) N1 = M1 and N2 is a 2-absorbing quasi primary submodule of M2 or N2 = M2 and N1 is a 2-absorbing quasi

primary submodule of M1 or N1,N2 are quasi primary submodules of M1 and M2, respectively.

Proof. (i) ⇒ (ii) : Suppose that N = N1 × N2 is a 2-absorbing quasi primary submodule of M. Then
(N :R M) = (N1 :R1 M1) × (N2 :R2 M2) is a 2-absorbing quasi primary ideal of R. By [17, Theorem 2.23], we
have (N1 :R1 M1) = R1 and (N2 :R2 M2) is a 2-absorbing quasi primary ideal of R2 or (N2 :R2 M2) = R2 and
(N1 :R1 M1) is a 2-absorbing quasi primary ideal of R1 or (N1 :R1 M1), (N2 :R2 M2) are quasi primary ideals
of R1 and R2, respectively. Assume that (N1 :R1 M1) = R1 and (N2 :R2 M2) is a 2-absorbing quasi primary
ideal of R2. Then N1 = M1 and N2 is a 2-absorbing quasi primary submodule of M2 by Theorem 2.9. If
(N2 :R2 M2) = R2 and (N1 :R1 M1) is a 2-absorbing quasi primary ideal of R1, similarly we have N2 = M2 and
N1 is a 2-absorbing quasi primary submodule of M1. Now, assume that (N1 :R1 M1), (N2 :R2 M2) are quasi
primary ideals of R1 and R2, respectively. By the definition of quasi primary submodule, N1 and N2 are
quasi primary submodules of N1 and N2, respectively.

(ii)⇒ (i) : It follows from previous theorem.
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