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Abstract. Recently the concept of mixed norm spaces was generalized to that of the mixed paranorm
spaces [{(r), £,]*">. Here we determine the classes of matrix transformations from [£(r), £,]¥*")> into the
spaces of bounded, convergent and null sequences, and into the spaces of all bounded, convergent and
absolutely convergent series. We also obtain many correponding known results for mixed norm spaces as
special cases and visualize some neighbourhoods in the spaces [£(r), é’p]<k(”>.

1. Introduction and Notations

Throughout the paper, let r = ()], be a bounded sequence of positive reals r, with M(r) = sup, r, and
H(r) = max{1,M(r)},1 <p < o0, and s, for r, > 1 and g denote the conjugate exponents of r, and p, that is,
s, =1,/(rn—-1)(v=0,1,...)andg=occforp=1,g=p/(p—1)forl <p<ooand g =1 forp = co.

As usual, we write e = (e),2, and e = (e,(cn));":1 for n € IN for the sequences with ¢, = 1 for all k , and

e;") =1land e]((”) = 0 for k # n. We also denote by ¢, ¢, cp and ¢ the sets of all bounded, convergent, null and
finite sequences, respectively, and consider the set

(9]
o(r) = xea):ZkaI’k <oo},
k=1

which reduces to the well-known set £, when (r,);”, = r - e for some constant r > 1. Furthermore, let cs and
bs be the sets of all convergent and bounded sequences.

For any subset X of w, let XP=laew: Yl mxx converges for all x € X} denote the f—dual of X. Given
any infinite matrix A = (au),,_, of complex entries and any sequence x = (x);2, € w, we write A, for the

sequence in the n" row of A, Apx = Y e Ak Xy, Ax = (Anx);, (provided the series A,x converge for all n),
and X4 = {2 € w : Ax € X} for the matrix domain of A in X. Finally, if X and Y are subsets of w, then (X, Y)
denotes the class of all infinite matrices A for which X C Yy, thatis, A € (X, Y) if and only if A, € XF for all
nand Ax € Yforall x € X.
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An infinite matrix T = (t”k):kzl is called a triangle, if t,x = O for k > n and t,, # O for all n. Let
B = (bnk);"’kzl be a positive triangle and X C w. We write Bulx| = Y.;_; bulx| (x € w) for each n and
Xp) = {x € w : Blx| = (Bulx|);, € X} for the strong matrix domain of B in X.

A subset X of w is said to be normal if x € X and |yl < x| (k=1,2,...)imply y = (yk)]‘;":1 e X.

An FK space X is a Fréchet sequence space with continuous coordinates P, : X — C where P, (x) = x, for
allx = (xy);>, € Xand n =1,2,.... We say that an FK space X D ¢ has AK if xI" = Y} xe® — x (m — o0);
x™ is called the m-section of the sequence x. A normable FK space is said to be a BK space. For instance,
{(r) is an FK space with respect to its total paranorm /) defined by

o 1/H(r)
hey(x) = [Z |xk|rk] for all x € £(r);
k=1

t, (1 £ p < o), cand ¢ are BK spaces with their natural norms || - ||, (1 < p < ) and || - || defined by

0 1/p
lIx[l, = [Z ka|”] for x € £, and |||l = sup |xx| for x € co, ¢, {;
k=1 k
{(r), £, (1 < p < o) and ¢y have AK.

The mixed paranorm spaces [£(r), £, were defined in [7] as follows: Let (k(v));, be a sequence of
integers with 1 = k(0) < k(1) < ---. By K*¥> (v = 0,1,...), we denote the set of all integers k that satisfy the
inequality k(v) < k < k(v + 1) — 1 and we write ), = ) x> and max, = maXex<w-. Given any sequence
x = ()7, € w, we define the K<¥>blocks of x by x> = ¥ xxe® for v =0,1,..., and put

]<k(v)>

o)

(), 6,15 =dx e w : B p(x) = Y [Ix|I < 00} (the sequence ¥ may be unbounded).
p ")p p q y
v=0

We also write [£o(7), fp]<k(v)> ={x € w : sup, ||x<">||;,” < oo} If (r,);2, = r - e for some constant r > 1, then
the spaces [£(r), £,])> reduce to the mixed norm spaces £(r,p) introduced by Hedlund [2]. The Cesaro
sequence spaces ces,, [1, 3] can also obtained as special cases of the spaces [£(r), £,] <)

In this paper, we characterize the classes ([£(r), é’p]<k(V)>, Y), that is, we determine necessary and sufficient
conditions on the entries of an infinite matrix A to map [£(r), {,]*")> into Y, when Y is any of the spaces
oo, Co, ¢, 1, bs or cs. Our new results yield many known results as special cases. Finally, we visualize certain
neighbourhoods in several of the spaces [£(r), £,]5)>.

2. Some Known Results

For the reader’s convenience, we list the results on mixed paranorm spaces from [7] which are needed
in the sequel.
The sets [£(r), {,]**")> are FK spaces with AK with their natural total paranorms h, defined by

o0 1/H(r)

. 1/H(r) - y

(%) = () :(lex< ||,,] for all x € [£(r), £,]")>
v=0

if and only if the sequence r is bounded ([7, Corollary 2.6]).
Let U be the set of all complex sequences u such that u; # 0 for all k. Then we write u™ '+ X = {y € w :
u-y = (uyr), € X} We put

1 )‘1 . .
e *Lls), 61 = {a Ew: Y |la™| - N~ < oo} if r, > 1 forallv
Mo = LU (e #1606 = U facw: £l

[loo(r), €10~ ifr, <1forallv.
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Since s, = 1 +s,/r, when r, > 1 for all v, we have a € M((r), p) if and only if Y37, [la="|[ -N=%/" < 00, and
SO ([f(r),fp]<k(v)>)‘6 = M((r), p) by [7, Theorem 3.2].

Let X C w be a linear metric space with respect to the metric d and a € X. Then we denote the closed ball
of radius 6 > 0 and centre in 0 by B5(0) = {y € X : d(x,0) < 6}, and write ||al[; = sup{|X;2axxl : x € Bs(0)}
provided the expression on the left hand side exists and is finite, which is the case whenever X is an FK
space and a € XP ([11, Theorem 7.2.9]. It is known that if X is an FK space then A € (X, () if and only if

Al = sup [|A,ll§ < oo for some 6 > 0 ([9, Theorem 1.23 (b)]). (1)

We also need the following result.

Proposition 2.1. ([8, Theorem 2 (b)]) Let B be a positive triangle, X be an arbitary subset of w, and Y be a normal
set of sequences. For every m € IN, let Ny, C {1,2,...,m}, N = (Ny,);_, and N be the set of all such sequences.
Given an infinite matrix A = (a,),_,, we define the matrix SN(A) for every N € N by

sN(A) = Z bunAy, that is, sN (A) = Z byt (1, =1,2,...).

neNy, nENy,
Then we have A € (X, Yg)) if and only if SN(A) € (X, Y) for all sequences N € N.
Finally we observe that
Yolagx] = [la=ly - [Ix="71l, for all v and all sequences x, y € w. ()

Using (2) and applying the well-known inequality [byy,| < by + [y | with b, = [la=""]|, N-1/n and y=
llx<">{l, N*/* (v = 0,1,...) where N # 0, we obtain

Yolaxad < [Ja=||

N_s‘ + ||x<v>

.”x<v>||p < “a<v>“;" NS/ 4 NHx<v> ) forv=0,1,.... 3)

\ _ (||a<v>

q

3. Matrix Transformations

In this section, we establish the main results, namely the characterizations of the classes ([£(r), £ p]<k(")>, Y)
when Y is any of the spaces ¢, ¢y, ¢, €1, bs and cs. First we characterize the class ([£(r), fp]<k(")>, loo)-

Theorem 3.1. (a) Let r,, > 1 for all v. Then we have A € ([{(r), £,]155)>, £s) if and only if

IAlls = sup i (An/B) = supZ las~ | B

=0

~* < oo for some integer B > 1. 4)

(b) Let r, < 1 for all v. Then we have A € ([{(r), €,]1V)>, €s) if and only if

IAll = sup |47 < oo. (5)
ny

Proof. (a) Letr, > 1 forall v.

(i) First we prove the sufficiency of the condition in (4).

It follows from (4) and [7, Theorem 3.2] that A, € ([€(r), {,]15*">)F for all n. Also (3) yields for all x €
[£(r), £,1°%)> and all n

(e8]

A4, (0] Z o] < B

v=0

Yl B+ e )] = B (4(An/B) + T,(x)
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< B(lAllp + i (1)) < o0,

hence Ax € {w.
Thus we have shown the sufficiency of the condition in (4).
(ii) Now we show the necessity of the condition in (4). We assume that A € ([((r), £,]*")>, £.,), but

lAllg = oo for all B > 1. (6)
Since A € ([£(r), f,,]<k(v)>, ), it follows by (1) that
IAJlS < oo for some 6 with 0 <6 < 1. (7)

We choose an integer By such that Byo™® > ||A]l;.
Case 1. S,(Bo) = hs)4(An/Bo) < oo for all n. By (6), there exists an integer m such that S,,(Bp) > 2, and so

there exists vo > O such that Y72 ., ”Af”””: B,* <1, hence

Vo

SBo) = Y [las | By > 1. ®)
v=0

Case 2. There exists an integer m such that S,,(Bg) = co. Then we can also choose vy > 0 such that (8) holds.
Thus we have (8) in either case.
We write Sy = S;S)(BO), for short, put

_ 6H(r)/rvB(;sv/rv561 (0 <y < UO)
v 0 v > )

and define the matrix A((s), ) = @me((s), q));",k:1 and the sequences x(p) = (xk(p));2, by

sgn(@mland’" |45 (ke K+>) (1 < p < o)

sgn(@,m)lIAL7 I, where ko(v)  (k=ko(v))  (p=1;9 =)
is the smallest integer in K<")>

Ank((s),q) =
HE): D such that |2, )| = 145" leo
(O <v< Vo)
0 (otherwise)
and x(p) = DyA((s), q)mk for k € K<W> (v =0,1,...).
Since Sy > 1and r, > 1 for all v, we have S, < S, hence
D}y < 6"0S 1B, for 0 < v < vy. 9)

Ifl1<p<oothengp —p=gandr,(s, —q+4q/p) =s,,andif p =1, o0, then r,(s, — 1) = s, for all v, and so

N X —pNTy ry(sv=q) rv(sv=q+q/p) Sy .

An(©), D™l < (Tl ) P JA5= [ = Ja5~ ) = [las=ll i1 <p <o,
A A v v(sy—1 v 3

An(©), 0) I = (Tolme)™ < HAZIS ™ = 1457 % ifp = 1,
A A v v \'*1 v o3 p—

An((), D=1l = (maxuland)™ < SIS = AT if p = oo,

hence

1An(©), =1 < |45

;VforlspﬁooandOSVSvo. (10)
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Now it follows from (9) and (10) that

Vo Vo

fl(r),p(x(p)) — Z ”xk(p)<v>”;‘;r < 6H(7)561 Z ”A;l»“;\-Basu < 6H(7)561 Z HA;;» : B
v=0 v=0 v=0

—Sy H(r)
o< o0,

that is,
x(p) € Bs(0) for 1 < p < oo. (11)

But on the other hand we have,

T otnidini(8),7) = Tolamel? A5 = A5~ i1 < p < oo,
X klink(8), 00) = |amiy)lll A5 77 = A IR if p = 1,
hence
YAk ((S), g) = ||A<V> forl<p<coand 0 <v <. (12)

Since 6 < 1 and r, > 1, we have 57"/" > §H( and it follows from (12) that
Vo Vo Vo
. _ Sv _ S .
Anx(p) = Y DL, ame((s),q) > 60551 Y| lAs [ B/ = 6"y Y las> ([ B = 6"0By > l1All,
v=0 v=0 v=0

which, in view of (11), is a contradiction to the definition of [|Alf}.
Thus the assumption that the condition in (4) is not satisfied, has led to a contradiction for all p with
1 < p < co. Therefore (4) has to hold. This completes the proof of the necessity of (4).
Thus we have shown Part (a) of the theorem.
(b) Now letr, <1 for all v.
(i) First we prove the sufficiency of the condition in (5).
It follows from (4) and [7, Theorem 3.2] that A,, € ([{’oo(r),€p]<k(v)>)ﬁ for all n. We choose N € IN such that
N > ||All. Then we have for all x € By;y(0) by the inequality in (2)

<v>

r\/
(Colamoxd)™ <[4z~ [lx

;V <1forall nandallv,

and so, sincer, <1 forall v,

|Anx] = i Lolanxy| < Z O lamxe)™ Z ”A<V>
Z ||x<v>

hence Ax € €, for all x € Byy(0).

Now let x be an arbitrary sequence in [€e(r), £,]¥*")>. Since the space [€«(r), £,]**"> is paranormed, the set
By)n is absorbing, and consequently there exists a positive real C > 0 such that y = C"'x € By/y, and (13)
yields |A,x| = C|A,yl < C for all n, hence Ax € {.

Thus we have shown the sufficiency of the condition in (5).

(ii) Finally we show the necessity of the condition in (5).

We assume that A € ([£(r), £,]¥")>, £,) but

<V>

< sup ||A<v>

= Al - h p(x) < 1 for all n, (13)

|l = oo. (14)
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Again, A € ([{(r), £,]%*")>, £.,) implies by [9, Theorem 1.23 (b)] that (7) holds. By (14), there exist m € IN and
u € INp such that

A1 -6 > Al +1 = S.

We define the sequence x(p) = (xk(p));2, by

g 1St (keK¥) (1<p<oo)
sgn(@mk,)lIAL I, where ko(u) (k= ko(u)) (p =1;9 = )

is the smallest integer in K<#>
<u>

such that |20 = 14, lleo

— <u>
SN (@t ) kI I ALL ]

xk(p) =

(v=p
0 (otherwise).

Then we obtain

. <v> 7 ru(@/p—q) —
B (ep) = Y @)l < S(Elanel?) " = SIAGI <0 for 1 <p <,
v=0
Iy eo(x(e)) = Y Ii(00) 7 1 < SIAR " < 6 for p = oo,
v=0
hoa () = ¥ (=1 < SIAF I <6 forp =1,

Il
o

v

hence x(p) € Bs(0) for 1 < p < oo, that is, (11) again holds.
But on the other hand, since S > 1 and r, < 1, it follows that SV > S, and so

A = |Lx(p)| = V7 = 8 > Al for 1 < p < o0,
1 -1 T *
A )] = [T, D) = lawe, W) JAS ]|, Y7 2 S > [lAlly forp =1,

which, in view of (11), is a contradiction to the definition of [|Al[.

Thus the assumption that the condition in (5) is not satisfied, has led to a contradiction for all p with
1 < p < co. Therefore (5) has to hold.

This completes the proof of the necessity of (5).

Thus we have shown Part (b) of the theorem.

This completes the proof of the theorem. [

Using Theorem 3.1 and applying [11, 8.3.6] and Proposition 2.1 we obtain the characterizations of the
classes ([g(r)l gp]<k(v)>[ C)/ ([f(?’), fp]<k(v)>/ CO) and ([f(?’), fp]<k(v)>r gl)

Corollary 3.2. (a) We have A € ([{(r), €,]15")>, ¢) if and only if in addition to the conditions in (4) or (5) the following
holds

lim a, = ay exists for each k. (15)
n—o0
(b) We have A € ([£(r), €15, co) if and only if in addition to the conditions in (4) or (5) the following holds
lim a,x = 0 for each k. (16)
(c) Let r, > 1 for all v. Then we have A € ([{(r), £,15*")>, &,) if and only if

ZAH/B]: sup i Y A,

NcIN o
neN N finite v=0 neN

<v>||Sv

IZAllp = sup {ﬁ(sm

NcNN
N finite

B™ < oo for some integer B> 1. (17)
9
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(d) Let r,, < 1 for all v. Then we have A € ([€(r), £,]=V>, &1) if and only if

4

neN

<v>

IZAll = sup [sup

NcNN v
N finite

] < oo, (18)

q

Proof. (a) and (b) Since ([£(r), €,]°")> is a BK space with AK, and ¢ and ¢ are closed subspaces of {w, the
statements in (a) and (b) are immediate consequences of [11, 8.3.6] and Theorem 3.1.
(c) and (d) Let X = (0,k);",_, denote the positive triangle with o,y = 1fork =1,2,...nand alln > 1. Then

61 = (€w)[x) and L is normal, and applying Proposition 2.1, we obtain A € ([£(r), £,]%")>, £;) if and only if
SN(A) € ([&(r), £,]17K>, L) where

(SN(A))m = Z TumAy, that s, (8N (A))x = Z a, for all n and k.

neN,, neN,,

Now it follows by (4) and (5) that SN(A) € ([£(r), £{,]¥")>, £ if and only if

Y AulB

neN,,

<v>
]
neN,,

SNA)IE = h
IS™(A)lls sip [Nmrg{lla,.)f,m}( )

[oe]
=sup| max Z
ch‘l/m/m}

Sy

B_SV] < oo for some integer B > 1, whenr, > 1 for all v
m v=0

q
and

Ty

x]

neN,,

[|ZA|l = sup[ max [sup ]] < oo, whenr, <1 for all v.
| Nocllm|
q

It is easy to see that these conditions are equivalent to those in (17) and (18), respectively. O

Finally, we characterize the classes A € ([£(r), €,]%")>, bs) and A € ([£(r), £,]%)>, cs).
Example 3.3. We observe that bs = (fw)s and c¢s = cx. Applying [6, Theorem 1] with T = ¥ we obtain
A € ([K(r),Kp]<k(V)>,bs) and A € ([f(r),€p]<k(v)>,cs) if and only if C = - A € ([€(r), fp]<k(v)>,€m) and C €
([E(r), €10 ¢), where ¢y = Y.y aj for all n and k. The characterizations of the classes A € ([((r), 6,10, bs)

and A € ([€(r), £,15*)>, cs) are given by replacing the entries of the matrix A in (4), (5) and (15) by the entries of the
matrix C.

4. Applications, Special Cases and Visualizations
First, we apply the results of Section 3 to obtain some known results as special cases.

Example4.1. If 1 < m = inf,r, < r, < M = sup,r, < oo for all v, then the conditions in (4) for A €
([E(r), €170 £, A € ([E(r), 6,150, ¢) and A € ([€(r), €1V, o), and in (17) for A € ([€(r), £,150)>, €1) can
be replaced by

1Al = sup (7 q(An)) = sup Z IA7IF < o0
n noy=0

and

= supi

NcN .
Nfnie V=0

e

IZAllL = sup [fusm
neN

NcIN
N finite

respectively.
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Proof. Since

m Ty M -
<s, = < = Fforall v,
M-1>" "1 -1 Y

E:

it follows that
||A;V>||;"B_? <NAZ” I B™ < ||A§V>||Z"B_£ for every integer B > 1, and for all v and #,
and the statement of the example is an immediate consequence. [

Example 4.2. (a) Letr, =r>1(v =0,1,...)and 1 < p < oo. Then the spaces [f(r),fp]<k(v)> reduce to the mixed
norm spaces €(r,p) = [£,, €, ([7, Example 2.8 (a)]).

We obtain the characterizations of the classes (€(1,p), L), (€(1,p), c) and (£(1,p), co) by replacing the condition in (5)
by

(o]
4l = sup |(145711)” || = sup 1Azl < o,
n ny

and of the class (£(1,p), €1) by replacing the condition in (18) by

<v> o <v>
IZA|l = sup ZA,, ] = sup [sup [Z An] ] < oo.
ffffn]fl neN 9/ =0llco AI\JJﬁCn]iI:Ie v neN q

Forr > 1ands = r/(r — 1), we obtain the characterizations of the classes ({(r,p), {s), (£(r,p), c) and (£(r,p), co) by
replacing the condition in (4) by

(o)
0 |5
= sup 1 | s 3 b <
n nov=0

and of the class ({(r, p), €1) by replacing the condition in (17) by

<v> o s s <v>1IS
IZAll = sup ZA”] ] = sup [Z [Z Ay ] < 0.
NcNN NcNN _
N finite neN 7/v=0llg Ninme  \v=0 [I\neN q

The characterizations of the classes (£(r,p), {x), (£(1,p), co) and ({(r,p), £1) for 1 <r < o0and 1 < p < oo were given
in [4, Corollary 4.5 (1.), (2.) and (3.)].

(b) Letr, > 1, k(v)=2"forv=0,1,... and u = (U2, be the sequence with uy = 27V (ke KY;v=0,1,...). We
consider the sets

k=2v

0 2v+1_1 Ty
ces(r) = ™+ [€(r), (1] = {x e w: ZzV<1-rv>[ Z |xk|] <ool,
v=0

which reduce to the Cesaro sequence spaces ces, forry =r > 1(k =1,2,...)[3]. Since, forallv e Uandall X,Y C w,
obviously A € @ +XY) if and only if C € (X,Y), where cp = anr/vx for all n and k, the characterizations of the
classes (ces(r),Y) for Y € {€w, c.co, €1} can immediately be obtained from the corresponding ones for ([{(r), 615> ),

Example 4.3. Let r = (), be any bounded sequence of positive real numbers and 1 < p < co. Ifk(v) = v + 1 for
v=0,1,..., then we have [((r), €,]**"> = €(r) ([7, Example 2.9]). The characterizations of the classes (£(r), lw),
(€(r), ¢) and (£(r), co) can be obtained by replacing the conditions in (4) for v, > 1 and in (5) for r, <1 by

lAllg = sup (fz(s)(An/B)) = sup Z @k’ B~ < oo for some integer B > 1
k ko k=t
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and ||A|| = sup,, x lanml™ < oo, respectively. The characterizations of these classes can be found in ([5, Theorem 1 and
Corollary]). Finally, the characterization of the class (£(r), {1) can be obtained by replacing the conditions in (17) for
r, > land in (18) forr, <1 by

Y (A/B)

neN

Sk
Zank B™* < oo for some integer B > 1

NcN neN

NcN _
N finite k=1

N finite

IZAllp = sup [fus)

s

and
Tk
lAll = sup [sup zank ]< 00,
NcIN
N finite k- lnen
respectively.

Finally, we visualize the projections on the first three coordinates of some neighbourhoods B;(0) in
several spaces [€(), [p]<k(v)>'

AR

Figure 2: Leftro =1/2, 11 =2,p =3. Rightrg =2, =1/2,p =3.
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Figure 3: Leftrg =1/2,71 =1,p =3. Rightrg =1, =1/2,p = 3. Bottomrg =1/2,r1 =1/2,p =3
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