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Abstract. We prove some common fixed point results for two α-dominated mappings satisfying some
restricted contractive conditions on a closed ball of a left (right) K-sequentially complete dislocated quasi
metric space. Some examples are given to show the utility of our work. The results of this paper complement,
extend and enrich several recent results in the literature.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

It is well known that the Banach contraction principle ensures the existence and uniqueness of a fixed
point for a contractive self-mapping T on a complete metric space (X, d), i.e., if the condition

d(Tx,Ty) ≤ λd(x, y) (1)

is satisfied for all x, y ∈ X. Many generalizations of this principle exist which also use certain contractive-
type conditions which have to be fulfilled on the whole space (see, e.g., Ljubomir Ćirić’s papers [10, 11, 13]).
From the viewpoint of applications, it is often enough that this condition is not fulfilled just on some subset
of the underlying space, e.g., on one of its closed balls. One can obtain fixed point results for such mappings
by using suitable conditions. For example, recently, Hussain et al. [18] have proved a result of this kind
(see also, [5–7, 38–40] ).
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On the other hand, partial metric spaces have applications in theoretical computer science (see [16]). The
notion of dislocated topologies has useful applications in the context of logic programming semantics (see
[16, 17]). Dislocated metric (metric-like) spaces (see [4, 20, 23, 25, 27, 33, 36, 41]) are generalizations of partial
metric spaces. Furthermore, dislocated quasi metric spaces (quasi-metric-like spaces) (see [1, 9, 37, 43, 44])
generalize the idea of dislocated metric spaces and quasi-partial metric spaces (see [24, 26, 38]). In [34]
Romaguera gave the idea of 0-complete partial metric space, which generalizes the completeness of a partial
metric space.

Samet et al. [35] announced the notion of α-admissible mappings. They weakened and generalized the
contractive condition (1.1) and several other known results. The existence of fixed points of α-admissible
mappings in complete metric spaces has been studied by several researchers (see [19, 35, 42] and references
therein).

In this paper, we discuss common fixed point results for two α-dominated mappings in a closed ball
in complete dislocated quasi metric space, under various contractive-type conditions. The given results
improve and extend several recent results proved in [5, 7, 9, 38, 39]. One can easily use this method to
prove common fixed point results in quasi metric spaces. Moreover, we discuss the relation between the left
(right) K-sequentially complete dislocated quasi metric spaces and left (right) K-sequentially 0-complete
quasi-partial metric spaces. Examples are provided which illustrate our results and their usefulness.

2. Preliminaries

Definition 2.1. [24] Let X be a nonempty set. A quasi-partial metric on X is a function q : X ×X→ R+ satisfying,
for all x, y, z ∈ X,

(i) 0 ≤ q(x, x) = q(x, y) = q(y, y) implies x = y (equality),
(ii) q(x, x) ≤ q(y, x) (small self-distances),

(iii) q(x, x) ≤ q(x, y) (small self-distances),
(iv) q(x, y) + q(z, z) ≤ q(x, z) + q(z, y) (triangle inequality).

The pair (X, q) is called a quasi-partial metric space.

Definition 2.2. [43] Let X be a nonempty set. A function dq : X×X→ [0,∞) is called a dislocated quasi metric (or
simply dq-metric) if the following conditions hold for any x, y, z ∈ X :

(i) If dq(x, y) = dq(y, x) = 0, then x = y,
(ii) dq(x, y) ≤ dq(x, z) + dq(z, y).

In this case, the pair (X, dq) is called a dislocated quasi metric space.

It is clear that, if dq(x, y) = dq(y, x) = 0, then from (i) we have x = y. But, if x = y, then dq(x, y) may
not be 0. It can be observed that, if dq(x, y) = dq(y, x) for all x, y ∈ X, then (X, dq) becomes a dislocated
metric space (metric-like space) [4, 17]. We will denote by (X, dl) a dislocated metric space. For x ∈ X
and ε > 0, Bdq (x, ε) = {y ∈ X : dq(x, y) ≤ ε} is a closed ball in (X, dq). Every quasi-partial metric space is a
dislocated quasi metric space, but the converse is not true in general.

Example 2.3. If X = R+
∪ {0}, then dq(x, y) = x + max{x, y} defines a dislocated quasi metric dq on X. But, it

is not a quasi-partial metric space. Indeed,

dq(2, 2) = 4 > dq(1, 2) = 3.

Reilly et al. [32] introduced the notion of left (right) K-Cauchy sequence and left (right) K-sequentially
complete spaces (see also [14]). We use this concept to establish the following definition.

Definition 2.4. Let (X, dq) be a dislocated quasi metric space.
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(a) A sequence {xn} in (X, dq) is called left (right) K-Cauchy if ∀ ε > 0, ∃ n0 ∈ N such that ∀ n > m ≥ n0,
dq(xm, xn) < ε (respectively dq(xn, xm) < ε).

(b) A sequence {xn} in (X, dq) dislocated quasi-converges (for short dq-converges) to x if lim
n→∞

dq(xn, x) = lim
n→∞

dq(x, xn) =

0. In this case, the point x is called a dq-limit of {xn}.

(c) (X, dq) is called left (right) K-sequentially complete if every left (right) K-Cauchy sequence in
(
X, dq

)
dq-converges

to a point x ∈ X such that dq(x, x) = 0.

One can easily observe that every complete dislocated quasi metric space is also left K-sequentially
complete dislocated quasi metric space, but the converse is not true in general.

Remark 2.5. It is easy to see that, if xn ∈ Bdq (x0, r) for all n ∈ N and for some x0 ∈ X, r > 0, and the sequence {xn}

dq-converges to a point x∗ ∈ X, then x∗ ∈ Bdq (x0, r).

Definition 2.6. [38] Let (X, q) be a quasi-partial metric space.

(a) A sequence {xn} in (X, q) is called 0-Cauchy if lim
n,m→∞

q(xn, xm) = 0 or lim
n,m→∞

q(xm, xn) = 0.

(b) The space (X, q) is called 0-complete if every 0-Cauchy sequence in X converges to a point x ∈ X such that
q(x, x) = 0.

Remark 2.7. By definitions, one can easily observe that if X is a 0-complete quasi-partial metric space then it is also
a K-sequentially complete dislocated quasi metric space. But a K-sequentially complete dislocated quasi metric space
may not be a 0-complete quasi-partial metric space (see Example 3.12). Therefore, the results in a K-sequentially
complete dislocated quasi metric space are more general than those in a 0-complete quasi-partial metric space.

Recall also the following well-known notions.

Definition 2.8. Let X be a non-empty set and T, f : X → X be two mappings. A point y ∈ X is called a point of
coincidence of T and f if there exists a point x ∈ X such that y = Tx = f x, here x is called a coincidence point of T and
f . The mappings T, f are said to be weakly compatible if they commute at their coincidence points (i.e. T f x = f Tx
whenever Tx = f x).

Let Ψ denote the family of all nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that
∑
∞

n=1 ψ
n(t) < +∞

for all t ≥ 0, where ψn is the nth iterate of ψ. The following lemma is a consequence of definition of Ψ.

Lemma 2.9. If ψ ∈ Ψ, then ψ(t) < t for all t > 0.

In the next section, we state our main results.

3. Main Results

First, we introduce some more notions which will be needed in the sequel.

Definition 3.1. Let (X, dq) be a dislocated quasi metric space, A ⊆ X, T : X→ X be a self-mapping and α : X×X→
[0,+∞). Then:

(i) The mapping T is said to be α-dominated on A, if α(x,Tx) ≥ 1 for all x ∈ A.
(ii) The function α is said to be a triangular function on A, if α(x, y) ≥ 1 and α(y, z) ≥ 1 implies that α(x, z) ≥ 1 for

all x, y, z ∈ A.
(iii) (X, dq) is α-regular on A if for any sequence {xn} in A such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → u ∈ A

as n→∞ we have α(xn,u) ≥ 1 for all n ≥ 0

It is clear that if T is an α-dominated mapping on X then T is α-dominated on each subset of X, but T
can be α-dominated on some A ⊆ X, without being α-dominated mapping on X.

Next, we prove the main result of this paper.



M. Arshad et al. / Filomat 31:11 (2017), 3041–3056 3044

Theorem 3.2. Let (X, dq) be a left K-sequentially complete dislocated quasi metric space and T,S : X → X be two
mappings. Let x0 ∈ X, r > 0 and there exists a function α : X × X → [0,+∞) such that S and T are α-
dominated mappings on Bdq (x0, r). Suppose that x0 ∈ Bdq (x0, r) and there exist nonnegative real numbers k, t such
that k + 2t ∈ (0, 1) and the following condition holds: if α(x, y) ≥ 1 or α(y, x) ≥ 1 and x, y ∈ Bdq (x0, r), then

dq(Sx,Ty) ≤ kdq(x, y) + t[dq(x,Sx) + dq(y,Ty)], (2)
dq(Tx,Sy) ≤ kdq(x, y) + t[dq(x,Tx) + dq(y,Sy)] (3)

and

dq(x0,Sx0) ≤ (1 − λ)r, (4)

where λ = k+t
1−t . Suppose that (X, dq) is α-regular on Bdq (x0, r). Then there exists a common fixed point x∗ ∈ Bdq (x0, r)

of S and T. Moreover, dq(x∗, x∗) = 0.

Proof. For the given x0 ∈ X, define x1 = Sx0 and x2 = Tx1. Continuing this process, we construct a sequence
{xn} of points in X, such that

x2i+1 = Sx2i and x2i+2 = Tx2i+1, where i = 0, 1, 2, . . . .

By mathematical induction, we shall show that xn+1 ∈ Bdq (x0, r), α(xn, xn+1) ≥ 1 and

dq(xn, xn+1) ≤ λndq(x0, x1), for all n ∈N.
(Pn)

Using the inequality (4) and the fact that 0 < λ = k+t
1−t < 1, we have

dq(x0, x1) = dq(x0,Sx0) ≤ (1 − λ)r ≤ r.

This implies that x1 ∈ Bdq (x0, r). Since S is an α-dominated mapping on Bdq (x0, r), we have α(x0,Sx0) =
α(x0, x1) ≥ 1. Therefore, using inequality (2) we obtain

dq(x1, x2) = dq(Sx0,Tx1)
≤ kdq(x0, x1) + t[dq(x0,Sx0) + dq(x1,Tx1)]
= kdq(x0, x1) + t[dq(x0, x1) + dq(x1, x2)]

which implies that

dq(x1, x2) ≤
k + t
1 − t

dq(x0, x1) = λdq(x0, x1). (5)

Using inequality(5) we obtain

dq(x0, x2) ≤ dq(x0, x1) + dq(x1, x2) ≤ dq(x0, x1) + λdq(x0, x1)

= (1 + λ)dq(x0, x1) ≤ (1 + λ)(1 − λ)r = (1 − λ2)r ≤ r.

Therefore, x2 ∈ Bdq (x0, r). Again, since T is an α-dominated mapping on Bdq (x0, r), we have α(x1,Tx1) =
α(x1, x2) ≥ 1. Therefore, (P1) holds. Now, using inequality (3) we obtain

dq(x2, x3) = dq(Tx1,Sx2)
≤ kdq(x1, x2) + t[dq(x1,Tx1) + dq(x2,Sx2)]
= kdq(x1, x2) + t[dq(x1, x2) + dq(x2, x3)].
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Using (5) in the above inequality we obtain

dq(x2, x3) ≤
k + t
1 − t

dq(x1, x2) = λdq(x1, x2) ≤ λ2dq(x0, x1). (6)

Again, it follows from (5) and (6) that

dq(x0, x3) ≤ dq(x0, x1) + dq(x1, x2) + dq(x2, x3)

≤ dq(x0, x1) + λdq(x0, x1) + λ2dq(x0, x1)

= (1 + λ + λ2)dq(x0, x1) =
1 − λ3

1 − λ
dq(x0, x1)

≤
1 − λ3

1 − λ
(1 − λ)r = (1 − λ3)r ≤ r.

Therefore, x3 ∈ Bdq (x0, r). Again, since S is α-dominated mapping on Bdq (x0, r), we have α(x2,Sx2) =
α(x2, x3) ≥ 1. Therefore, (P2) holds. Suppose, (P1), (P2), . . . , (P j) be the inductive hypothesis. We shall
show that (P j+1) holds. For this, we consider two possible cases. First, suppose that j is even. Then, since
α(x j, x j+1) ≥ 1 and using inequality (2) we obtain

dq(x j+1, x j+2) = dq(Sx j,Tx j+1)

≤ kdq(x j, x j+1) + t
[
dq(x j,Sx j) + dq(x j+1,Tx j+1)

]
= kdq(x j, x j+1) + t

[
dq(x j, x j+1) + dq(x j+1, x j+2)

]
.

Since (P j) holds, we obtain from the above inequality that

dq(x j+1, x j+2) ≤
k + t
1 − t

dq(x j, x j+1) = λdq(x j, x j+1) ≤ λ j+1dq(x0, x1).

Therefore, we have

dq(x0, x j+2) ≤ dq(x0, x1) + dq(x1, x2) + · · · + dq(x j+1, x j+2)

≤ (1 + λ + · · · + λ j+2)dq(x0, x1)

≤
1 − λ j+2

1 − λ
(1 − λ)r ≤

(
1 − λ j+2

)
r ≤ r.

This implies that x j+2 ∈ Bdq (x0, r). Since S is an α-dominated mapping on Bdq (x0, r), we have α(x j+1,Sx j+1) =
α(x j+1, x j+2) ≥ 1. Therefore, (P j+1) holds.

Similarly, one can see that if j is odd, then (P j+1) holds, which completes the inductive proof. Thus, we
can write

dq(xn, xn+1) ≤ λndq(x0, x1) for all n ∈N. (7)

Next, we shall show that the sequence {xn} is a left K-Cauchy sequence. Indeed, for n,m ∈ N with m > n
using (7) we have

dq(xn, xm) ≤ dq(xn, xn+1) + dq(xn+1, xn+2) + · · · + dq(xm−1, xm)

≤ λndq(x0, x1) + λn+1dq(x0, x1) + · · · + λm−1dq(x0, x1).

This implies that

dq(xn, xm) ≤
λn

1 − λ
dq(x0, x1) for all n,m ∈N,m > n. (8)
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Since 0 < λ = k+t
1−t < 1, for every ε > 0 we can choose n0 ∈ N such that λn <

1 − λ
dq(x0, x1)

ε for all n > n0.

Therefore, it follows from the inequality (8) that

dq(xn, xm) < ε for all m > n > n0.

Hence, the sequence {xn} is a left K-Cauchy sequence in X. By left K-sequential completeness of X, there
exists x∗ ∈ X such that

lim
n→∞

dq(xn, x∗) = lim
n→∞

dq(x∗, xn) = 0. (9)

We shall show that x∗ is a common fixed point of the mappings S and T.
By Remark 2.5 we have x∗ ∈ Bdq (x0, r). Now, by the assumption we have α(xn, x∗) ≥ 1 for all n ∈ N,

therefore for any n ∈Nwe have

dq(x∗,Sx∗) ≤ dq(x∗, x2n+2) + dq(x2n+2,Sx∗)
≤ dq(x∗, x2n+2) + dq(Tx2n+1,Sx∗)
≤ dq(x∗, x2n+2) + kdq(x2n+1, x∗) + t[dq(x2n+1,Tx2n+1) + dq(x∗,Sx∗)]
= dq(x∗, x2n+2) + kdq(x2n+1, x∗) + t[dq(x2n+1, x2n+2) + dq(x∗,Sx∗)].

Using the inequalities (8) and (9) in the above inequality, we obtain

dq(x∗,Sx∗) ≤ t dq(x∗,Sx∗)

and since 0 < t < 1, the above inequality implies that dq(x∗,Sx∗) = 0. Similarly, one can show that
dq(Sx∗, x∗) = 0. Therefore, dq(x∗,Sx∗) = dq(Sx∗, x∗) = 0, i.e., x∗ = Sx∗. Similarly, one can show that x∗ = Tx∗.

Thus, S and T have a common fixed point x∗ in B(x0, r). As S is an α-dominated mapping on Bdq (x0, r)
we have α(x∗,Sx∗) = α(x∗, x∗) ≥ 1. Therefore,

dq(x∗, x∗) = dq(Sx∗,Tx∗)
≤ kdq(x∗, x∗) + t[dq(x∗,Sx∗) + dq(x∗,Tx∗)]
= (k + 2t)dq(x∗, x∗).

Since k + 2t ∈ (0, 1), we must have dq(x∗, x∗) = 0 and the proof is complete.

Example 3.3. Let X = Q+
∪{0} and let dq : X2

×X2
→ X be defined by dq((x1, y1), (x2, y2)) = x1 + 2y1 +

x2

2
+ y2.

Then it is easy to show that (X2, dq) is a left K-sequentially complete dislocated quasi metric space. If
(x0, y0) = (2, 1), r = 20, then

Bdq ((2, 1), 20) = {(x, y) ∈ X : x + 2y ≤ 32}.

In particular, (2, 1) ∈ Bdq ((2, 1), 20).
Let S,T : X2

→ X2 be defined by

S(x, y) =


(x

5
,

y
5

)
, if x + 2y ≤ 32;

(4x2, 5y + 2), if x + 2y > 32
and T(x, y) =


(x

3
,

y
6

)
, if x + 2y ≤ 32;

(3x2 + 1, y), if x + 2y > 32.

Also, define α : X2
× X2

→ [0,+∞) by

α((x1, y1), (x2, y2)) =

1, if
x1

2
+ y1 + x2 + y2 ≤ 32;

0, if
x1

2
+ 2y1 + x2 + y2 > 32.
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Clearly, S and T are α-dominated mappings on Bdq ((2, 1), 20). Let k = 1
6 , t = 1

3 ; then λ = k+t
1−t = 3

4 ∈ [0, 1), and

(1 − λ)r = (1 −
3
4

)20 = 5,

dq((x0, y0),S(x0, y0)) = dq((2, 1),S(2, 1)) =
22
5
< 5 = (1 − λ)r.

Observe that, for (33, 0) < Bdq ((2, 1), 20), we have

dq(S(33, 0),T(33, 0)) = dq((4356, 2), (3268, 0)) = 5994

and dq((33, 0), (33, 0)) = 99
2 and dq((33, 0),S(33, 0)) + dq((33, 0),T(33, 0)) = 3880. Therefore, there are no k, t

such that k + 2t ∈ (0, 1) and the inequality (2) is satisfied. So the contractive condition does not hold on X2.
On the other hand, if (x1, y1), (x2, y2) ∈ Bdq ((2, 1), 20), then

dq(S(x1, y1),T(x2, y2)) = dq

((x1

5
,

y1

5

)
,
(x2

3
,

y2

6

))
=

x1

5
+

2y1

5
+

x2

6
+

y2

6

<
1
6

dq((x1, y1), (x2, y2)) +
1
3

[
dq((x1, y1),S(x1, y1)) + dq((x2, y2),T(x2, y2))

]
.

Also,

dq(T(x1, y1),S(x2, y2)) = dq

((x1

3
,

y1

6

)
,
(x2

5
,

y2

5

))
=

x1

3
+

y1

3
+

x2

10
+

y2

5

<
1
6

dq((x1, y1), (x2, y2)) +
1
3

[
dq((x1, y1),T(x1, y1)) + dq((x2, y2),S(x2, y2))

]
.

Therefore, all the conditions of Theorem 3.2 are satisfied. Moreover, (0, 0) is the common fixed point of S
and T.

If we take T = S in Theorem 3.2, we obtain the following result.

Corollary 3.4. Let (X, dq) be a left K-sequentially complete dislocated quasi metric space and S : X→ X be a mapping.
Let x0 ∈ X, r > 0 and there exists a function α : X × X → [0,+∞) such that S is an α-dominated mapping on
Bdq (x0, r). Suppose that x0 ∈ B(x0, r) and there exist nonnegative real numbers k, t such that k + 2t ∈ (0, 1) and the
following condition holds: if α(x, y) ≥ 1 or α(y, x) ≥ 1 and x, y ∈ Bdq (x0, r), then

dq(Sx,Sy) ≤ kdq(x, y) + t[dq(x,Sx) + dq(y,Sy)],

and

dq(x0,Sx0) ≤ (1 − λ)r,

where λ = k+t
1−t . If (X, dq) is α-regular on Bdq (x0, r), then there exists a point x∗ in Bdq (x0, r) such that x∗ = Sx∗ and

dq(x∗, x∗) = 0.

Corollary 3.5. Let (X, d) be a complete dislocated metric space and S,T : X→ X be two mappings. Let x0 ∈ X, r > 0
and there exists a function α : X × X→ [0,+∞) such that S and T are α-dominated mappings on Bd(x0, r). Suppose
that x0 ∈ Bd(x0, r) and there exist nonnegative real numbers k, t such that k + 2t ∈ (0, 1) and the following condition
holds: if α(x, y) ≥ 1 or α(y, x) ≥ 1 and x, y ∈ Bdq (x0, r), then

d(Sx,Ty) ≤ kd(x, y) + t[d(x,Sx) + d(y,Ty)]
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and

d(x0,Sx0) ≤ (1 − λ)r,

where λ = k+t
1−t . If (x, d) is α-regular on Bd(x0, r), then there exists a common fixed point x∗ of S and T. Moreover,

d(x∗, x∗) = 0.

In the next theorem, we give a sufficient condition for the uniqueness of common fixed point.

Theorem 3.6. Suppose that all the conditions of Theorem 3.2 are satisfied. In addition suppose that:

(i) The function α is a triangular function on Bdq (x0, r).

(ii) For x, y ∈ Bdq (x0, r) there exists z0 ∈ Bdq (x0, r) such that α(x, z0) ≥ 1, α(y, z0) ≥ 1.

(iii) For all z ∈ Bdq (x0, r) such that α(Sx0, z) ≥ 1 the following condition holds

dq(x0,Sx0) + dq(z,Tz) ≤ dq(x0, z) + dq(Sx0,Tz).

Then S and T have a unique common fixed point x∗ in Bdq (x0, r) and dq(x∗, x∗) = 0.

Proof. Define the sequence {xn} as in the proof Theorem 3.2. Then, {xn}, dq-converges to a common fixed
point x∗ ∈ Bdq (x0, r) of the mappings S and T such that α(xn, x∗) ≥ 1 for all n ≥ 0, (Pn) holds and dq(x∗, x∗) = 0.
In order to prove uniqueness of x∗, suppose that y is another point in Bdq (x0, r) such that y = Sy = Ty. Since
S is an α-dominated mapping on Bdq (x0, r), we have α(y,Sy) = α(y, y) ≥ 1. Therefore,

dq(y, y) = dq(Sy,Ty)
≤ kdq(y, y) + t[dq(y,Ty) + dq(y,Sy)]
= (k + 2t)dq(y, y).

Since k + 2t ∈ (0, 1), the above inequality implies that dq(y, y) = 0.
By assumption, there exists a point z0 ∈ Bdq (x0, r) such that α(x∗, z0) ≥ 1 and α(y, z0) ≥ 1. Define a

sequence {zn} in X such that,

z2i+1 = Tz2i, and z2i+2 = Sz2i+1 for all i ≥ 0.

Using mathematical induction, we shall show that
α(zn, zn+1) ≥ 1, α(xn, zn) ≥ 1 for all n ∈N;

dq(zn, zn+1) ≤ λndq(z0, z1) for all n ∈N;

dq(xn, zn) ≤ λnr, zn ∈ Bdq (x0, r) for all n ∈N.

(P′n)

Since T is an α-dominated mapping on Bdq (x0, r) we have α(z0,Tz0) = α(z0, z1) ≥ 1. Since α is a triangular
function on Bdq (x0, r) and α(xn, x∗) ≥ 1, α(x∗, z0) ≥ 1 we have α(xn, z0) ≥ 1 for all n ≥ 0. Therefore, using (iii)
we obtain

dq(x1, z1) = dq(Sx0,Tz0) ≤ kdq(x0, z0) + t[dq(x0,Sx0) + dq(z0,Tz0)]
≤ kdq(x0, z0) + t[dq(x0, z0) + dq(Sx0,Tz0)]
≤ kdq(x0, z0) + t[dq(x0, z0) + dq(x1, z1)]
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which implies that

dq(x1, z1) ≤
k + t
1 − t

dq(x0, z0) = λdq(x0, z0) ≤ λr. (10)

Since z0 ∈ Bdq (x0, r), using (10) we obtain

dq(x0, z1) ≤ dq(x0, x1) + dq(x1, z1)
≤ (1 − λ)r + λdq(x0, z0)
≤ (1 − λ)r + λr ≤ r.

This implies that z1 ∈ Bdq (x0, r). Now since α(z0, z1) ≥ 1, by use of (3) one can show that

dq(z1, z2) ≤
k + t
1 − t

dq(z0, z1) = λdq(z0, z1).

Again, since S is an α-dominated mapping on Bdq (x0, r) we have α(z1,Sz1) = α(z1, z2) ≥ 1. As, α is a triangular
function on Bdq (x0, r) and α(x1, z0) ≥ 1, α(z0, z1) ≥ 1, we have α(x1, z1) ≥ 1. Therefore (P′1) holds.

Since α(z1, z2) ≥ 1, by use of (2) we have

dq(z2, z3) ≤
k + t
1 − t

dq(z1, z2) = λdq(z1, z2) ≤ λ2dq(z0, z1).

Again, since α(x1, z1) ≥ 1, we obtain by (3) that

dq(x2, z2) = dq(Tx1,Sz1) ≤ kdq(x1, z1) + t[dq(x1,Tx1) + dq(z1,Sz1)]
≤ kdq(x1, z1) + tλ[dq(x0,Sx0) + dq(z0,Tz0)]

which gives with (iii)

dq(x2, z2) ≤ kdq(x1, z1) + tλ[dq(x0, z0) + dq(Sx0,Tz0)]
≤ (k + tλ)d(x1, z1) + tλr.

Using (10) and the fact that z0 ∈ Bdq (x0, r) in the above inequality we obtain

dq(x2, z2) ≤ (k + tλ)λr + tλr = (k + tλ + t)λr = λ2r.

Therefore,

dq(x0, z2) ≤ dq(x0, x1) + dq(x1, x2) + dq(x2, z2)

≤ dq(x0, x1) + λdq(x0, x1) + λ2
≤ r.

Thus, z2 ∈ Bdq (x0, r). Again, since T is anα-dominated mapping on Bdq (x0, r) we haveα(z2,Tz2) = α(z2, z3) ≥ 1.
Also, since α(x2, z0) ≥ 1, α(z0, z1) ≥ 1 and α(z1, z2) ≥ 1, by triangular nature of α, we have α(x2, z2) ≥ 1.
Therefore, (P′2) holds.

Suppose, (P′1), (P′2), . . . , (P′j) is the inductive hypothesis. We shall show that (P′j+1) holds. For this, we
consider two possible cases. First, suppose that, j is even. Then, since α(z j, z j+1) ≥ 1, by (3) one can show
that

dq(z j+1, z j+2) ≤
k + t
1 − t

dq(z j, z j+1) ≤ λ j+1dq(z0, z1).

Since α(x j, z j) ≥ 1 we obtain by (2) that

dq(x j+1, z j+1) = dq(Sx j,Tz j) ≤ kdq(x j, z j) + t[dq(x j,Sx j) + dq(z j,Tz j)]

≤ kdq(x j, z j) + tλ j[dq(x0,Sx0) + dq(z0,Tz0)]



M. Arshad et al. / Filomat 31:11 (2017), 3041–3056 3050

which gives with (iii) and (P′j)

dq(x j+1, z j+1) ≤ kdq(x j, z j) + tλ j[dq(x0, z0) + dq(Sx0,Tz0)]

≤ kλ jr + tλ j[r + λr]

= (k + t + λt)λ jr = λ j+1r.

Therefore,

dq(x0, z j+1) ≤ dq(x0, x1) + dq(x1, x2) + · · · + dq(x j, x j+1) + dq(x j+1, z j+1)

≤ dq(x0, x1) + λdq(x0, x1) + · · · + λ jdq(x0, x1) + λ j+1r

≤ (1 − λ)r + λ(1 − λ)r + · · · + λ j(1 − λ)r + λ j+1r = r.

Thus, z j+1 ∈ Bdq (x0, r). Again, since S is an α-dominated mapping on Bdq (x0, r) we have α(z j+1,Sz j+1) =
α(z j+1, z j+2) ≥ 1. Also, since α(x j+1, z0) ≥ 1, α(zn, zn+1) ≥ 1, n = 0, 1, . . . , j + 1, by triangular nature of α, we
have α(x j+1, z j+1) ≥ 1. Therefore, (P′j+1) holds.

Similarly, one can see that if j is odd, then (P′j+1) holds, which completes the inductive proof.
Now, since α(x∗, z0) ≥ 1 and α(z0, zn+1) for all n ≥ 0, by by triangular nature of α, we have α(x∗, zn) ≥ 1

for all n ≥ 0. Therefore, for any n ∈Nwe have

dq(x∗, z2n) = dq(Tx∗,Sz2n−1)
≤ kdq(x∗, z2n−1) + t[dq(x∗,Tx∗) + dq(z2n−1,Sz2n−1)]
= kdq(Sx∗,Tz2n−2) + tdq(z2n−1, z2n) (since dq(x∗,Tx∗) = 0)

≤ k2dq(x∗, z2n−2) + ktdq(z2n−2, z2n−1) + tdq(z2n−1, z2n)
...

≤ k2ndq(x∗, z0) + k2n−1tdq(z0, z1) + · · · + ktdq(z2n−2, z2n−1) + tdq(z2n−1, z2n).

Since
k
λ

=
k(1 − t)

k + t
< 1, using (P′n) in the above inequality we obtain

dq(x∗, z2n) ≤ k2ndq(x∗, z0) + k2n−1tdq(z0, z1) + · · · + ktλ2n−2dq(z0, z1) + tλ2n−1dq(z0, z1)

= k2ndq(x∗, z0) + tdq(z0, z1)λ2n−1
[
1 +

k
λ

+ · · · +

(
k
λ

)2n−1]
≤ k2ndq(x∗, z0) +

tdq(z0, z1)λ2n−1

1 − k
λ

.

Since λ, k ∈ [0, 1), it follows from the above inequality that

lim
n→∞

dq(x∗, z2n) = 0. (11)

Similarly, we can show that

lim
n→∞

dq(z2n, x∗) = lim
n→∞

dq(z2n, y) = lim
n→∞

dq(y, z2n) = 0. (12)

Using (11) and (12) we obtain

dq(x∗, y) ≤ dq(x∗, z2n) + dq(z2n, y)→ 0 as n→∞,
dq(y, x∗) ≤ dq(y, z2n) + dq(z2n, x∗)→ 0 as n→∞.

Thus, dq(x∗, y) = dq(y, x∗) = 0, i.e., x∗ = y and the uniqueness follows.
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Corollary 3.7. Let (X, dq) be a left K-sequentially complete dislocated quasi metric space and T,S : X → X be two
mappings. Let x0 ∈ X, r > 0, x0 ∈ Bdq (x0, r) and there exist nonnegative real numbers k, t such that k + 2t ∈ (0, 1)
and the following conditions hold:

dq(Sx,Ty) ≤ kdq(x, y) + t[dq(x,Sx) + dq(y,Ty)],
dq(Tx,Sy) ≤ kdq(x, y) + t[dq(x,Tx) + dq(y,Sy)],

for all x, y ∈ Bdq (x0, r) and

dq(x0,Sx0) ≤ (1 − λ)r,

where λ = k+t
1−t . Then there exists a unique point x∗ in Bdq (x0, r) such that x∗ = Sx∗ = Tx∗ and dq(x∗, x∗) = 0. Moreover,

S and T have no fixed point in Bdq (x0, r) other than x∗.

Proof. The proof follows by the previous results, taking α : X×X→ [0,∞) with α(x, y) = 1 for all x, y ∈ X.

In Theorem 3.2, the condition (4) is imposed in order to restrict the contractive conditions (2) and (3) to
Bdq (x0, r). However, the condition (4) can be relaxed by imposing the conditions (2) and (3) to all elements
x, y ∈ X such that α(x, y) ≥ 1 or α(y, x) ≥ 1, as stated in the next theorem.

Theorem 3.8. Let (X, dq) be a left K-sequentially complete dislocated quasi metric space. Suppose, there exist a
function α : X × X → [0,+∞) and nonnegative constants k, t such that k + 2t ∈ (0, 1) and the following conditions
hold:

dq(Sx,Ty) ≤ kdq(x, y) + t[dq(x,Sx) + dq(y,Ty)],
dq(Tx,Sy) ≤ kdq(x, y) + t[dq(x,Tx) + dq(y,Sy)],

for all x, y ∈ X such that α(x, y) ≥ 1 or α(y, x) ≥ 1. If (X, dq) is α-regular, then there exists a point x∗ in X such that
x∗ = Sx∗ = Tx∗ and dq(x∗, x∗) = 0.

The presented results can be used for obtaining (unique) common fixed point theorems for three or four
mappings. We state here just a unique common fixed point result for four mappings in left K-sequentially
complete dislocated quasi metric space in a closed ball. It can be proved by using the technique given in
[15].

Theorem 3.9. Let
(
X, dq

)
be a dislocated quasi metric space and S,T, f , 1 : X → X be four mappings satisfying

SX,TX ⊂ f X = 1X. Let x0 ∈ X, r > 0, f x0 ∈ Bdq ( f x0, r) ⊆ f X and there exist nonnegative real numbers k, t such
that k + 2t ∈ [0, 1) and the following conditions hold:

dq
(
Sx,Ty

)
≤ kdq( f x, 1y) + t[dq( f x,Sx) + dq(1y,Ty)],

dq
(
Tx,Sy

)
≤ kdq(1x, f y) + t[dq( f x,Tx) + dq(1y,Sy)]

for all f x, f y ∈ Bdq ( f x0, r) and

dq( f x0,Sx0) ≤ (1 − λ)r,

where λ = k+t
1−t . If f X is left K-sequentially complete subspace of X and (S, f ) and T, 1 are weakly compatible, then S,

T, f and 1 have a unique common fixed point f z in Bdq ( f x0, r). Also dq( f z, f z) = 0.

The study of existence of fixed points in partially ordered sets has been initiated by Ran and Reurings
[31]. Agarwal et al. [3], Ćirić et al. [12] and several other researchers presented new results for nonlinear
contractions in partially ordered metric spaces and noted that their theorems can be used to investigate a
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large class of problems (see also [22] and the survey paper [21]). The authors of [2, 8, 28–30] and several
other papers gave some fixed point theorems in ordered dislocated metric spaces.

In several cases, fixed point results in spaces equipped with partial order can be obtained as special
cases of results using α-compatible and α-dominated mappings.

Recall that, if (X,�) is a pre-ordered set and T : X → X is such that Tx � x for all x ∈ A ⊆ X, then the
mapping T is said to be dominated on A. Define the set ∇ by

∇ = {(x, y) ∈ X × X : x � y or y � x}.

From the previous theorems, as a sample, we derive the following result in pre-ordered left K-sequentially
complete dislocated quasi metric space.

Theorem 3.10. Let (X,�, dq) be a pre-ordered left K-sequentially complete dislocated quasi metric space, x0 ∈ X,
r > 0 and S,T : X→ X be two dominated mappings on Bdq (x0, r). Suppose that there exist nonnegative real numbers
k, t such that k + 2t ∈ (0, 1) and the following conditions hold:

dq(Sx,Ty) ≤ kdq(x, y) + t[dq(x,Sx) + dq(y,Ty)],
dq(Tx,Sy) ≤ kdq(x, y) + t[dq(x,Tx) + dq(y,Sy)]

for all (x, y) ∈ (Bdq (x0, r) × Bdq (x0, r)) ∩ ∇ and

dq(x0,Sx0) ≤ (1 − λ)r,

where λ = k+t
1−t . If for any sequence {xn} in Bdq (x0, r) such that (xn, xn+1) ∈ ∇, xn → u as n → ∞ implies that

(u, xn) ∈ ∇ for all n ≥ 0, then there exists a point x∗ in Bdq (x0, r) such that x∗ = Sx∗ = Tx∗ and dq(x∗, x∗) = 0. In
addition, suppose that:

(i) (x, y), (y, z) ∈ ∇ implies (x, z) ∈ ∇.

(ii) For x, y ∈ Bdq (x0, r) there exists z0 ∈ Bdq (x0, r) such that (x, z0), (y, z0) ∈ ∇.

(iii) For all z ∈ Bdq (x0, r) such that (z,Sx0) ∈ ∇ the following condition holds

dq(x0,Sx0) + dq(z,Tz) ≤ dq(x0, z) + dq(Sx0,Tz).

Then, x∗ is the unique common fixed point of S and T in Bdq (x0, r).

Proof. This follows from Theorem 3.6 taking α : X × X→ [0,+∞) defined as

α(x, y) =

1, if (x, y) ∈ ∇;
0. otherwise,

A corollary similar to Corollary 3.7 can be formulated.
Now we present a common fixed point result using contractive conditions that involve auxiliary function

ψ ∈ Ψ (see Preliminaries).

Theorem 3.11. Let (X, dq) be a left K-sequentially complete dislocated quasi metric space and S,T : X → X be two
mappings. Let x0 ∈ X, r > 0 and there exists a function α : X × X → [0,∞) such that S and T are α-dominated
mappings on Bdq (x0, r). Suppose that x0 ∈ Bdq (x0, r) and there exists ψ ∈ Ψ such that the following condition hold: if
α(x, y) ≥ 1 or α(y, x) ≥ 1 and x, y ∈ Bdq (x0, r), then

max{dq(Sx,Ty), dq(Tx,Sy)} ≤ ψ(dq(x, y)) (13)
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and

j∑
i=0

ψi(dq(x0,Sx0)) ≤ r, for all j ≥ 0. (14)

If (X, dq) is α-regular, then there exists a common fixed point x∗ of S and T and dq(x∗, x∗) = 0.
If, in addition, for any two common fixed points x∗, y∗ of S and T in Bdq (x0, r) we have α(x∗, y∗) ≥ 1, then S and T

have a unique common fixed point in Bdq (x0, r).

Proof. For the given x0 ∈ X, define a sequence {xn} of points in X such that,

x2i+1 = Sx2i, and x2i+2 = Tx2i+1, where i = 0, 1, 2, . . . .

By mathematical induction, we shall show that{
xn ∈ Bdq (x0, r) for all n ∈N

dq(xn, xn+1) ≤ ψn(dq(x0, x1)) for all n ∈N.
(P′′n )

By (14), we have

j∑
i=0

ψi(dq(x0,Sx0)) ≤ r for all j ∈N ∪ {0}.

In particular, for j = 0, we obtain x1 ∈ Bdq (x0, r). Since S is an α-dominated mapping on Bdq (x0, r) and
x0 ∈ Bdq (x0, r) we have α(x0, x1) = α(x0,Sx0) ≥ 1. Now,

dq(x1, x2) = dq(Sx0,Tx1) ≤ max{dq(Sx0,Tx1), dq(Tx0,Sx1)}.

The above inequality with (13) gives

dq(x1, x2) ≤ ψ(dq(x0, x1)).

Therefore, (P′′1 ) holds. Suppose that (P′′1 ), (P′′2 ), . . . , (P′′j ) is the inductive hypothesis. We shall show that
(P′′j+1) holds.

Suppose that j is even. Then using (14) and the induction hypothesis we obtain

dq(x0, x j+1) ≤ dq(x0, x1) + dq(x1, x2) + · · · + dq(x j, x j+1)

≤ dq(x0, x1) + ψ(dq(x0, x1)) + · · · + ψ j(dq(x0, x1))

=

j∑
i=0

ψi(dq(x0, x1)) ≤ r.

Therefore, x j+1 ∈ Bdq (x0, r). Again, since T is an α-dominated mapping on Bdq (x0, r) and x j ∈ Bdq (x0, r) we
have α(x j, x j+1) = α(x j,Tx j+1) ≥ 1. Now,

dq(x j+1, x j+2) = dq(Sx j,Tx j+1) ≤ max{dq(Sx j,Tx j+1), dq(Tx j,Sx j+1)}.

The above inequality with (13) and (P′′j ) gives

dq(x j+1, x j+2) ≤ ψ(dq(x j, x j+1)) ≤ ψ j+1(dq(x0, x1)).

Therefore, (P′′j+1) holds. Similarly, one can see that (P j+1”) holds if j is odd, which completes the inductive
proof. Now, we are going to show that the sequence {xn} is a left K-Cauchy sequence.
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Let ε > 0 be given. Since
∑
∞

n=1 ψ
n(t) < ∞ for all t ≥ 0, let n(ε) ∈ N be such that

∑
k≥n(ε) ψ

k(dq(x0, x1)) < ε.
Then, for n,m ∈Nwith m > n > n(ε) we obtain,

dq(xn, xm) ≤
m−1∑
k=n

dq(xk, xk+1) ≤
m−1∑
k=n

ψk(dq(x0, x1))

≤

∑
n≥n(ε)

ψk(dq(x0, x1)) < ε.

Therefore, the sequence {xn} is a left K-Cauchy sequence in X. By the left K-sequential completeness of X,
there exists x∗ ∈ X such that

lim
n→∞

dq(xn, x∗) = lim
n→∞

dq(x∗, xn) = 0. (15)

We shall show that x∗ is a common fixed point of the mappings S and T.
By Remark 2.5 we have x∗ ∈ Bdq (x0, r). Now, by assumption we have α(xn, x∗) ≥ 1 for all n ∈ N, and

therefore for any n ∈Nwe have

dq(x∗,Sx∗) ≤ dq(x∗, x2n+2) + dq(x2n+2,Sx∗)
= dq(x∗, x2n+2) + dq(Tx2n+1,Sx∗)
≤ dq(x∗, x2n+2) + max{dq(Sx2n+1,Tx∗), dq(Tx2n+1,Sx∗)}
≤ dq(x∗, x2n+2) + ψ(dq(x2n+1, x∗))
≤ dq(x∗, x2n+2) + dq(x2n+1, x∗).

Using (15) in the above inequality we obtain dq(x∗,Sx∗) = 0. Similarly, one can show that dq(Sx∗, x∗) = 0.
Therefore, dq(x∗,Sx∗) = dq(Sx∗, x∗) = 0, i.e., x∗ = Sx∗. Similarly, one can show that x∗ = Tx∗. Thus, S and T
have a common fixed point x∗ in Bdq (x0, r).

The final assertions of this theorem can be proved in the same way as for Theorems 3.2 and 3.6, so the
details are omitted.

Example 3.12. Let X = Q+ be the set of all nonnegative rational numbers and let dq : X ×X→ X be defined
by:

dq(x, y) = 2x + y for all x, y ∈ X.

Then, (X, dq) is a left K-sequentially complete dislocated quasi metric space. Let S,T : X→ X be defined by

Sx =


x
4
, if x ∈ [0, 2] ∩Q+;

3x, if x ∈ (2,∞) ∩Q+,
Tx =


2x
7
, if x ∈ [0, 2] ∩Q+;

4x, if x ∈ (2,∞) ∩Q+.

Take x0 = 1 and r = 4. Then Bdq (x0, r) = [0, 2] ∩Q+ and x0 ∈ Bdq (x0, r). Define a function α : X × X→ X by

α(x, y) = |2x − y + 3| for all x, y ∈ X.

Clearly, S and T are α-dominated mappings on Bdq (x0, r). Let ψ ∈ Ψ be given by ψ(t) = t
3 . Now,

dq(x0,Sx0) = dq(1,S1) = dq

(
1,

1
4

)
=

9
4
.

n∑
i=0

ψi(dq(x0,Sx0)) =
9
4

n∑
i=0

1
3n <

9
4
·

3
2
< 4.
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First, notice that, although α(3, 3) = 6 > 1, but the contractive condition (13) does not hold for x = y = 3.
Indeed, if the contractive condition (13) hold for x = y = 3, then we would have

max{dq(S3,T3), dq(T3,S3)} ≤ ψ(dq(3, 3))

it implies that 33 ≤ ψ(9). Since ψ ∈ Ψ, we have 33 ≤ ψ(9) < 9. This contradiction shows that the contractive
condition (13) does not hold on X.

On the other hand, if x, y ∈ Bdq (x0, r) then we consider the following two cases:
Case 1. If max{dq(Sx,Ty), dq(Tx,Sy)} = dq(Sx,Ty), then

dq(Sx,Ty) = dq

(
x
4
,

2y
7

)
= 2 ·

x
4

+
2y
7
≤ 2 ·

x
3

+
y
3

= ψ(dq(x, y)).

Case 2. If max{dq(Sx,Ty), dq(Tx,Sy)} = dq(Tx,Sy), then

dq(Tx,Sy) = dq

(2x
7
,

y
4

)
= 2 ·

2x
7

+
y
4
≤ 2 ·

x
3

+
y
3

= ψ(dq(x, y)).

Thus, the contractive condition (13) holds on Bdq (x0, r). Therefore, all the conditions of Theorem 3.11 are
satisfied and S and T have a common fixed point (which is x∗ = 0).

Taking T = S in Theorem 3.11 we obtain a corollary, similar as Corollary 3.4 of Theorem 3.2.
Taking

α(x, y) =

1, if (x, y) ∈ ∇;
0. otherwise,

we obtain a corollary, similarly as Theorem 3.10 is derived from Theorem 3.2.
We omit the details.
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[44] L. Zhu, C. Zhu, C. Chen and Z. Stojanović, Multidimensional fixed points for generalized Ψ-quasi-contractions in quasi-metric-

like spaces, J. Inequ. Appl., 2014, 2014:27.


