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Abstract. In this paper, we mainly consider Schwarz lemma for holomorphic functions and contraction
properties of holomorphic functions with respect to Kobayashi distances. We also review some results
related to the subject using some novelty and announce a few new results.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

The Schwarz lemma is one of the most influential results in complex analysis and it has a great impact
to the development of several research fields, such as geometric function theory, hyperbolic geometry,
complex dynamical systems, and theory of quasi-conformal mappings. There is a numerous literature
related to the subject Schwarz lemma (see for example L. Ahlfors [1],Yau [25] ,Royden [23],H. Boas [3],
R. Osserman [22] and the literature cited there) and we apology if we did not mention some important
papers. For the Carathéodory and Kobayashi metrics see for example S. Kobayashi[10, 11] and S.G. Krantz
[12, 14]. In this paper we mainly consider Schwarz lemma for holomorphic functions and contraction
properties of holomorphic functions with respect to Kobayashi distances including complex Banach spaces
and hyperbolic Riemann surfaces.

2. Schwarz Lemma in the Unit Ball

If f is a function on a set X and x ∈ X sometimes we write f x instead of f (x). We write z = (z1, z2, ..., zn) ∈
Cn.

On Cn we define the standard Hermitian inner product by
< z,w >=

∑n
k=1 zkwk for z,w ∈ Cn and by |z| =

√
< z, z > we denote the norm of vector z. We also use

notation (z,w) instead of < z,w > on some places. By Bn we denote the unit ball in Cn. In particular we use
also notationU andD for the unit disk in complex plane.

For planar domains G and D we denote by Hol(G,D) the class of all holomorphic mapping from G into
D. For complex Banach manifold X and Y we denote by O(X,Y) the class of all holomorphic mapping from
X into Y.
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We need some properties of bi -holomorphic automorphisms of unit ball (see [24] for more details). For
a fixed z, Bz = {w : (w− z, z) = 0, |w| < 1} and denote by R(z) radius of ball Bz. Denote by Pa(z) the orthogonal
projection onto the subspace [a] generated by a and let Qa = I − Pa be the projection on the orthogonal
complement. For z, a ∈ Bn we define

z̃ = ϕa(z) =
a − Pz − saQz

1 − (z, a)
, (1)

where Pa(z) =
< z, a >
< a, a >

a and sa = (1 − |a|2)1/2. Set Ua = [a] ∩ B, Qb = b + [a]⊥ ∩ Bn,

ϕ1
a(z) =

a − Pz
1 − (z, a)

, ϕ2
a(z) =

−saQz
1 − (z, a)

and δ(a, z) = |ϕa(z)|.
Then one can check that

(I1) The restriction ofϕa onto Ua is automorphisam of Ua and the restriction onto Bz maps it bi-holomorphically
mapping onto Bz̃.

A domain U is called complete circular if whenever z ∈ U and |λ| ≤ 1 then λz ∈ U. Note in passing that
a complete circular domain automatically contains 0.

We need a few results from Rudin [24].
For a we define s = sa =

√
1 − |a|2.

Theorem 2.1 (2.2.2 [24]). For every a ∈ B, ϕa has the following properties:
(i) ϕa(0) = a and ϕa(a) = 0
(ii) ϕ′a(0) = −s2P − sQ, ϕ′a(a) = −P/s2

−Q/s
(iii) the identity

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)
|1 − (z, a)|2

,

(iv) ϕa is an involution: ϕa(ϕa(z)) = z
(v) ϕa is a homeomorphism of B onto B, and ϕa ∈ Aut(B).
(vi) Aut(B) acts transitively on B.

We only outline a proof. Since (1 − (z, a))−1 = 1+ < z, a > +O(|z|2) and |a|2Pz = a < z, a >, ϕa(z) =
a − (P + sQ)z + a < z, a > +O(|z|2). Hence

ϕa(z) − ϕa(0) = −s2Pz − sQz + O(|z|2)

and therefore the first formula in (ii) follows; the second one follows from

ϕa(a + h) =
−Ph − sQh
s2− < h, a >

.

From (iv), it follows that ϕa is one-to-one of B onto B, and that ϕ−1
a = ϕa. If a, b ∈ B, ϕb ◦ ϕa is an

automorphism of B that takes a to b.
If f ∈ Aut(B), a = f−1(0), JR f denotes real Jacobian, then

JR f (z) = (
(1 − |a|2)
|1 − (z, a)|2

)n+1. (2)

Proposition 2.2 ( Theorem 8.1.2). Suppose that (i) G and G′ are complete circular domains in Cn and Cm respec-
tively,
(ii) G′ convex and bounded
(iii) F : G→ G′ holomorphic
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Then
(a) F′(0) maps G into G′

(b) F(rG) ⊂ rG′ (0 < r ≤ 1) if F(0) = 0.

The following is an immediate corollary of Proposition 2.2:

Corollary 2.3. Suppose that f ∈ O(Bn,Bm). If f (0) = 0, then
(A1) | f ′(0)| ≤ 1.

We give another proof which is more in spirit of this paper.

Proof. For z∗ = z/|z| define Dz = {ζz∗ : ζ ∈ U} and F(ζ) = f (ζz∗), ζ ∈ U. Let p be projection of Bm on the slice
D f (z). By one dim version of Schwarz lemma |F(ζ)| ≤ |ζ| and in particular for ζ = |z|, | f (z)| ≤ |z|. Hence (A1)
| f ′(0)| ≤ 1.

Proposition 2.4 (Theorem 8.1.4 [24]). Suppose that f : Bn → Bm holomorphic, a ∈ Bn and b = f (a).
Then
|ϕb( f (z))| ≤ |ϕa(z)|, z ∈ Bn
or equivalently

|1 − ( f z, f a)|2

(1 − | f a|2)(1 − | f z|2)
≤

|1 − (z, a)|2

(1 − |a|2)(1 − |z|2)
. (3)

Set

σn(z, a) :=
|1 − (z, a)|2

(1 − |a|2)(1 − |z|2)
.

For z,w ∈ Cn, |1− < z,w > |2 = 1 + | < z,w > |2 − (|z|2 + |w|2) + |z − w|2 and therefore
(A1) |1− < z,w > |2 ≤ (szsw)2 + |z − w|2 and |1− < z,w > |2 = (szsw)2 + |z − w|2, z,w ∈ C, that is

(B1) σn(z,w) ≤ 1 +
|z − w|2

(szsw)2 , σ1(z,w) = 1 +
|z − w|2

(szsw)2 , z,w ∈ C.

Theorem 2.5. Suppose that f ∈ O(Bn,Bm), a ∈ Bn and b = f (a).
(i) Then s2

a | f ′(a)| ≤ sb, i.e. (1 − |a|2)| f ′(a)| ≤
√

1 − | f (a)|2.
(ii) If m = 1, then s2

a | f ′(a)| ≤ s2
b , and

(iii) If m > 1, the inequality (a) σm( f z, f w) ≤ σn(z,w), z,w ∈ Bn, does not hold in general, but if f ∈ O(Bn,B1) then
σ1( f z, f w) ≤ σn(z,w), that is the following inequality holds:

σ1( f z, f a) =
| f z − f a|2

(1 − | f a|2)(1 − | f z|2)
≤

|z − a)|2

(1 − |a|2)(1 − |z|2)
, z ∈ Bn. (4)

Proof. (i) Suppose first that f (0) = 0 and take z ∈ Bn. Hence (A1) | f ′(0)| ≤ 1.
For u ∈ TaCm, by Theorem 2.1(ii), v = ϕ′a(a)u = −Pu/s2

−Qu/s and, by Pitagora’s theorem,

|u| =
√
|Pu|2 + |Qu|2, |v|2 = |Pu|2/s4 + |Qu|2/s2

and therefore we find

(B1)
|u|
s
≤ |ϕ′a(a)u| ≤

|u|
s2 .

If f (a) = b, set h = ϕb ◦ f ◦ ϕa. By the chain rule h′(0) = ϕ′b(b) ◦ f ′(a) ◦ ϕ′a(0).
Set u ∈ TaCn, v = f ′(a)u ∈ TaCm, u′ = ϕ′a(a)u and v′ = ϕ′b(b)v. By (A1), |v′| ≤ |u′|. Since, by (B1),

|v|
sb
≤ |v′| and |u′| ≤

|u|
s2

a
,
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hence s2
a | f ′(a)| ≤ sb, i.e. (1 − |a|2)| f ′(a)| ≤

√
1 − | f (a)|2 and therefore (i) is proved.

(ii) If m = 1, then s2
b |v
′
| = |v| and (ii) follows.

(iii) By (B1) and (3),

σ1( f z, f a) = 1 +
| f z − f a|2

(s f zs f a)2 ≤ σn(z, a) =
|1 − (z,w)|2

(szsa)2 ≤ 1 +
|z − a|2

(szsa)2

and therefore (4). If z tends a, (ii) also follows from (4). If (a1) holds, then (b1) s2
a | f ′(a)| ≤ s2

b . For function
f0 = ϕb ◦ ϕa we have (1 − |a|2)| f ′0(a)| = (1 − |b|2) which yields a contradiction with (b1). For more details see
Section 5.

3. Contraction Properties of Holomorphic Functions with Respect to Kobayashi Distances

The author also published a paper [17] about holomorphic fixed point theorem on Riemann surfaces.
Let G be bounded connected open subset of complex Banach space, p ∈ G and v ∈ TpG. We define

kG(p,v) = inf{|h|}, where infimum is taking over all h ∈ T0C for which there exists a holomorphic function
such that φ : U→ G such that φ(0) = p and dφ(h) = v.

We define the distance function on G by integrating the pseudometric kG: for z, z1 ∈ G

KobG(z, z1) = inf
γ

∫ 1

0
kG(γ(t), γ̇(t)) dt (5)

where the infimum is over all piecewise paths γ : [0, 1]→ G with γ(0) = z and γ(1) = z1.
One can prove

Theorem 3.1. Suppose that G and G1 are bounded connected open subset of complex Banach space and f : G→ G1
is holomorphic. Then

KobG1 ( f z, f z1) ≤ KobG(z, z1) (6)

for all z, z1 ∈ G.

Let A = {1 < |x| < 4}, A∗ = {2 < |x| < 3}, l(t) = 2 + 1
3 (t− 1) and f (x) = −l(|x|)x. l maps the interval (1, 4) onto

the interval (2, 3) and therefore f maps A onto A∗ ⊂ A, but f has no fixed point (there is no point x ∈ A such
that f (x) = x. Hence this example shows that there is no a metric d on G such that f is a contraction wrt d.
The situation is completely different for analytic functions.

Theorem 3.2. Suppose that G is bounded connected open subset of complex Banach space and G∗ ⊂ G, s0 =

dist(G∗,Gc), d0 = diam(G) and q0 = d0
d0+s0

. Then
(i) KobG ≤ q0KobG∗ on G∗.
(ii) In addition if f : G→ G∗ is holomorphic, then

KobG∗ ( f z, f z1) ≤ q0KobG∗ (z, z1) (7)

for z, z1 ∈ G∗.

KobG( f z, f z1) ≤ q0KobG(z, z1) (8)

for z, z1 ∈ G.

Proof. Suppose that p ∈ G∗, v ∈ TpG∗ and φ : U → G is a holomorphic function such that φ(0) = p and
dφ(h) = v. Set Rs = d0+s

d0
and qs = d0

d0+s . For h ∈ U define φs(h) = p + Rs(φ(h) − p). Then φs(h) − φ(h) =
(Rs − 1)(φ(h) − p) and therefore |φs(h) − φ(h)| ≤ s. For s < s0, φs maps U into G and dφs(h) = Rsv. Hence
kG(p, v) ≤ qskG∗ (p, v) and if s approaches s0 we first get (i) kG(p, v) ≤ q0kG∗ (p, v) and by a standard procedure
KobG ≤ q0KobG∗ . Now, by (6), we have (ii) KobG∗ ( f z, f z1) ≤ KobG(z, z1). Combining (i) and (ii) we get (7)
and (8).
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If d0 = diam(G) is not finite, elementary example: Ha = {z : Imz > a} with f (z) = z + ia which maps H
onto Ha, shows that the theorem does not hold.

Theorem 3.3. Let D ⊂ Cn domain for which Kobayshi (Carthéodory) pseudo-distance is distance and f : D → D
holomorphic mapping such that f (D) is a compact subset of D. Then f is contraction with respect to Kobayshi
(Carthéodory) metric on D. In particular f has fixed points in D.

It is a corollary of Theorem 3.2. A version of Theorems 3.1-3.2 was proved in 1968 by Clifford Earle and
Richard Hamilton [5] (see Sections 5 for further comments).

3.1. Hyperbolic Riemann surfaces

We can relax the condition s0 > 0 in Theorem 3.2 if we we consider Riemann surface, see Theorem 3.9.
Every Riemann surface admits as its universal covering surface the unit disc, the finite plane, or extended plane.

Theorem 3.4. Let S be an arbitrary Riemann surface, let D be its universal covering surface, and G the covering
group of D over S. Then S is conformally equivalent to the Riemann surface D/G.

The limit set od a Fuschian group actin on a disk D is either the whole boundary ∂D or a nowhere dense
subset of ∂D. If G is a Fuschian group of the first kind acting on H, then the fixed points of G are dense
everywhere on the real axis.

Let S be an arbitrary Riemann surface, whose universal covering isH and p : H→ S projection. By cS,
kS we denote Carthéodory, Kobayashy distance respectively.

Several years ago, the author communicated at Belgrade seminar, the following results (probably known
to the experts in the subject, see also [17]):

Theorem 3.5. Let S be an arbitrary Riemann surface, whose universal covering is H. Then cS ≤ kS. If equality
holds for some pair of points p, q ∈ S, then S is conformaly equivalent withH.

Theorem 3.6. Let S be an arbitrary Riemann surface, whose universal covering is H and f : S → S holomorphic
mapping. If f is not an isometry (or not onto), then f is contraction on any compact K ⊂ S with respect to
Carthéodory-Poincaré metric on S.

Proof is based on

Lemma 3.7. Let M be hyperbolic Riemann surface and f : M→M analytic function. If there p, q ∈M, p , q, such
that d( f (p), f (q)) = d(p, q), then f̃ is Mobius. In particular, f is onto.

Lemma 3.8. Let f :H→H holomorphic mapping and ω = ξ + iη ∈H and v = Im f . Then

lim
(z,w)→(ω,ω)

d( f (z), f (w)
d(z,w)

= | f ′(ω)|
η

v( f (ω))
. (9)

f (z) = z + i has no fixed point.
If X is a metric space and if f has a fixed point p then there exist a compact set F such that f (F) ⊂ F; take

for example F = {p}.
Let M and N be hyperbolic Riemann surfaces and f : M → N an analytic function. If p is fixed point,

then | f ′(p)| ≤ 1.

Theorem 3.9. (i) Let M be hyperbolic Riemann surface and f : M → M analytic function and F compact subset of
M.
If f is not isometry, then f is contraction on F.

In addition, if f (F) ⊂ F, then there is a unique fixed point p0 = f (p0) ∈ F.
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Proof. Define h : M2
\ {(p, p) : p ∈M} → R+ by

h(p, q) =
d( f (p), f (q))

d(p, q)
. (10)

Since M is hyperbolic, there is a covering π : U→M. If (p, q) = (r, r), r ∈M there is z ∈H such that π(z) = r.
By h(r, r) = | f̃ ′(z)| y

v(z) , where z = x + iy, f̃ is a liffiting of f and v = Im f̃ , we extend h to M2.

Then h is continuous on M2 and therefore there is (p0, q0) such that k0 = h(p0, q0) = max{h(p, q) : (p, q) ∈
M2
}. By Lemma 3.7, k0 < 1.

Under hypothesis (i), we can associate to f a continuous mapping h = f : M2
→ (0, 1]. If M is compact, then

f is a contraction or f ∈ Aut(M2). In particular f has a fixed point.
It was Minda who noticed that all self-mappings of a hyperbolic Riemann surface with two fixed points

must be automorphisms.

Theorem 3.10. (i) Let M be hyperbolic Riemann surface and f : M→M analytic function and F compact subset of
M.
If f is not isometry, then f is contraction on F.

In addition, if f (F) ⊂ F, then there is a unique fixed point p0 = f (p0) ∈ F.

Let M be a hyperbolic Riemann surface and f : M→M an analytic function. If p is fixed point of f , then
| f ′(p)| ≤ 1.

4. Further Research

In this section we discus a few results which may give orientation for further research. There are many
results related to subject of this paper. We will mention only a few of them which are selected on the basis
of personal taste and which can be the basis for further research in our opinion. In particular it seems that
continuation of research related to the Gromov-Schwarz Lemma is good possibility.
We plan to discuss subject related rigidity of holomorphic mappings and a new Schwarz Lemma at the
boundary, see D.M. Burns and S.G. Krantz [4], S.G. Krantz [15], Ornek [21] and the literature cited there, in
a forthcoming paper.

First we need some notations. For a function h, we use notation ∂h = 1
2 (h′x − ih′y) and ∂h = 1

2 (h′x + ih′y);

we also use notations Dh and Dh instead of ∂h and ∂h respectively when it seems convenient. We use the
notation λ f (z) = |∂ f (z)| − |∂̄ f (z)| and Λ f (z) = |∂ f (z)|+ |∂̄ f (z)|, if ∂ f (z) and ∂̄ f (z) exist. For a hyperbolic plane
domain D, we denote respectively by λ = λD (or if we wish to be more specific by HypD) and δD (in some
papers we use also notation σD) the hyperbolic and pseudo-hyperbolic metric on D respectively. If D is the
unit disk we simply write λ for hyperbolic metric.

By HypD(z) we also denote the hyperbolic density at z ∈ D.

4.1. Pseudo-distances defined by pluriharmonic functions

In [6] A. Khalfallah constructs αM,P, a new holomorphically invariant pseudo-distance on a complex
Banach manifold M using the set of real pluriharmonic functions on M with values in P, a proper open
interval of R. It is well known that the Kobayashi pseudo-distance is the largest and the Carathéodory
pseudo-distance is the smallest one which can be assigned to complex Banach manifolds by a Schwarz-Pick
system. Therefore CM ≤ αM,P ≤ KobM.
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4.2. Schwarz, Yau, Royden lemma
Yau [25] proved the following generalization of Schwarz lemma.

Theorem 4.1 (Yau). Let M be a complete Kähler manifold with Ricci curvature bounded from below by a constant,
and N be another Hermitian manifold with holomorphic bisectional curvature bounded from above by a negative
constant. Then any holomorphic mapping f from M into N decrease distances up to a constant depending only on
the curvature of M and N.

Royden [23] improved the estimate in Yau theorem.

Theorem 4.2 (Royden). Let M be a complete Hermitian manifold with holomorphic sectional curvature bounded
from below by a constant k ≤ 0 , and N be another Hermitian manifold with holomorphic sectional curvature bounded
from above by a negative constant K < 0. Assume either that M has Riemann sectional curvature bounded from below
or that M is Kähler with holomorphic bisectional curvature bounded from below. Then any holomorphic mapping f
from M into N satisfies

‖d f ‖2 ≤
k
K
.

In [25] , Yau mentioned that in order to draw a useful conclusion in the case of harmonic mappings
between Riemannian manifolds, it seems that one has to assume the mapping is quasi-conformal.
Since we can consider Theorem 5.1 [9] as a version of Schwarz lemma for harmonic-quasiregular maps
between surfaces it seems natural to ask whether there exists a version of Yau-Royden theorem for harmonic-
quasiregular maps.

4.3. Schwarz lemma for harmonic-quasiregular maps
The author with M. Knežević proved:

Proposition 4.3 (the unit disk euclidean-qch version,[9]). Let f be a k - quasiconformal euclidean harmonic
mapping from the unit discU into itself. Then for all z ∈ U we have

| fz(z)| ≤
1

1 − k
1 − | f (z)|2

1 − |z|2
.

Using L f (z) ≤ (1 + k)| fz(z)|, we get
(A) λ( f z′, f z) ≤ Kλ(z′, z), z′, z ∈ U.

In proof we use the metric density σ f (z) = (1−k)2λ( f (z))| fz(z)|2 and check that the curvature K(σ)(z) ≤ −1.
In communication with Pavlović appears a question:
Question 2. Whether (A) holds if f is k-qr? We announce a positive answer to this question:

Theorem 4.4. Let f be a k - quasiregular euclidean harmonic mapping from the unit discU into itself. Then for any
two points z1 and z2 inU we have

λ( f (z1), f (z2)) ≤
1 + k
1 − k

λ(z1, z2) .

4.4. Schwarz Lemma for harmonic functions
There is tightly connection between harmonic and holomorphic functions. A few year ago I had in mind

the following result:

Theorem 4.5. Suppose that D is a hyperbolic plane domain and G = S(a, b) = (a, b) × R, −∞ < a < b ≤ ∞, plane
domain and f : D→ G is a complex harmonic on hyperbolic domain D. Let z ∈ D, h ∈ TzC, |h| = 1, and d fz(h) = λv,
λ > 0, p = f (z) and v ∈ TpC. If the measure of the angle between v and e1 = e1(p) ∈ TpC,p = f (z),is α, then
(I) λ cosαHypG( f (z)) ≤ HypD(z).
(II) If f is real valued, then
λHypG( f z) ≤ HypD(z).
Hence HypG( f (z1), f (z2) ≤ HypD(z1, z2).
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In the case D = D, (II) is proved for G = S(−1, 1) in [7], and for G = S(0,∞) in [16]. We use Ahlfors-Schwarz
lemma to give a simple approach to Kalaj-Vuorinen results [7] (shortly KV-results) and to put it into a
broader perspective. But, it turns out that our methods (results) unify very recent approaches by D. Kalaj-
M. Vuorinen, H. Chen, K. Dyakanov, D. Kalaj, M. Marković, A. Khalfallah and P.Melentijević.

Note also that the Schwarz theory for pluriharmonic functions is studied in [26] by Z. Xu, including the
Schwarz lemma, the Julia lemma, and the behavior of invariant metric for pluriharmonic functions in the
unit ball 1).

4.5. Gromov-Schwarz Lemma

On any almost Hermitian manifold, we can introduce a fundamental 2-form (or cosymplectic structure)
that depends only on the chosen metric and the almost complex structure. This form is always non-
degenerate. With the extra integrability condition that it is closed (i.e., it is a symplectic form), we get an
almost Kähler structure. If both the almost complex structure and the fundamental form are integrable,
then we have a Kähler structure. A Hermitian manifold is a complex manifold G with a Hermitian metric
H on its holomorphic tangent space: Ha(λu, v) = λHa(u, v), λ ∈ C, Ha(u, v) = Ha(v,u), for u, v ∈ TaG, a ∈ G.

Likewise, an almost Hermitian manifold is an almost complex manifold with a Hermitian metric on
its holomorphic tangent space. Set 1 = ReH and ω = −ImH. Note that 1 = ReH is Riemannian metric
Ha(u, v) = ω(u, iv) − ω(u, v). Let M be a smooth manifold. An almost complex structure J on M is a linear
complex structure (that is, a linear map which squares to -I) on each tangent space of the manifold, which
varies smoothly on the manifold. In other words, we have a smooth tensor field J of degree (1, 1) such that
J2 = −I when regarded as a vector bundle isomorphism J : TM → TM on the tangent bundle. A manifold
equipped with an almost complex structure is called an almost complex manifold.

A symplectic form on a manifold M is a closed non-degenerate differential 2-form ω. Let (M, ω) be
a compact symplectic manifold. A symplectic manifold consists of a pair (M, ω), of a manifold M and a
symplectic form ω. Assigning a symplectic form ω to a manifold M is referred to as giving M a symplectic
structure.

We say that an almost-complex structure J on M is compatible withω if 1(u, v) = ω(Ju, v) defines a metric
on M.

Pseudoholomorphic version of the Schwarz Lemma (known as Gromov-Schwarz Lemma) is important
tool in symplectic geometry.

Theorem 4.6 (Gromov-Schwarz). Let (M, J, ω) be a compact Hermitian manifold. There exist positive constants
ε0 > 0 and c > 0 with the following properties.

If 1 : U → M is a J-holomorphic such that 1(U) is contained in some ε0-ball Bε0 ⊆ M, then the norm of the
differential of 1 at the origin is bounded by c: |d10| < c.

After writing a version of manuscript [18], Petar Melentijević [20] sent me his preprint (at 18 Jan 2017)
and turns my attention on D. Kalaj manuscript [8] in which the parts (i) and (ii) of Theorem 2.5 are also
proved.2)

5. Appendix

In this section we will add additional consideration related to Theorem 2.5.

1)We received this information after the paper has been accepted for publication and a galley proof is made.
2)see also Pavlović https://www.researchgate.net/publication/262967183−Kalaj-Vuorinen’s−Schwarz−lemma
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5.1. Another proof of Theorem 2.5(i)
For ε > 0 set E(a, ε) = ϕa(εB). Then z ∈ E(a, ε) iff |ϕa(z)| < ε

|Pz − c|2

ε2ρ2 +
|Qz|2

ε2ρ
< 1,

where P = Pa, Q = Qa, c = c(a, ε) =
(1−ε2)a
1−ε2 |a|2 and ρ = ρ(a, ε) = 1−|a|2

1−ε2 |a|2 is an ellipsoid with centre c.
The intersection of E(a, ε) with [a] is a disk of radius ερ, which is roughly εs2 when ε is small; its

intersection with the real(2n− 2)- dimensional space perpendicular to [a] at c is a ball of much larger radius
ε
√
ρ ∼ εs.
It is clear that B(c, ερ) ⊂ E(a, ε) ⊂ B(c, ε

√
ρ).

Suppose that f : Bn → Bm is holomorphic, a ∈ Bn and b = f (a). Then
| f ′(c)| ≤

√
ρ∗
ρ , where ρ∗ = ρ(b, ε). Since c, | f ′(c)|, ρ and ρ∗ tend to a, | f ′(a)|, 1 − |a|2 and 1 − |b|2 respectively,

we get sa| f ′(a)| ≤
√

sb. �

5.2. Addition to the proof of Theorem 2.5(iii) and and Theorems 3.1-3.2
The Schwarz-Pick lemma states that every holomorphic function from the unit diskU to itself, or from

the upper half-planeH to itself, will not increase the Poincaré distance between points.
It is convenient to introduce a pseudo-distance

δ(z, ω) = |ϕz(ω)| =
∣∣∣∣∣ z − ω
1 − ω z

∣∣∣∣∣, z, ω ∈ U (11)

which is a conformal invariant.
Shwarz-Pick lemma: If f holomorphic function from the unit diskU to itself, then

δ( f (z), f (ω)) ≤ δ(z, ω), z, ω ∈ U (12)

with equality only if f is a Möbius transformation ofD onto itself.
For z,w ∈ C, set a = (1 − |z|2)(1 − |w|2), b = |z − w|2, A = (1 − | f z|2)(1 − | f w|2), and B = | f z − f w|2. By this

notation,
(A2) |1− < z,w > |2 = 1 + | < z,w > |2 − (|z|2 + |w|2) + |z − w|2 = a + b,
(B2) |1− < f z, f w > |2 = A + B.

If f ∈ O(B1,B1), using (A2) and (B2) Shwarz-Pick lemma can be rewritten in the form B
b ≤

A+B
a+b and

therefore Ba ≤ Ab, that is

(I) | f z − f w|
√

(1 − |z|2)
√

(1 − |w|2) ≤
√

(1 − | f z|2)
√

(1 − | f w|2)|z − w|.3)

Question 1 (D. Jocić). If f ∈ O(Bn,Bm) whether (I) holds?
For z,w ∈ Cn, |z − w|2 = |z|2 + |w|2 − 2Re < z,w >, and |1− < z,w > |2 = 1 − 2Re < z,w > +| < z,w > |2.

Hence
|1− < z,w > |2 = 1 + | < z,w > |2 − (|z|2 + |w|2) + |z − w|2 and
|1− < f z, f w > |2 = 1 + | < f z, f w > |2 − (| f z|2 + | f w|2) + | f z − f w|2 and
By Cauchy-Shwarz inequality | < z,w > |2 ≤ |z||w| and therefore

(C2) |1− < z,w > |2 ≤ an + bn, where an = (1 − |z|2)(1 − |w|2), and bn = |z − w|2.
Set Am = (1 − | f z|2)(1 − | f w|2) and Bm = | f z − f w|2. By (C2) and (3) (Section 2),

σ1( f z, f w) =
A1 + B1

A1
≤ σn(z,w) =

|1 − (z,w)|2

an
≤

an + bn

an

3)D. Jocić turns my attantion on this form and after communication with him we have added the proof of (4))
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and therefore (4) (Section 4).
We show that (I) does not hold in general. Contrary suppose that (I) holds and that f ∈ O(Bn,Bm), a ∈ Bn

and b = f (a).
Recall if m > 1 we proved,
(II) (1 − |a|2)| f ′(a)| ≤

√
1 − | f (a)|2.

Note that for function f0 = ϕb ◦ ϕa we have equality in (II).
If (I) holds and z tends a then we have,
(III) (1 − |a|2)| f ′(a)| ≤ (1 − |b|2).
An application of (II) and (III) to f0 shows that sb ≤ s2

b and consequently sb ≥ 1. Since sb < 1 for b , 0, we
have a contradiction.

5.3. Further comments related to Theorems 3.1-3.2
We have worked on the subject from time to time between 1980 -1990 and in that time we proved

Theorems 3.1-3.2(4)). But we realized these days that it is a version of the Earle-Hamilton (1968) fixed point
theorem, which may be viewed as a holomorphic formulation of Banach’s contraction mapping theorem.
A version of this result was proved in 1968 (when I enroled Math Faculty) by Clifford Earle and Richard
Hamilton [5] by showing that, with respect to the Carathéodory metric on the domain, the holomorphic
mapping becomes a contraction mapping to which the Banach fixed-point theorem can be applied. Perhaps
there are applications of this result in the Teichmüller theory.
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