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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. In this work, we investigate the existence of fixed points for multivalued G-monotone Ćirić
quasi-contraction and Reich contraction mappings in a metric space endowed with a graph G.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

In recent years, mathematicians working in fixed point theory got interested into the class of mono-
tone single-valued mappings defined in a metric space endowed with a partial ordering. Recall that the
multivalued version of the Banach contraction principle was discovered by Nadler [7] who obtained the
following result:

Theorem 1.1. Let (X, d) be a complete metric space. Denote byCB(X) the set of all nonempty closed bounded subsets
of X. Let S : X→ CB(X) be a multivalued mapping. If there exists k ∈ [0, 1) such that

H(S(u),S(v)) ≤ k d(u, v)

for all u, v ∈ X, where H is the Pompeiu-Hausdorff metric on CB(X), then S has a fixed point in X.

Following its publication, many extensions and generalizations were discovered; see for instance [4, 6] and
references cited therein.

Investigation of the fixed point theory of monotone single-valued mappings in metric spaces endowed with
a partial order was initiated by Ran and Reurings in [9] (see also [11, 12]) who proved the following result:

Theorem 1.2. Let (X, d,�) be a complete partially ordered metric space. Assume that (X,�) is a lattice. Let
T : X→ X be a continuous monotone contraction. Assume there exists x0 ∈ X such that x0 and T(x0) are comparable.
Then {Tn(x0)} converges to the unique fixed point ω of T. Moreover, we have

lim
n→+∞

Tn(x) = ω,

for any x ∈ X.
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Nieto et al. in [8] extended Theorem 1.2 to prove the existence of solutions to some differential equations.
Afterward, Jachymski [5] extended the results of [[8], [9]] to the case of single-valued mappings in metric
spaces endowed with a graph. Most recently, the author [1] extended Nadler’s mutlivalued fixed point
theorem to the case of monotone multivalued mappings in metric spaces endowed with a graph.

In [3] Ćirić presented the concept of quasi-contraction mappings and quasi-contraction multivalued map-
pings as a generalization of the Banach contraction principle. The extension of Ran and Reurings and
Jachymski fixed point theorems for monotone contraction mappings in metric spaces endowed with a
partial order or a graph to the case of quasi-contraction mappings was carried in [2].

The aim of this paper is to extend the conclusion of Theorem 1.2 and the result of [5] to the case of
multivalued monotone quasi-contraction and Reich (a, b, c)-contraction mappings in metric spaces endowed
with a graph.

2. Preliminaries

Let (X, d) be a metric space. Consider a directed graph G such that the set of its vertices V(G) coincides with
X and the set of its edges E(G) contains all loops i.e., (x, x) ∈ E for each x ∈ V(G). Such a digraph is called
reflexive. We assume that G has no parallel edges.

Definition 2.1. A digraph G is called transitive if

(u, v) ∈ E(G) and (v,w) ∈ E(G)⇒ (u,w) ∈ E(G) for all u, v,w ∈ V(G).

As Jachymski [5] did, we introduce the following property:
The triplet (X,G, d) has Property (P) if

(P) For any sequence (xn)n≥1 in X, if xn → x and (xn, xn+1) ∈ E(G), for n ≥ 1, then there is a subsequence
(xkn )n≥1 with (xkn , x) ∈ E(G), for n ≥ 1.

Note that if G is transitive, then the Property (P) implies the following property:

(PP) For any (xn)n≥1 in X, if xn → x and (xn, xn+1) ∈ E(G), for n ≥ 1, then (xn, x) ∈ E(G), for every n ≥ 1.

Throughout we assume that (X, d) is a metric space, CB(X) is the class of all nonempty closed and bounded
subsets of X and G is a reflexive digraph defined on X. Moreover, we assume that the triplet (X,G, d) has
property (P) and G-intervals are closed. Recall that a G-interval is any of the subsets [x,→) = {u ∈ X; (x,u) ∈
E(G)} and (←, y] = {u ∈ X; (u, y) ∈ E(G)}, for any x, y ∈ X.

3. G-Monotone Quasi-Contraction Mappings in Metric Spaces

Let (X, d) be a metric space. The Pompeiu-Hausdorff distance on CB(X) is defined by

H(A,B) := max{sup
b∈B

d(b,A), sup
a∈A

d(a,B)},

for A,B ∈ CB(X), where d(a,B) := inf
b∈B

d(a, b).

The following technical result is useful to explain our definition later on.

Lemma 3.1. Let (X, d) be a metric space. For any A,B ∈ CB(X) and ε > 0, we have:

(i) for a ∈ A, there exists b ∈ B such that
d(a, b) ≤ H(A,B) + ε;

(ii) for b ∈ B, there exists a ∈ A such that
d(a, b) ≤ H(A,B) + ε.
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Note that from Lemma 3.1, whenever one uses multivalued mappings which involves the Pompeiu-
Hausdorff distance, then one must assume that the multivalued mappings have bounded values. Otherwise,
one has only to assume that the multivalued mappings have nonempty closed values.

Definition 3.2. Let (X, d) be a metric space. We denote by C(X) the collection of all nonempty closed subsets of X.
A multivalued mapping J : X → C(X) is called quasi-contraction if there exists k ∈ [0, 1) such that for any a, b ∈ X
and any A ∈ J(a), there exists B ∈ J(b) such that

d(A,B) ≤ k max
(
d(a, b); d(a,A); d(b,B); d(a,B); d(b,A)

)
. (1)

Definition 3.3. Let (X,G, d) be as above. A multivalued mapping J : X → C(X) is called G-monotone quasi-
contraction if there exists k ∈ [0, 1) such that for any a, b ∈ X with (a, b) ∈ E(G) and any A ∈ J(a), there exists B ∈ J(b)
such that (A,B) ∈ E(G) and

d(A,B) ≤ k max
(
d(a, b); d(a,A); d(b,B); d(a,B); d(b,A)

)
. (2)

The point a ∈ X is called a fixed point of J if a ∈ J(a).

Example 3.4. Let X = {0, 1, 2, 3} and d(x, y) = |x − y|, ∀x, y ∈ X. Define the multivalued map J : X→ C(X) by:

J(x) = {0, 2, 3} for x ∈ {0, 1} and J(x) = {3} for x ∈ {2, 3}.

Then J is a G-monotone quasi-contraction with k = 1
3 , where G = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (2, 3)}, but is not a

multivalued quasi-contraction since d(0, 3) > 1
3 max

(
d(1, 2); d(1, 0); d(2, 3); d(1, 3); d(2, 0)

)
.

Next we discuss the existence of fixed points for such mappings. First, let J be as in Definition 3.3. For any
u0 ∈ X, the sequence {un} defines an orbit of J at u0 if un ∈ J(un−1), n = 1, 2, · · · .

The following technical lemma is crucial to prove the main result of this section.

Lemma 3.5. Let (X,G, d) be as above. Let J : X → C(X) be a G-monotone multivalued quasi-contraction mapping.
Let u0 ∈ X be such that (u0,u1) ∈ E(G) for some u1 ∈ J(u0). Assume that k < 1

2 , where k is the constant associated with
the G-monotone quasi-contraction definition of J. Then there exists an orbit {un} of J at u0 such that (un,un+1) ∈ E(G),
for any n ∈N and

d(un,un+1) ≤
(

k
1 − k

)n

d(u0,u1).

Proof. By induction we will construct the orbit {un} of J at u0. Assume {u0,u1, · · · ,un} are constructed such
that ui+1 ∈ J(ui) and (ui,ui+1) ∈ E(G) and

d(ui,ui+1) ≤
(

k
1 − k

)i

d(u0,u1), i = 0, · · · ,n − 1.

Since J is a G-monotone multivalued quasi-contraction mapping, there exists un+1 ∈ J(un) such that

d(un,un+1) ≤ k max
(
d(un−1,un); d(un,un+1); d(un−1,un+1); d(un,un)

)
.

Obviously this will imply

d(un,un+1) ≤ k max
(
d(un−1,un); d(un−1,un+1)

)
≤ k max

(
d(un−1,un); d(un−1,un) + d(un,un+1)

)
≤ k

(
d(un−1,un) + d(un,un+1)

)
.
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Hence

d(un,un+1) ≤
k

1 − k
d(un−1,un) ≤

(
k

1 − k

)n

d(u0,u1).

By the induction argument, the proof of Lemma 3.5 is complete.

Next we state the main result of this section.

Theorem 3.6. Let (X, d) be a complete metric space and G be a reflexive digraph defined on X such that (X,G, d) has
Property (P). Let J : X → C(X) be a G-monotone multivalued quasi-contraction mapping. Let u0 ∈ X be such that
(u0,u1) ∈ E(G) for some u1 ∈ J(u0). Assume that k < 1

2 , where k is the constant associated with the G-monotone
quasi-contraction definition of J. Then there exists an orbit {un} of J at u0 which converges to ω ∈ X, a fixed point of J.

Proof. The orbit sequence {un} of J at u0 obtained in Lemma 3.5 is Cauchy. Since X is complete, then there
exists ω ∈ X such that {un} converges to ω. Since (un,un+1) ∈ E(G), for any n ≥ 1, Property (P) implies that
there is a subsequence {ukn } such that (ukn , ω) ∈ E(G), for any n ≥ 0. Next we prove that ω is a fixed point of
J, i.e., ω ∈ J(ω). Since ukn+1 ∈ J(ukn ) and (ukn , ω) ∈ E(G), then there exists ωn ∈ J(ω) such that

d(ukn+1, ωn) ≤ k max
(
d(ukn , ω); d(ukn ,ukn+1); d(ω,ωn); d(ukn , ωn); d(ukn+1, ω)

)
,

for any n ≥ 1. In particular, we have

d(ukn+1, ωn) ≤ k
(
d(ukn , ω) + d(ukn ,ukn+1) + d(ω,ωn) + d(ukn , ωn) + d(ukn+1, ω)

)
,

for any n ≥ 1. Since d(ω,ωn) − d(ω,ukn+1) ≤ d(ukn+1, ωn), we get

(1 − 2k)d(ω,ωn) − d(ω,ukn+1) ≤ k
(
d(ukn , ω) + d(ukn ,ukn+1) + d(ukn , ω) + d(ukn+1, ω)

)
,

for any n ≥ 1. Hence
(1 − 2k) lim sup

n→+∞
d(ωn, ω) ≤ 0,

which implies lim
n→+∞

d(ωn, ω) = 0 since k < 1/2. Therefore {ωn} converges to ω and since J(ω) is closed, we
conclude that ω ∈ J(ω), i.e., ω is a fixed point of J.

If we assume that G is transitive in Theorem 3.6, then we have (u0, ω) ∈ E(G).

Remark 3.7. It is not clear to us whether the conclusion of Theorem 3.6 is still valid when k < 1.

4. G-Monotone Reich Contraction Mappings in Metric Spaces

Reich in [10] proved that any multivalued Reich (a, b, c)-contraction on a complete space has a fixed point.
In this section, we define the notation of multivalued G-monotone Reich contraction mappings and then
obtain a fixed point theorem for such mappings. Let us first define the multivalued Reich contraction map.

Definition 4.1. Let (X, d) be a metric space. A multivalued mapping J : X→ C(X) is called Reich (a, b, c)-contraction
if there exists nonnegative numbers a, b, c with a + b + c < 1 such that for any u,w ∈ X and any U ∈ J(u) there exists
W ∈ J(w) such that

d(U,W) ≤ a d(u,w) + b d(u,U) + c d(w,W). (3)

Definition 4.2. Let (X,G, d) be as above. A multivalued mapping J : X → C(X) is called G-monotone Reich
(a, b, c)-contraction if there exists nonnegative numbers a, b, c with a + b + c < 1 such that for any u,w ∈ X with
(u,w) ∈ E(G) and any U ∈ J(u), there exists W ∈ J(w) such that (U,W) ∈ E(G) and

d(U,W) ≤ a d(u,w) + b d(u,U) + c d(w,W). (4)
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Example 4.3. Let X = {0, 1, 2, 3} and d(x, y) = |x − y|, ∀x, y ∈ X. Define the multivalued map J : X→ C(X) by:

J(x) = {0, 2, 3} for x ∈ {0, 1} and J(x) = {1, 3} for x ∈ {2, 3}.

Then J is a G-monotone Reich ( 1
3 , 0,

1
3 )-contraction, where G = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (0, 2), (2, 3)}, but

is not a multivalued Reich ( 1
3 , 0,

1
3 )-contraction since d(0, 1) > 1

3 d(1, 2) + 0 d(1, 0) + 1
3 d(2, 1) and d(0, 3) >

1
3 d(1, 2) + 0 d(1, 0) + 1

3 d(2, 3).

Such an example enforces the idea that the study of multivalued G-monotone Reich contraction is worthy
of consideration. Next we state the main result of this section.

Theorem 4.4. Let (X, d) be a complete metric space and G be a reflexive digraph defined on X such that (X,G, d) has
Property (P). Let J : X → C(X) be a multivalued G-monotone Reich (a, b, c)-contraction mapping. Let u0 ∈ X be
such that (u0,u1) ∈ E(G) for some u1 ∈ J(u0). Then there exists an orbit {un} of J at u0 which converges to ω ∈ X, a
fixed point of J.

Proof. Since (u0,u1) ∈ E(G) and as J is a G-monotone Reich contraction mapping, there exists u2 ∈ J(u1) such
that (u1,u2) ∈ E(G) and

d(u1,u2) ≤ a d(u0,u1) + b d(u0,u1) + c d(u1,u2).

Thus we have,

d(u1,u2) ≤
(a + b)
1 − c

d(u0,u1).

Denote α =
(a+b)
1−c . By an inductive procedure, we obtain a sequence {un}n∈N such that (un,un+1) ∈ E(G) with

d(un,un+1) ≤ αn d(u0,u1).

Clearly, {un}n∈N is Cauchy. Since (X, d) is complete then there exists ω ∈ X such that un → ω. Since (X,G, d)
has Property (P), then there is a subsequence (ukn ) such that (ukn , ω) ∈ E(G), for every n ≥ 0. Next we prove
that ω is a fixed point of J, i.e., ω ∈ J(ω). Since ukn+1 ∈ J(ukn ) and (ukn , ω) ∈ E(G), then there exists ωn ∈ J(ω)
such that

d(ukn+1, ωn) ≤ a d(ukn , ω) + b d(ukn ,ukn+1) + c d(ω,ωn),

for any n ≥ 1. Thus we have,

d(ω,ωn) − d(ukn+1, ω) ≤ a d(ukn , ω) + b d(ukn ,ukn+1) + c d(ω,ωn),

for any n ≥ 1. Therefore,

(1 − c)d(ω,ωn) ≤ a d(ukn , ω) + b d(ukn ,ukn+1) + d(ukn+1, ω),

for any n ≥ 1. Hence
(1 − c) lim sup

n→+∞
d(ω,ωn) ≤ 0,

which implies lim
n→+∞

d(ω,ωn) = 0 since c < 1. Therefore {ωn} converges to ω and since J(ω) is closed, we
conclude that ω ∈ J(ω), i.e., ω is a fixed point of J.
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