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Abstract. In the present paper, we introduce the notion of α-type F -τ-contraction and establish related
fixed point results in metric spaces. An example is also given to illustrate our main results and to show that
our results are proper generalization of Altun et al. (2015), Miank et al. (2015), Altun et al. (2016) and Olgun
et al. (2016). We also obtain fixed point results in the setting of partially ordered metric spaces. Finally, an
application is given to set up the existence of positive definite solution of non-linear matrix equation.
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1. Introduction

Let (X, d) be a metric space. 2X denotes the family of all nonempty subsets of X, C(X) denotes the
family of all nonempty, closed subsets ofX, CB(X) denotes the family of all nonempty, closed, and bounded
subsets of X and K(X) denotes the family of all nonempty compact subsets of X. It is clear that, K(X) ⊆
CB(X) ⊆ C(X) ⊆ P(X). ForA,B ∈ C(X), let

H(A,B) = max

sup
x∈A

D(x,B), sup
y∈B

D(y,A)

 ,
where D(x,B) = inf

{
d(x, y) : y ∈ B

}
. Then H is called generalized Pompeiu Hausdorff distance on C(X). It

is well known that H is a metric on CB(X), which is called Pompeiu Hausdorff metric induced by d. For
detail see ([5], [8], [19]).
An interesting generalization of the Banach contraction principle is Nadler’s fixed point theorem [23], he
proved that every multivalued contraction on complete metric space has a fixed point. After this many
authors extended Nadler’s fixed point theorem in many directions (see [1, 9, 10, 14, 15, 22, 26] and references
there in). The following generalization of it is given by Klim et al. [20].

Theorem 1.1 ([20]). Let (X, d) be a complete metric space andT : X → C(X). Assume that the following conditions
hold:
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1. the map x→ D(x,T x) is lower semi-continuous;

2. there exists b ∈ (0, 1) and a function ϕ : [0,∞)→ [0, b) satisfying

lim
t→s+

supϕ(t) < b for s ≥ 0

and for any x ∈ X, there is y ∈ Ix
b satisfying

D(y,T y) ≤ ϕ(d(x, y))d(x, y),

where Ix
b = {y ∈ T x : bd(x, y) ≤ d(x,T x)}.

Then T has a fixed point.

Above mentioned results were extended by Ćirić in [11], see also [14].
In 2012, Samet et al. [28] defined α-admissible mappings and established fixed point theorems and Asl

et al. [6] extended these concepts to multivalued mappings.

Definition 1.2 ([18]). Let T : X → 2X be a multivalued map on a metric space (X, d), α : X × X → R+ be a
function, then T is an α∗-admissible mapping if

α(y, z) ≥ 1 implies that α∗(T y,T z) ≥ 1, y, z ∈ X,

where

α∗(A,B) = inf
y∈A,z∈B

α(y, z).

Further, Ali et al [2] generalized the Definition 1.2 in the following way:

Definition 1.3 ([2]). Let T : X → 2X be a multivalued map on a metric space (X, d), α : X × X → R+ be two
functions. We say that T is generalized α∗-admissible mapping if

α(y, z) ≥ 1 implies that α(u, v) ≥ 1, for all u ∈ Ty, v ∈ Tz.

Recently, Wardowski defined F -contraction [29] and then F -weak-contraction [30] and proved fixed point
results as a generalization of the Banach contraction principle for these contractions. Further, Hussain et al.
[17] broadened this idea to α-GF -contraction with respect to a general family of functionsG. Many authors
did work in this direction (see [13], [16], [27] and references there in). Following Wordowski, we denote by
F, the set of all functions F : R+

→ R satisfying following conditions:

(F1) F is strictly increasing;

(F2) for all sequence {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;

(F3) there exist 0 < k < 1 such that limn→0+ αk
F (α) = 0,

F∗, if F also satisfies the following:

(F4) F (inf A) = infF (A) for all A ⊂ (0,∞) with inf A > 0,

Following this direction of research, Gopal et al. [12] introduced the concepts of α-type-F -contractive
mappings and proved some fixed point theorems concerning such contractions as:

Definition 1.4 ([12]). Let (X, d) be a complete metric space. A mapping T : X → X is said to be an α-type
F -contraction on X if there exists τ > 0 and two functions F ∈ F and α : X × X → {−∞} ∪ (0,+∞) such that for
all x, y ∈ X satisfying d(T x,T y) > 0, the following inequality holds

τ + α(x, y)F (d(T x,T y)) ≤ F (d(x, y)).
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Definition 1.5 ([12]). Let (X, d) be a complete metric space. A mapping T : X → X is said to be an α-type
F -weak-contraction on X if there exists τ > 0 and two functions F ∈ F and α : X×X → {−∞} ∪ (0,+∞) such that
for all x, y ∈ X satisfying d(T x,T y) > 0, the following inequality holds

τ + α(x, y)F (d(T x,T y)) ≤ F
(
max

{
d(x, y), d(x,T x), d(y,T y),

d(x,T y) + d(y,T x)
2

})
.

Theorem 1.6 ([12]). Let (X, d) be a complete metric space and T : X → X be an α-type F -weak-contraction
satisfying the following conditions:

1. T is α-admissible;

2. there exists x0 ∈ X such that α(x0,T x0) ≥ 1;

3. T is continuous.

Then T has a fixed point.

On unifying the concepts of Wardowski’s and Nadler’s, Altun et al. [3] gave the concept of multivalued
F -contractions and found some fixed point results.

Definition 1.7 ([3]). Let (X, d) be a metric space and T : X → CB(X) be a mapping. Then T is a multivalued
F -contraction, if F ∈ F and there exists τ > 0 such that for all x, y ∈ X,

H(T x,T y) > 0⇒ τ + F (H(T x,T y)) ≤ F (d(x, y)).

Theorem 1.8 ([3]). Let (X, d) be a complete metric space and T : X → K(X) be a multivalued F -contraction, then
T has a fixed point in X.

Theorem 1.9 ([3]). Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued F -contraction.
Suppose F ∈ F∗, then T has a fixed point in X.

Olgun et al. [24] proved the non-linear cases of Theorems 1.8 and 1.9 as:

Theorem 1.10 ([24]). Let (X, d) be a complete metric space and T : X → K(X). If there exists F ∈ F and
τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0 for all s ≥ 0

and for all x, y ∈ X,

H(T x,T y) > 0⇒ τ(d(x, y)) + F (H(T x,T y)) ≤ F (d(x, y)),

then T has a fixed point in X.

Theorem 1.11 ([24]). Let (X, d) be a complete metric space and T : X → CB(X). If there exists F ∈ F∗ and
τ : (0,∞)→ (0,∞) satisfying all the condition of Theorem 1.10, then T has a fixed point in X.

On the other side, Minak et al. [21], extended the results of Wardowski’s as:

Theorem 1.12 ([21]). Let (X, d) be a complete metric space, T : X → K(X) and F ∈ F. If there exists τ > 0 such
that for any z ∈ X with D(z,T z) > 0, there exists y ∈ F z

σ satisfying

τ + F (D(y,T y)) ≤ F (d(z, y)),

where
F

z
σ = {y ∈ T z : F (d(z, y)) ≤ F (D(z,T z)) + σ},

then T has a fixed point in X provided σ < τ and z→ d(z,T z) is lower semi-continuous.
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Theorem 1.13 ([21]). Let (X, d) be a complete metric space,T : X → C(X) andF ∈ F∗ satisfying all the assumption
of Theorem 1.12. Then T has a fixed point in X.

Minak et al. [21] also showed that F z
σ , ∅ in both cases when F ∈ F and F ∈ F∗. Very recently, Altun et al.

[4] generalized Theorem 1.1 by adopting the concept of [21] as follows:

Theorem 1.14 ([4]). Let (X, d) be a complete metric space, T : X → C(X) and F ∈ F∗. Assume that the following
conditions hold:

1. the map z→ D(z,T z) is lower semi-continuous;

2. there exists σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ for s ≥ 0

and for any z ∈ X with D(z,T z) > 0, there exists y ∈ F z
σ satisfying

τ(d(z, y)) + F (D(y,T y)) ≤ F (d(z, y)).

Then T has a fixed point.

Theorem 1.15 ([4]). Let (X, d) be a complete metric space, T : X → K(X) and F ∈ F satisfying all the conditions
of Theorem 1.14. Then T has a fixed point.

By considering the above facts, we define α-type F -τ-contraction for multivalued mappings and prove
non-linear form of Mizouguchi-Takahashi’s type fixed point theorems. Our results generalize and extend
many existing results in literature including the works in [3], [4], [12], [21] and [24].

2. Main Results

We begin this section with the following definition.

Definition 2.1. Let T : X → 2X be a multivalued mapping on a metric space (X, d), then T is said to be an α-type
F -τ-contraction on X, if there exists σ > 0, τ : (0,∞)→ (σ,∞), F ∈ F and α : X×X → {−∞} ∪ (0,+∞) such that
for all z ∈ X, y ∈ F z

σ with D(z,T z) > 0 satisfying

τ(d(z, y)) + α(z, y)F (D(y,T y)) ≤ F (M(z, y)), (2.1)

where,

M(z, y) = max
{

d(z, y),D(z,T z),D(y,T y),
D(y,T z) + D(z,T y)

2
,

D(y,T y)[1 + D(z,T z)]
1 + d(z, y)

,
D(y,T z)[1 + D(z,T y)]

1 + d(z, y)

}
.

(2.2)

Theorem 2.2. Let (X, d) be a complete metric space and T : X → K(X) be an α-type F -τ-contraction satisfying the
following assertions:

1. T is generalized α∗-admissible mapping;

2. the map z→ D(z,T z) is lower semi-continuous;

3. there exists z0 ∈ X and z1 ∈ T z0 such that α(z0, z1) ≥ 1;
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4. τ satisfies

lim
t→s+

inf τ(t) > σ for all s ≥ 0

Then T has a fixed point in X.

Proof. Let z0 ∈ X, since T z ∈ K(X) for every z ∈ X, the set F z
σ is non-empty for any σ > 0, then there exists

z1 ∈ F
z0
σ and by hypothesis α(z0, z1) ≥ 1. Assume that z1 < T z1, otherwise z1 is the fixed point of T . Then,

since T z1 is closed, D(z1,T z1) > 0, so, from (2.1), we have

τ(d(z0, z1)) + α(z0, z1)F (D(z1,T z1)) ≤ F (M(z0, z1)), (2.3)

where

M(z0, z1) = max
{

d(z0, z1),D(z0,T z0),D(z1,T z1),
D(z1,T z0) + D(z0,T z1)

2
,

D(z1,T z1)[1 + D(z0,T z0)]
1 + d(z0, z1)

,
D(z1,T z0)[1 + D(z0,T z1)]

1 + d(z0, z1)

}
.

(2.4)

Since T z0 and T z1 are compact, so we have

M(z0, z1) = max
{

d(z0, z1), d(z0, z1), d(z1, z2),
d(z1, z1) + d(z0, z2)

2
,

d(z1, z2)[1 + d(z0, z1)]
1 + d(z0, z1)

,
d(z1, z1)[1 + d(z0, z2)]

1 + d(z0, z1)

}
= max

{
d(z0, z1), d(z1, z2),

d(z0, z2)
2

}
.

(2.5)

Since d(z0,z2)
2 ≤

d(z0,z1)+d(z1,z2)
2 ≤ max{d(z0, z1), d(z1, z2)}, it follows that

M(z0, z1) ≤ max{d(z0, z1), d(z1, z2)}. (2.6)

Suppose that d(z0, z1) < d(z1, z2), then (2.3) implies that

τ(d(z0, z1)) + F (D(z1,T z1)) ≤ τ(d(z0, z1)) + α(z0, z1)F (D(z1,T z1))
≤ F (d(z1, z2)),

(2.7)

consequently,

τ(d(z0, z1)) + F (d(z1, z2)) ≤ F (d(z1, z2)), (2.8)

or, F (d(z1, z2)) ≤ F (d(z1, z2)) − τ(d(z0, z1)), which is a contradiction. Hence M(d(z0, z1)) ≤ d(z0, z1), therefore
by using F1, (2.3) implies that

τ(d(z0, z1)) + α(z0, z1)F (d(z1, z2)) ≤ F (d(z0, z1)). (2.9)

Now for z1 ∈ X there exists z2 ∈ F
z1
σ with z2 < T z2, otherwise z2 is the fixed point of T , since T z2 is closed,

so, D(z2,T z2) > 0. Since T is generalized α∗-admissible, then α(z1, z2) ≥ 1. Again by using (2.1), we get

τ(d(z1, z2)) + α(z1, z2)F (D(z2,T z2)) ≤ F (M(z1, z2)), (2.10)

where

M(z1, z2) = max
{

d(z1, z2),D(z1,T z1),D(z2,T z2),
D(z2,T z1) + D(z1,T z2)

2
,

D(z2,T z2)[1 + D(z1,T z1)]
1 + d(z1, z2)

,
D(z2,T z1)[1 + D(z1,T z2)]

1 + d(z1, z2)

}
.

(2.11)
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Since T z1 and T z2 are compact, so we have

M(z1, z2) = max
{

d(z1, z2), d(z2, z3),
d(z1, z3)

2

}
. (2.12)

Since d(z1,z3)
2 ≤

d(z1,z2)+d(z2,z3)
2 ≤ max{d(z1, z2), d(z2, z3)}, it follows that

M(z1, z2) ≤ max{d(z1, z2), d(z2, z3)}. (2.13)

Suppose that d(z1, z2) < d(z2, z3), then (2.10) implies that F (d(z2, z3)) ≤ F (d(z2, z3)) − τ(d(z1, z2)), which is a
contradiction. Hence M(d(z1, z2)) ≤ d(z1, z2), therefore by using F1, (2.10) implies that

τ(d(z1, z2)) + α(z1, z2)F (d(z2, z3)) ≤ F (d(z1, z2)). (2.14)

On continuing recursively, we get a sequence {zn}n∈N in X, where zn+1 ∈ F
zn
σ , zn+1 < T zn+1, α(zn, zn+1) ≥ 1,

M(zn, zn+1) ≤ d(zn, zn+1) and

τ(d(zn, zn+1)) + F (D(zn+1,T zn+1)) ≤ F (d(zn, zn+1)). (2.15)

Since zn+1 ∈ F
zn
σ and T zn and T zn+1 are compact, we have

τ(d(zn, zn+1)) + F (d(zn+1, zn+2)) ≤ F (d(zn, zn+1)) (2.16)

and

F (d(zn, zn+1)) ≤ F (d(zn, zn+1)) + σ. (2.17)

Combining (2.16) and (2.17) gives

F (d(zn+1, zn+2)) ≤ F (d(zn, zn+1)) + σ − τ(d(zn, zn+1)) (2.18)

Let dn = d(zn, zn+1) for n ∈ N, then dn > 0 and from (2.18) {dn} is decreasing. Therefore, there exists δ ≥ 0
such that limn→∞ dn = δ. Now let δ > 0. From (2.18), we get

F (dn+1) ≤ F (dn) + σ − τ(dn)
≤ F (dn−1) + 2σ − τ(dn) − τ(dn−1)
...

≤ F (d0) + nσ − τ(dn) − τ(dn−1) − · · · − τ(d0).

(2.19)

Let τ(dpn ) = min{τ(d0), τ(d1), · · · , τ(dn)} for all n ∈N. From (2.19), we get

F (dn+1) ≤ F (d0) + n(σ − τ(dpn )). (2.20)

From (2.15), we also get

F (D(zn+1,T zn+1)) ≤ F (D(z0,T z0)) + n(σ − τ(dpn )). (2.21)

Now consider the sequence {τ(dpn )}. We distinguish two cases.
Case 1. For each n ∈N, there is m > n such that τ(dpn ) > τ(dpm ). Then we obtain a subsequence {dpnk

} of {dpn }

with τ(dpnk
) > τ(dpnk+1

) for all k. Since dpnk
→ δ+, we deduce that

lim
k→∞

inf τ(dpnk
) > σ.

Hence F (dnk ) ≤ F (d0) + n(σ − τ(dpnk
)) for all k. Consequently, limk→∞ F (dnk ) = −∞ and by (F 2), we obtain

limk→∞ dpnk
) = 0, which contradicts that limn→∞ dn > 0.

Case 2. There is n0 ∈ N such that τ(dpn0
) > τ(dpm ) for all m > n0. Then F (dm) ≤ F (d0) + m(σ − τ(dpn0

)) for
all m > n0. Hence limm→∞ F (dm) = −∞, so limm→∞ dm = 0, which contradicts that limm→∞ dm > 0. Thus,
limn→∞ dn = 0. From (F3), there exists 0 < r < 1 such that

lim
n→∞

(dn)r
F (dn) = 0. (2.22)
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By (2.20), we get for all n ∈N

(dn)r
F (dn) − (dn)r

F (d0) ≤ (dn)rn(σ − τ(d − pn)) ≤ 0. (2.23)

Letting n→∞ in (2.23), we obtain

lim
n→∞

n(dn)r = 0 (2.24)

This implies that there exists n1 ∈ N such that n(dn)r
≤ 1, or, dn ≤

1
n1/r , for all n > n1. Next, for m > n ≥ n1

we have

d(zn, zm) ≤
m−1∑
i=n

d(zi, zi+1) ≤
m−1∑
i=n

1
i1/k

,

since 0 < k < 1,
∑m−1

i=n
1

i1/k converges. Therefore, d(zn, zm)→ 0 as m,n→ ∞. Thus, {zn} is a Cauchy sequence.
Since X is complete, there exists z∗ ∈ X such that zn → z∗ as n→∞. From equations (2.21) and F2, we have

lim
n→∞

D(zn,T zn) = 0.

Since z→ D(z,T z) is lower semi-continuous, then

0 ≤ D(z,Tz) ≤ lim
n→∞

inf D(zn,T zn) = 0.

Thus, T has a fixed point.

In the following theorem we take C(X) instead of K(X), then we need to take F ∈ F∗ in Definition 2.1.

Theorem 2.3. Let (X, d) be a complete metric space and T : X → C(X) be an α-type F -τ-contraction with F ∈ F∗
satisfying all the assertions of Theorem 2.2. Then T has a fixed point in X.

Proof. Let z0 ∈ X, since T z ∈ C(X) for every z ∈ X and F ∈ F∗, the set F z
σ is non-empty for any σ > 0, then

there exists z1 ∈ F
z0
σ and by hypothesis α(z0, z1) ≥ 1. Assume that z1 < T z1, otherwise z1 is the fixed point

of T . Then, since T z1 is closed, D(z1,T z1) > 0, so, from (2.1), we have

τ(d(z0, z1)) + α(z0, z1)F (D(z1,T z1)) ≤ F (M(z0, z1)), (2.25)

where

M(z0, z1) = max
{

d(z0, z1),D(z0,T z0),D(z1,T z1),
D(z1,T z0) + D(z0,T z1)

2
,

D(z1,T z1)[1 + D(z0,T z0)]
1 + d(z0, z1)

,
D(z1,T z0)[1 + D(z0,T z1)]

1 + d(z0, z1)

}
.

(2.26)

The rest of the proof can be completed as in the proof of Theorem 2.2 by considering the closedness of T z,
for all z ∈ X.

Example 2.4. Let X =
{

1
2n−1 : n ∈N

}
∪ {0} with usual metric d. Then (X, d) is a complete metric space. Define

T : X → C(X), α : X ×X → R+, and F : R+
→ R by

T z =


{

1
2n , 1

}
if z = 1

2n−1{
0, 1

2

}
if z = 0,

α(z, y) =


2n+1 if z = 1

2n−1 , y = 1
2n

2 if z, y ∈
{

1
2n−1 , 1

}
0 if z = 0
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and F (r) = ln(r).
Then

D(z,T z) =

{
1
2n if z = 1

2n−1 ,n > 1
0 if z = 0, 1,

hence z→ D(z,T z) is lower semi-continuous. Let D(z,T z) > 0 and τ(t) = 1
t + 1

2 for σ = 1
2 , then z = 1

2n−1 ,n > 1, so,
T z =

{
1
2n , 1

}
. Thus for y = 1

2n ∈ T z, we have

F (d(z, y)) − FD(z,T z) = F
( 1

2n

)
− F

( 1
2n

)
= 0.

Therefore, y ∈ F z
σ for σ = 1

2 and

M(z, y) = max
{ 1

2n ,
1
2n ,

1
2n+1 , 0,

1
2n+1 , 0

}
=

1
2n .

This implies that

τ(d(z, y)) + α(z, y)F (D(y,T y)) = τ
( 1

2n

)
+ 2n+1

F

( 1
2n+1

)
= 2n +

1
2
− 2n+1 ln

(
2n+1

)
< − ln(2n) = ln

( 1
2n

)
= F (M(z, y)).

Hence T is α-type F -τ-contraction.
Since α(z, y) ≥ 1 when z, y ∈

{
1

2n−1 , 1
}

and z = 1
2n−1 , y = 1

2n−1 , this implies that α(u, v) > 1 for all u ∈ T z and v ∈ T y.
Hence T is generalized α∗ admissible mapping. Thus, all conditions of Theorem 2.3 hold and 0 is a fixed point of T .
On the other hand, for z = 1

2 there exists y = 1
4 ∈ F

z
σ for σ = 1

2 such that

τ(d(z, y)) + F (D(y,T y)) = τ
(1

4

)
+ F

(1
8

)
= 4 +

1
2
− ln(8) = 2.421

> −1.386 = ln
(1

4

)
= F (d(z, y)).

That is, Theorem 1.14 can not be applied for this example.

By taking α(z0, z1) = 1 in Theorems 2.2 and 2.3, we get the following:

Corollary 2.5. Let (X, d) be a complete metric space, T : X → K(X) andF ∈ F. If there exists σ > 0, and a function
τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ for all s ≥ 0

and for all z ∈ X with D(z,T z) > 0, there exists y ∈ F z
σ satisfying

τ(d(z, y)) + F (D(y,T y)) ≤ F (M(z, y)), (2.27)

where M(z, y) is given in (2.2). Then T has a fixed point in X provided that z→ D(z,T z) is lower semi-continuous.
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Corollary 2.6. Let (X, d) be a complete metric space, T : X → C(X) and F ∈ F∗. If there exists σ > 0, and a
function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ for all s ≥ 0

and for all z ∈ X with D(z,T z) > 0, there exists y ∈ F z
σ satisfying

τ(d(z, y)) + F (D(y,T y)) ≤ F (M(z, y)), (2.28)

where M(z, y) is given in (2.2). Then T has a fixed point in X provided that z→ D(z,T z) is lower semi-continuous.

Remark 2.7. Corollary 2.5 and Corollary 2.6 generalize the Theorem 1.15 and Theorem 1.14, respectively. If we
take τ as a constant function, then Corollary 2.5 and Corollary 2.6 is a generalization of Theorem 1.12 and 1.13,
respectively.

As an application of Theorems 2.2 and 2.3, we obtain the following:

Theorem 2.8. Let (X, d) be a complete metric space, T : X → K(X) be a continuous mapping and F ∈ F. Assume
that the following assertions hold:

1. T is generalized α∗-admissible mapping;

2. there exists z0 ∈ X and z1 ∈ T z0 such that α(z0, z1) ≥ 1;

3. there exists τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0 for all s ≥ 0

and for all z ∈ X with H(T z,T y) > 0, there exist a function α : X ×X → {−∞} ∪ (0,+∞) satisfying

τ(d(z, y)) + α(z, y)F (H(T z,T y)) ≤ F (M(z, y)), (2.29)

where M(z, y) is defined in (2.2).

Then T has a fixed point in X.

Proof. Since T is continuous if and only if it is both upper and lower semi-continuous, then T is upper
semi-continuous. Therefore, the function z→ D(z,T z) is lower semi-continuous (see the proposition 4.2.6
of [5]). On the other hand, for any z ∈ Xwith D(z,T z) > 0 and y ∈ F z

σ , we have

τ(d(z, y)) + α(z, y)F (D(y,T y)) ≤ τ(d(z, y)) + α(z, y)F (H(T z,T y))
≤ F (M(z, y)).

Thus, all conditions of Theorem 2.2 are satisfied. Hence T has a fixed point.

By similar arguments of Theorem 2.8 and using Theorem 2.3, we state the following:

Theorem 2.9. Let (X, d) be a complete metric space, T : X → C(X) be a continuous mapping and F ∈ F∗ satisfying
all assertions of Theorem 2.8. Then T has a fixed point in X.

By considering α(z, y) = 1 reduces Theorems 2.8 and 2.9 to the following:
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Corollary 2.10. Let (X, d) be a complete metric space, T : X → K(X) be a continuous mapping and F ∈ F. If there
exists τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0 for all s ≥ 0

and for all z ∈ X with H(T z,T y) > 0 satisfying

τ(d(z, y)) + F (H(T z,T y)) ≤ F (M(z, y)),

where M(z, y) is defined in (2.2). Then T has a fixed point in X.

Corollary 2.11. Let (X, d) be a complete metric space, T : X → C(X) be a continuous mapping and F ∈ F∗
satisfying all assertions of Corollary 2.10. Then T has a fixed point in X.

Remark 2.12. Corollary 2.10 and Corollary 2.11 generalize the Theorems 1.10 and Theorem 1.11, respectively. If
we take τ as a constant function, then Corollary 2.5 and Corollary 2.6 is a generalization of Theorems 1.8 and 1.9,
respectively.

From Theorems 2.8 and 2.9, we get the following fixed point result for single valued mappings:

Theorem 2.13. Let (X, d) be a complete metric space, T : X → X be a continuous mapping and F ∈ F. Assume
that the following assertions hold:

1. T is α-admissible mapping;

2. there exists z0, z1 ∈ X such that α(z0, z1) ≥ 1;

3. there exists τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0 for all s ≥ 0

and for all z ∈ X with d(T z,T y) > 0, there exist a function α : X ×X → {−∞} ∪ (0,+∞) satisfying

τ(d(z, y)) + α(z, y)F (d(T z,T y)) ≤ F (m(z, y)), (2.30)

where

m(z, y) = max
{

d(z, y), d(z,T z), d(y,T y),
d(y,T z) + d(z,T y)

2
,

d(y,T y)[1 + d(z,T z)]
1 + d(z, y)

,
d(y,T z)[1 + d(z,T y)]

1 + d(z, y)

}
.

(2.31)

Then T has a fixed point in X.

Remark 2.14. If we take τ, a constant function in (2.30), Theorem 2.13 generalizes the Theorem 1.8.
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3. Fixed point results in partially ordered metric space

Let (X, d,�) be a partially ordered metric space and T : X → 2X be a multivalued mapping. For
A,B ∈ 2X, A � B implies that a � b for all a ∈ A and b ∈ B. We say that T is monotone increasing if
T y � T z for all y, z ∈ X, for which y � z. There are many applications in differential and integral equations
of monotone mappings in ordered metric spaces (see [7, 16, 25] and references therein). In this section, we
derive following new results in partially ordered metric spaces from our main results.

Definition 3.1. Let T : X → 2X be a multivalued mapping on a partially ordered metric space (X, d,�), then T is
said to be an ordered F -τ-contraction on X, if there exists σ > 0 and τ : (0,∞) → (σ,∞), F ∈ F such that for all
z ∈ X, y ∈ F z

σ with z � y and D(z,T z) > 0 satisfying

τ(d(z, y)) + F (D(y,T y)) ≤ F (M(z, y)), (3.1)

where,

M(z, y) = max
{

d(z, y),D(z,T z),D(y,T y),
D(y,T z) + D(z,T y)

2
,

D(y,T y)[1 + D(z,T z)]
1 + d(z, y)

,
D(y,T z)[1 + D(z,T y)]

1 + d(z, y)

}
.

(3.2)

Theorem 3.2. Let (X, d,�) be a complete partially ordered metric space and T : X → K(X) be an ordered F -τ-
contraction satisfying the following assertions:

1. T is monotone increasing;

2. the map z→ D(z,T z) is lower semi-continuous;

3. there exists z0 ∈ X and z1 ∈ T z0 such that z0 � z1;

4. τ satisfies

lim
t→s+

inf τ(t) > σ for all s ≥ 0

Then T has a fixed point in X.

Proof. Define α : X ×X → [0,∞) by

α(z, y) =

{
1 z � y
0 otherwise,

then for z, y ∈ X with z � y, α(z, y) ≥ 1 implies α∗(T z,T y) = 1. This shows that T is generalized
α∗-admissible mapping. Also, from (3.1), we get

τ(d(z, y)) + α(z, y)F (D(y,T y)) ≤ τ(d(z, y)) + F (D(y,T y))
≤ F (M(z, y)).

So, T is α-type F -τ-contraction. Thus, all the conditions of Theorem 2.2 hold true. Hence, T has a fixed
point in X.

By similar arguments as in Theorem 3.2 and by using Theorem 2.3, we get the following:

Theorem 3.3. Let (X, d,�) be a complete partially ordered metric space and T : X → C(X) be an ordered F -τ-
contraction with F ∈ F∗ satisfying all the assertions of Theorem 3.2. Then T has a fixed point in X.

Theorem 3.4. Let (X, d,�) be a complete partially ordered metric space, T : X → K(X) be a continuous mapping
and F ∈ F. Assume that the following assertions hold:
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1. T is monotone increasing;

2. there exists z0 ∈ X and z1 ∈ T z0 such that z0 � z1;

3. there exists τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0 for all s ≥ 0

and for all z, y ∈ X with z � y and H(T z,T y) > 0 satisfying

τ(d(z, y)) + F (H(T z,T y)) ≤ F (M(z, y)), (3.3)

where M(z, y) is defined in (3.2).

Then T has a fixed point in X.

Proof. By defining α : X × X → [0,∞) as in Theorem (3.2) and by using Theorem (2.8), we get the required
result.

By similar arguments as in Theorem 3.4 and by using Theorem 2.9, we get the following:

Theorem 3.5. Let (X, d,�) be a complete partially ordered metric space, T : X → C(X) be a continuous mapping
and F ∈ F∗ satisfying all assertions of Theorem 3.4. Then T has a fixed point in X.

From Theorems 3.4 and 3.5, we get the following fixed point result for single valued mapping.

Theorem 3.6. Let (X, d,�) be a complete partially ordered metric space, T : X → X be a continuous mapping and
F ∈ F. Assume that the following assertions hold:

1. T is monotone increasing;

2. there exists z0, z1 ∈ X such that z0 � z1;

3. there exists τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0 for all s ≥ 0

and for all z, y ∈ X with z � y and d(T z,T y) > 0 satisfying

τ(d(z, y)) + F (d(T z,T y)) ≤ F (m(z, y)), (3.4)

where

m(z, y) = max
{

d(z, y), d(z,T z), d(y,T y),
d(y,T z) + d(z,T y)

2
,

d(y,T y)[1 + d(z,T z)]
1 + d(z, y)

,
d(y,T z)[1 + d(z,T y)]

1 + d(z, y)

}
.

(3.5)

Then T has a fixed point in X.
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4. Application to Non-Linear Matrix Equation

Let H(n) denote the set of all n×n Hermitian matrices, P(n) the set of all n×n Hermitian positive definite
matrices, S(n) the set of all n × n positive semidefinite matrices. Instead of X ∈ P(n) we will write X > 0.
Furthermore, X ≥ 0 means X ∈ S(n). Also we will use X ≥ Y (X ≤ Y) instead of X − Y ≥ 0 (Y −X ≥ 0). The
symbol ||.|| denotes the spectral norm, that is,

||A|| =
√
λ+(A∗A),

where λ+(A∗A) is the largest eigenvalue of A∗A. We denote by ||.||1 the Ky Fan norm defined by

||A||1 =

n∑
i=1

si(A),

where si(A), i = 1, ...,n, are the singular values of A. Also,

||A||1 = tr((A∗A)1/2),

which is tr(A) for (Hermitian) nonnegative matrices. Then the set H(n) endowed with this norm is a complete
metric space. Moreover, H(n) is a partially ordered set with partial order �, where X � Y⇔ Y � X. In this
section, denote d(X,Y) = ||Y − X||1 = tr(Y − X).
Now, consider the non-linear matrix equation

X = Q +

m∑
i=1

A∗iγ(X)Ai, (4.1)

where Q is a positive definite matrix, Ai, i = 1, ...,m, are arbitrary n×n matrices and γ is a mapping from H(n)
to H(n) which maps P(n) into P(n). Assume that γ is an order-preserving mapping (γ is order preserving if
A,B ∈ H(n) with A � B implies that γ(A) � γ(B)). Now we prove the following result.

Theorem 4.1. Let γ : H(n) → H(n) be an order-preserving mapping which maps P(n) into P(n) and Q ∈ P(n).
Assume that there exists a positive number N for which

∑m
i=1 AiA∗i ≺ NIn and

∑m
i=1 A∗iγ(Q)Ai � 0 such that for all

X � Y we have

d(γ(X), γ(Y)) ≤
1
N

m(Y,X)e−
(

2+d(X,Y)
2d(X,Y)

)
, (4.2)

where

m(X,Y) = max
{

d(X,Y), d(X,TX), d(Y,TY),
d(Y,TY) + d(X,TX)

2
,

d(Y,TY)[1 + d(X,TX)]
1 + d(X,Y)

,
d(Y,TX)[1 + d(X,TY)]

1 + d(X,Y)

}
.

Then 4.1 has a solution in P(n).

Proof. Define T : H(n)→ H(n) and F : R+
→ R by

T (X) = Q +

m∑
i=1

A∗iγ(X)Ai (4.3)
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and F(r) = ln r respectively. Then a fixed point of T is a solution of (4.1). Let X,Y ∈ H(n) with X � Y, then
γ(X) � γ(y). So, for d(X,Y) > 0 and τ(t) = 1

t + 1
2 , we have

d(TX,TY) = ||TY − TX||1
= tr(TY − TX)

=

m∑
i=1

tr(AiA∗i (γ(Y) − γ(X)))

= tr


 m∑

i=1

AiA∗i

 (γ(Y) − γ(X))


≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

m∑
i=1

AiA∗i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ||γ(Y) − γ(X)||1

≤

∣∣∣∣∣∣∑m
i=1 AiA∗i

∣∣∣∣∣∣
N

m(Y,X)e
−

(
2+||Y−X||1
2||Y−X||1

)

< m(Y,X)e
−

(
2+||Y−X||1
2||Y−X||1

)
,

and so,

ln(||TY − TX||1) < ln
(
m(Y,X)e

−

(
2+||Y−X||1
2||Y−X||1

))
= ln(m(X,Y)) −

2 + ||Y − X||1
2||Y − X||1

.

This implies that

1
||Y − X||1

+
1
2

+ ln(||TY − TX||1) < ln(m(X,Y)).

Consequently,

τ(d(X,Y)) + F (d(TX,TY)) < F (m(X,Y)).

Also, from
∑m

i=1 A∗iγ(Q)Ai � 0, we have Q � T (Q). Thus, by using Theorem 3.6, we conclude that T has a
fixed point and hence 4.1 has a solution in P(n).
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