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Abstract. We give a sufficient condition on metric spaces possessing the Banach fixed point property
(BFPP). Further we also give a sufficient condition on not possessing BFPP.
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1. Introduction
The following famous theorem is referred to as the Banach contraction principle.

Theorem 1.1 ([1, 51). Let (X,d) be a complete metric space and let T be a contraction on X, that is, there exists
r € (0,1) such that

d(Tx, Ty) < rd(x,y) (1)
forall x,y € X. Then T has a unique fixed point z and {T"x} converges to z for any x € X.

This theorem is very forceful and simple and it became a classical tool in nonlinear analysis. Moreover
it has many generalizations; see [3, 6-8, 11, 13, 15-19, 21-23, 25] and others. On the other hand, Connell [9]
gave an example of a metric space X such that X is not complete and every contraction on X has a fixed
point. Thus, Theorem 1.1 cannot characterize the metric completeness of X. We have discussed the metric
completeness about the fixed point property for other mappings; see [14, 20, 23, 26] and others. See also
[2,24].

Definition 1.2 ([12]). A metric space (X, d) is said to possess the Banach fixed point property (BFPP, for short) if
every contraction on X has a fixed point.

Theorem 1.1 tells that every complete metric space possesses BFPP. Borwein in [4] gave another example
of a metric space possessing BFPP.
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Theorem 1.3 (Borwein [4]). Define a subset X of the 2-dimensional Euclidean space R* by
X=1{0pu| JLs,
k=1
where

L ={(¢t,t27%) : € (0,1]}
for k € N. Then X possesses BFPP.

In 2007, Xiang proved some splendid results on BFPP. The following is one of them, which includes
Theorem 1.3, but does not include Theorem 1.1.

Theorem 1.4 (Xiang [27]). A locally Lipschitz-connected metric space possesses BFPP iff it is Lipschitz-complete.

Motivated by the above, in this paper, we prove a generalization of both Theorems 1.1 and 1.3. Our
approach differs from that of Xiang [27]. We also give a sufficient condition on not possessing BFPP.

2. A General Case

Let (X, d) be a metric space. Throughout this paper we denote by CauS(X) the set of all Cauchy sequences
in X. We also denote by IN the set of all positive integers and by R the set of all real numbers.
In this section, we prove a fixed point theorem in a very general setting.

Definition 2.1. Let (X,d) be a metric space and let £ be a function from X x CauS(X) into [0,00]. Then X
is said to satisfy Condition (£) if for every {x,} € CauS(X), there exists w € X such that {(w,{x,}) < oo and
(1/2) (w, {x,}) < €(x, {xn}) for any x € X\ {w}.

Theorem 2.2. Let (X, d) be a metric space and € be a function from X x CauS(X) into [0, oo]. Let T be a mapping on
X. Assume the following:

(i) X satisfies Condition (£).
(ii) There exists v € X such that {T"v} € CauS(X).
(iii) There exists r € (0,1) such that

O(Tx, {T"0}) < ré(x, {T"0}) @)
forany x € X.
Then the following hold:
() T has a unique fixed point z.
() £(z,AT"v}) = 0 holds.
(i) limy, €(T™x, {T"0}) = 0 holds for any x € X.

Proof. Since X satisfies Condition (£), there exists z € X such that £(z, {T"v}) < oo and (1/2) {(z, {T"v}) <
t(x, {T"0v}) for any x € X \ {z}. We consider the following two cases:

e {(z,{T"v}) =0

o {(z,{T"v}) >0
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In the first case, we note €(x, {T"v}) > 0 for any x € X\ {z}. Since €(Tz, {T"v}) = 0 holds from (2), z is a fixed
point of T. In the second case, from (2) we have

lim £(T"z,{T"v}) < lim " £(z,{T"v}) = 0.

m—00

Hence there exists p € N satisfying
LTz, {T"v}) < (1/2) €(z, {T"0})
< min {inf {£(x, {T"0}) : x € X\ (2}, (=, {T"0}))
= inf{£(x, {T"0}) : x € X},
which is a contradiction. So the second case cannot be possible. As above,

lim €(T"x,{T"v}) =0

m—oo
holds for any x € X. Therefore the fixed point z is unique. [
Using Theorem 2.2, we obtain the following fixed point theorem.

Theorem 2.3. Let (X, d) be a metric space and € be a function from X x CauS(X) into [0, oo]. Let T be a contraction
on X. Assume the following:

(i) X satisfies Condition (£).
(ii) There exists v € X such that
lim d(x, T"v) < €(x, {T"v})

forany x € X.
(iii) There exists r € (0, 1) satisfying (2) for any x € X.

Then T has a unique fixed point z and {T"x} converges to z for any x € X.
Remark 2.4. Let {x,} € CauS(X). Then it is well known that a function p from X into [0, co) defined by

p(x) = lim d(x, x,) 3)
for x € X is well defined. Also it is well known that

p(x) = py)l < d(x, y) < p(x) + p(y) 4)
forany x,y € X.

Proof. Since T is a contraction, there exists s € (0, 1) such that d(Tx, Ty) < sd(x,y) forall x,y € X. Fixv € X.
Then since

Z d(T"v, T 1v) < 2 s"d(v, To) < oo,

n=1 n=1

we have {T"v} € CauS(X). Thus, (ii) of Theorem 2.2 holds. So by Theorem 2.2, (j)—(jjj) of Theorem 2.2 hold.
Thus, T has a unique fixed point z. By (4) and (ii), we have

d(x,y) < lim d(x, T"v) + lim d(y, T"v) < £(x,{T"0}) + €(y, {T"v}) (5)
for any x, y € X. Using (5) and Theorem 2.2 (jj) and (jjj), we have
lim d(T"x,z) < lim (£(T"x, {T"0}) + £(z, {T"0})) = 0

for any x € X. Thus we obtain the desired result. O
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In order to understand Condition (£), Theorems 2.2 and 2.3 well, we prove the Banach contraction
principle (Theorem 1.1 above) by using Theorem 2.3.

In the remainder of this section, let (X, 4) be a metric space and let £ be a function from X x CauS(X) into
[0, o) defined by

{x, {x}) = lim d(x, x,) (6)

for (x, {x,,}) € X x CauS(X).

Proposition 2.5. Let (X, d) be a metric space and define a function € by (6). Then X is complete iff X satisfies
Condition (£).

Proof. Obvious. [
Proof of Theorem 1.1. By Proposition 2.5, X satisfies Condition (£). Fix v € X. Then we have
d(Tx, T"'v) < rd(x, T"v)

and hence (2) holds for any x € X. So by Theorem 2.3, we obtain the desired result. [J

3. A Special Case

In this section, we prove a fixed point theorem in metric spaces satisfying Condition (£) for some fixed
L.

Definition 3.1. Let (X, d) be a metric space, let x,y € X, {x,} € CauS(X) and € > 0.

o Afinitesequence{yy,--- , ym}in Xis said to be e-chain linking x and y [10] if y1 = x, Y = yand d(y;, yj+1) < €
foranyje(l,--- ,m—1}

o (x,vy) is said to be e-chainable if there exists e-chain linking x and y.
o (x,{xy}) is said to be e-chainable if there exists v € IN such that (x, x,) is e-chainable for any n > v.

In this section, we let (X, d) be a metric space. For ¢ > 0, we define a function ¢, from X x CauS(X) into
[0, oo] by

m—1
Ce(x, {x,}) = lim sup inf Z d(yj, yj+1) : {y1,- - , Ym} is e-chain linking x and xn}, (7)
j=1

where inf @ = co. We also define a function ¢ from X x CauS(X) into [0, o] by
£0c, b)) = sup {£e(x, b)) < € > 0] (8)

for (x, {x,,}) € X x CauS(X).

Lemma 3.2. Let (X, d) be a metric space and let € be a function defined by (8). Let {x,} € CauS(X) and define a
function p by (3). Then the following hold:

(i) Foranyx € Xand ¢,¢’ € (0,00) with ¢ < €',
p(x) < Cor(x, {xu}) < Ce(x, {xn}) < €lx, {x4})

holds.
(if) Forany w € X, {x,} converges to w iff £(w, {x,}) = 0.
(iii) If X satisfies Condition (€), then {x,} does not converge iff 0 < inf{€(x, {x,}) : x € X} < o0.
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Proof. (i) is obvious. In order to show (ii), we fix w € X. It follows from (i) that {(w, {x,}) = 0 implies
that {x,} converges to w. In order to show the converse implication, we assume that {x,} converges to w.
For any ¢ > 0, a two-length sequence {w, x,} is e-chain linking w and x, for sufficiently large n € IN. So,
te(w, {x,}) = 0 holds and hence ¢(w, {x,}) = 0 holds. We shall show (iii). We put

t = inf{€(x, {x,}) : x € X}.

Since X satisfies Condition (¢), there exists w € X such that €(w, {x,}) < co and (1/2) &(w, {x,,}) < €(x, {x,}) for
any x € X \ {w}. So t < oo holds. We assume ¢ = 0. Then {(w, {x,}) = 0 holds. So, by (ii), {x,} converges to
w. Conversely, we assume that {x,} converges to some x € X. Then by (ii), we have €(x, {x,}) = 0 and hence
t = 0. We have shown (iii). O

Theorem 3.3. Let (X, d) be a metric space and let € be a function defined by (8). Assume that X satisfies Condition
(). Let T be a contraction on X. Then T has a unique fixed point z. Moreover {T"x} converges to z for any x € X.

Proof. There exists r € (0,1) satisfying (1) for any x,y € X. Fix v € X. By Lemma 3.2, (ii) of Theorem 2.3
holds. In order to show (iii) of Theorem 2.3, we fix x € X. We consider the following two cases:

o {(x,{T"v}) = o0
o {(x,{T"v}) < o0
In the first case,
U(Tx,{T"0}) < 0o = r&(Tx,{T"v})

holds. In the second case, we fix ¢ > 0. Then from the definition of ¢, (x, {T"v}) is e-chainable. So, there
exists v € IN such that (x, T"v) is e-chainable for any n > v. Fix n > v and let {y1, y»,--- , ¥} be an arbitrary
e-chain linking x and T"v. Then since T is a contraction, {Ty1, Ty2, -, Tyu} is (r €)-chain linking Tx and
T"+1p and hence is e-chain. Also

-1 m—1

d(Ty;, Tyjn) <r Z Ay, yjs1)

j=1

3

]

1l
—_

is obvious. Since {y1, ¥, , Ym} is arbitrary, we obtain
Ce(Tx, {T"0}) < 1 Le(x, {T"0}).

Since ¢ > 0 is arbitrary, we obtain (2). We have shown (iii) of Theorem 2.3 holds. So by Theorem 2.3, we
obtain the desired result. O

Using Theorem 3.3, we prove Theorem 1.3.

Proof of Theorem 1.3. Define a function ¢ by (8). Let x € X and {x,} € CauS(X). We consider the following
three cases:

e {x,} converges to 0.
e {x,} converges to some w € X \ {0}.
e {x,} does not converge.

In the first case, it is obvious that £(x, {x,}) = d(x, 0) holds. So,

£(0,{x,}) =0 < 0
and

(1/2) €0, {x}) = 0 < d(x, 0) = £(x, {xu})
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for any x € X \ {0}. In the second case, we choose k € IN satisfying w € L. It is obvious that

d(x, w) if x € L

U(x, {xn}) = {d(x, 0)+d0,w) ifx¢L;

holds. So,
f(w, {x,}) =0 < o0

and

(1/2) t(w, {x,}) = 0 < d(x, w) < {(x, {x,})

for any x € X \ {w}. In the third case, there exists a unique element w of the completion of X satisfying
lim,, d(x,, w) = 0. It is not difficult to show

€0x, b)) = d(, 0) + (0, ) = d(x,0) + lim d(0, x,)

for any x € X. So, putting ¢ = lim, d(0, x,), we have
{0, {xy}) =t <

and
(1/2) €(0, {x,}) = t/2 < t < d(x,0) + t = £(x, {x,})

for any x € X \ {w}. Therefore X satisfies Condition (£). So by Theorem 3.3, T has a unique fixed point. [

Remark 3.4. Therefore we can tell that Theorem 2.3 is a generalization of both Theorems 1.1 and 1.3,

4. Not Possessing BFPP

In this section, we give a sufficient condition on not possessing BFPP. While Theorem 1.4 is of continuous
type, the following is of discrete type in some sense.

Theorem 4.1. Let (X, d) be a metric space and let {x,} € CauS(X). Assume that for any x € X, there exists € > 0
such that (x, {x,}) is not e-chainable. Then X does not have BFPP.

Proof. Define a function p from X into [0, o) by (3). From the assumption, {x,} does not converge. So,
p(x) > 0 for any x € X. Taking a subsequence, without loss of generality, we may assume p(x,+1) < p(x,)/3
for any n € IN. Define a function / from X into [0, c0) by

h(x) = inf {5 € (0,00) : (x, {x,}) is e—chainable}

for x € X. From the assumption, h(x) > 0 holds. Also, since (x, {x,}) is e-chainable for any ¢ > p(x),
h(x) < p(x) holds for any x € X. Define a contraction T on X by

To — {xz if p(x1) < h(x)

xj if p(xj-1) < h(x) < p(xj-2) for some j € N with j > 3

for x € X. We shall show that T is a contraction. Fix x, y € X with x # y and h(x) < h(y). We consider the
following two cases:

o d(x,y) < h(x)
o d(x,y) > h(x)
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In the first case, for any € > h(x), from the definition of #, (x, {x,}) is e-chainable. Since d(x, y) < ¢, (y, {x,}) is
also e-chainable. We have h(y) < ¢ and hence h(x) = h(y). So

d(Tx, Ty) = 0 < (2/3)d(x, y).

In the second case, let 7, j > 2 satisfy Tx = x; and Ty = x;. For any ¢ > d(x,y), since h(x) < ¢, (x,{x,}) is
e-chainable. Since d(x, y) < ¢, (y, {x,}) is also e-chainable. Hence we obtain h(y) < d(x, y). We have

d(Tx, Ty) = d(x;, x;)
< p(xi) + p(x;)
< (1/3) (p(xi-1) + p(xj-1))
< (1/3) (hx) + h(y))
< (2/3)d(x, y).

We have shown that T is a contraction. It is obvious that T does not have a fixed point. Thus, X does not

have BFPP. 0O
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