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Abstract. In this paper, we discuss few existence result for solution of an infnite system of fractional
differential equations of order α (1 < α < 2), with three point boundary value problem in the interval [0,
T]. The problem is studied in the classical Banach sequence spaces c0 and `p (1 ≤ p < ∞), using Hausdorff
measure of noncompactness and Darbo type fixed point theorem. We also illustrate our results through
some concrete examples..
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1. Introduction and Preliminaries

1.1. Measures of noncompactness
In what follows we will give a brief description of measures of noncompactness and condensing oper-

ators which will be used in subsequent sections.

Theorem 1.1. (Schauder [20]) Let C be a closed and convex subset of a Banach space E. Then every compact and
continuous map F : C→ C has at least one fixed point.

In case of infinite dimensional normed spaces or metric spaces, the notion of measure of noncompactness
(MNC) plays an important role. This concept was introduced by Kuratowski ([12], [13]). There are various
type of MNCs in metric and linear topological spaces. In 1955, Darbo [8] proved a fixed point theorem, which
was a generalized form of the classical Schauder fixed point theorem and Banach contraction principle. For
a bounded subset S of a metric space X, the Kuratowski measure of noncompactness [12] is defined as

α(S) := inf{δ > 0 |S = ∪n
i=1Si , diam(Si) ≤ δ for 1 ≤ i ≤ n < ∞} (1)

where diam(Si) denotes the diameter of the set Si, that is,

diam(Si) = sup{d(x, y)| x, y ∈ Si}.
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Another, useful measure of noncompactness is the so called Hausdorff measure of noncompactness defined
as

χ(S) = inf{ε > 0 |S has finite ε-net in X}. (2)

We describe some basic properties of MNC’s χ and α in the context of a Banach space. Let (E, ||.||) be a
Banach space [6], R+ = [0,∞), the symbols X̄ and convX denote closure of X and convex closure of X,
respectively. LetME denote the family of non-empty bounded subsets of E and NE denote the family of
non-empty and relatively compact subsets of E.

Let µ : ME → R+, then µ is said to be an axiomatic measure of non-compactness on the space E, if it
satisfies the following conditions.

1. µ(X) = 0 for relatively compact subsets of E.
2. X ⊂ Y =⇒ µ(X) ≤ µ(Y). (monotonicity)
3. µ(X̄) = µ(X). (invariant under passage to closure)
4. µ(ConvX) = µ(X). (invariant under passage to convex hull)
5. µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].
6. If {Xn} is a sequence of closed sets from ME, such that, if Xn+1 ⊂ Xn and limn→∞ µ(Xn) = 0, then

X∞ = ∩∞n=1Xn , φ.
7. µ(X ∪ Y) = max{µ(X), µ(Y)}. (maximum property)
8. µ(X + Y) ≤ µ(X) + µ(Y). (subadditive)
9. µ(λX) = |λ|µ(X) for λ ∈ R. (semi-homegeniety)

10. µ(X + a) = µ(X) for each a ∈ E. (invariant under translation)

Definition 1.2. Let E1 and E2 be two Banach spaces and µ1 and µ2 be arbitrary MNCs on E1 and E2 respectively.
An operator T from E1 to E2 is called a (µ1-µ2) condensing operator if it is continuous and µ2(T(Ω)) < µ1(Ω) for
every bounded noncompact set Ω ⊂ E1.

Remark 1.3. If E1 = E2 and µ1 = µ2 = µ then T is called µ-condensing operator.

Theorem 1.4 (Darbo [8]). Let Ω be a nonempty, closed, bounded and convex subset of a Banach space E and let
T : Ω→ Ω be a continuous mapping such that there exists a constant k ∈ [0, 1) with the property µ(T(Ω)) ≤ kµ(Ω),
then T has a fixed point in Ω.

Proposition 1.5 ([4]). If W ⊂ C(I,E) is bounded and equicontinuous then the set µ(W(t)) is continuous on I and

µ(W) = sup
t∈I

µ(W(t)), µ

(∫ t

0
W(s)ds

)
≤

∫ t

0
µ(W(s))ds.

The formula for computing measure of noncompactness for a general MNC in a given metric or normed
space is a rigorous task, however in some normed spaces the exact formula is available for Hausdorff MNC.
We mention the following result which is used in the subsequent sections.

Theorem 1.6. [4] Let Q be a bounded subset of the Banach space X = c0. As (e(1), e(2), . . . ) is a Schauder basis for c0,
the Hausdorff MNC χ for Q is given by

χc0 (Q) = lim
n→∞

sup
x∈Q

(maxk≥n|xk|)

 (3)

Theorem 1.7. [4] Let Q be a bounded subset of the Banach space X = `p for 1 ≤ p < ∞. As (e(1), e(2), . . . ) is a
Schauder basis for `p, the Hausdorff MNC χ for Q is given by

χ`p (Q) = lim
n→∞

sup
x∈Q

∑
k≥n

|xk|
p


1/p

 (4)
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1.2. Fractional differential equations

The theory of fractional calculus is regarded as the natural generalization of the integer order calculus.
The subject was first formally presented by eminent mathematicians Liouville and Riemann in nineteenth
century. In contemporary study of scientific and engineering problems the theory of fractional differential
and integral equations have found novel applications in a large variety of topics such as image processing
[7], polymer science [15], control theory [19] etc. Besides, modelling of certain human behavior also leads to
formulation of fractional differential or integral equations [10]. The fractional differential equations under
various conditions have been studied by [1], [3], [11], [14], etc. The three point boundary value problem
given by 5 for a coupled system of FDE on the interval (0, 1) was studied by Bashir et. al. [3]

Dαu(t) = f (t, v(t),Dpv(t)), t ∈ (0, 1),
Dβv(t) = 1(t,u(t),Dqv(t)), t ∈ (0, 1)
u(0) = 0, u(1) = au(ξ), v(0) = 0, v(1) = av(ξ),

(5)

where 1 < α, β < 2, p, q, a > 0, 0 < ξ < 1, α − q ≥ 1, β − p ≥ 1, aξα−1 < 1 and aξβ−1 < 1. D is the standard
Riemann-Liouville fractional derivative operator and f : [0, 1] × E → E. We describe briefly certain basic
properties of fractional derivative. Let α > 0 and n = [α] + 1 = N + 1, where [α] denotes the ceiling function
(smallest integer greater than or equal to α). For a function f : (0,∞)→ R, the fractional integral of order α
is defined as follows

Iα f (t) =
1

Γ(α)

∫ t

0

1
(t − s)α−1 f (s)ds.

provided the integral on the right exists. Similarly the fractional derivative of order α for a function f is
defined as

Dα f (t) =
1

Γ(n − α)

(
d
dt

)n ∫ t

0

1
(t − s)α−n+1 f (s)ds

We mention the following properties of the operators I and D, for α, β > 0, we have

IαIβ f (t) = Iα+β f (t) (6)

DαIα f (t) = f (t) (7)

For α > 0, the general solution of the fractional differential equation Dαu(t) = 0 with u ∈ C(0,T) ∩ L1
loc(0,∞)

is given by

u(t) = C1tα−1 + C2tα−2 + · · · + CNtα−N

where Ci ∈ R, i = 1, 2, . . .N. Hence IαDαu(t) = u(t) + C1tα−1 + C2tα−2 + · · · + CNtα−N. Let C(J) be the Banach
space of all continuous functions defined on J = [a, b] ⊂ R with sup norm ||u(t)||∞ = supt∈J |u(t)|.

Proposition 1.8. Let f ∈ C[0,T] be a given function and 1 < α < 2. Then the unique solution of

Dαu(t) = f (t), u(0) = 0, u(T) = au(ξ) (8)

is given by

u(t) =

∫ T

0
K(t, s) f (s)ds (9)
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where K(t, s) is the Green’s function, given by K(t, s) = 1
Γ(α)(Tα−1−aξα−1)

K1(t, s), 0 ≤ t ≤ ξ
K2(t, s), ξ ≤ t ≤ T

K1(t, s) =


(t − s)α−1(Tα−1

− aξα−1) − tα−1[(T − s)α−1
− a(ξ − s)α−1]; 0 ≤ s ≤ t,

−tα−1[(T − s)α−1
− a(ξ − s)α−1]; t ≤ s ≤ ξ,

−(t(T − s)α−1); ξ ≤ s ≤ T.

K2(t, s) =


(t − s)α−1(Tα−1

− aξα−1) − tα−1[(T − s)α−1
− a(ξ − s)α−1]; 0 ≤ s ≤ ξ,

(t − s)α−1(Tα−1
− aξα−1) − (t(T − s))α−1; ξ < s ≤ t,

−(t(T − s))α−1; t < s ≤ T.

Proof. The general solution of of FDE is
u(t) = Iα f (t) + C1tα−1 + C2tα−2 where C1, C2 ∈ R.
Using u(0) = 0 gives C2 = 0. Using the second boundary condition we get

C1 = −
1

(Tα−1 − aξα−1)

[∫ T

0

f (s)ds
(T − s)1−αΓ(α)

− a
∫ ξ

0

f (s)ds
(ξ − s)1−αΓ(α)

]

u(t) =

∫ t

0

[
(t − s)α−1

−
(t(T − s))α−1

(Tα−1 − aξα−1)

]
f (s)
Γ(α)

ds −
1

(Tα−1 − aξα−1)Γ(α)

∫ T

t
(t(T − s))α−1 f (s)ds

+
a

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(t(ξ − s))α−1 f (s)ds

which gives the kernel K1(t, s) and K2(t, s).

Remark 1.9. It can be verified that the Green’s function K(t, s) defined on rectangle [0,T] × [0,T] as K1(t, s) :
[0, ξ] × [0,T]→ R and K2(t, s) : [ξ,T] × [0,T]→ R is continuous w.r.t. to t and s.

1.3. System of fractional differential equations
In this section we describe, what we refer to as an infinite system of fractional differential equation.

Infinite systems of ODE’s was first studied by Persidskii [18] with the aid of classical tools such as successive
approximation and the classical Banach fixed point principle. The infinite systems of differential equations
emerge in study of various topics of nonlinear analysis. For example semidiscretization of certain parabolic
partial differential equation leads to an infinite system of ODE [21], while modeling certain physical
phenomenon in theory of neural sets, branching process and mechanics ([9], [22]).

The theory of infinite systems of differential equations can be regarded as a particular case of differential
equations in Banach spaces, where the infinite system can be represented as an ordinary differential equation.
Consider the following infinite system of fractional differential equations

Dαui(t) = fi(t,u(t)), t ∈ (0,T)
ui(0) = u0

i = 0, ui(T) = aui(ξ); i = 1, 2, 3 . . .
1 < α < 2, aξα−1 < Tα−1.

(10)

where each ui(t) is a differentiable function of class C[α]+1. We will denote the sequence {ui(t)}∞i=1 = u(t),
{ui(0)}∞i=1 = u0, {ui(ξ)}∞i=1 = u(ξ) and { fi(t,u(t))}∞i=1 = f (t,u(t)) which is an element of some Banach sequence
space (E, ||.||). We rewrite the above system as followsDαu(t) = f (t,u(t)), t ∈ (0,T)

u(0) = u0, u(T) = au(ξ).
(11)

where f : I × E→ E and u0, u(ξ) ∈ E. As in Banach sequence space (in general in any infinite dimensional
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linear space) a closed and bounded set is not necessarily compact set, mere continuity of the function
f doesn’t guarantee the existence of a solution of differential equation. We will use the tools such as
measure of noncompactness(MNC) and condensing operators to establish the existence of solution for
11. For each i ∈ N, fractional differential equation 10 has a solution if and only if the integral equation
ui(t) =

∫ t

0 Ki(t, s) fi(s,u(s))ds has a solution, for each i ∈N, Ki(t, s) = K(t, s) described in proposition 1.8 .

2. Solution in Sequence Space c0

In this section we investigate the solution of infinite system 10 in the Banach sequence space c0, the
space of sequences convergent to 0, equipped with the norm ||x|| = sup{|xi| : i = 1, 2, 3, . . . }. The function
f (t,u(t)) = ( f1(t,u(t)), f2(t,u(t)), f3(t,u(t)), . . . ) is defined on I × c0 → c0 and each fi is a real valued function.
We have the following assumptions:

(A1) {u0
i }
∞

i=1 and {ui(ξ)}∞i=1 belong to c0.

(A2) f (.,u) is measurable for each fixed u.

(A3) For any t ∈ I and u ∈ c0 and n = 1, 2, 3, . . .

| fn(t,u(t))| ≤ pn(t) + qn(t) sup{|ui| : i ≥ n}.

where pi(t) and qi(t) are real valued functions and continuous on I such that sequence (pi(t)) converges
uniformly on I to the zero function identically and the sequence (qi(t)) is equibounded on I.

(A4) The family of functions {( f u)(t)}t∈I is equicontinuous at each point of the space c0.

Theorem 2.1. If the assumptions A1-A4 are satisfied by the system 10, then if QMT < 1, it admits at least one
solution u(t), such that u(t) = {ui(t)}∞1 ∈ c0 for each t ∈ [0,T], where M = maxt,s∈I |K(t, s)|, supi supt∈I |qi(t)| ≤ Q.

Proof. Let u(t) = {ui(t)}∞i=1 be function which satisfies the boundary conditions of the problem 10, and each
ui(t) is continuous on I. Define the operator F : C(I, c0)→ C(I, c0) as

(F u)(t) =

∫ T

0
K(t, s) f (s,u(s))ds (12)

By assumption A2, F is well-defined, we show that F is bounded w.r.t the classical norm on C(I, c0), which
is given by ‖u‖ = max{ ‖u(t)‖c0 : t ∈ I }

||(F u)(t)||c0 =

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ T

0
K(t, s) f (s,u(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣
c0

= sup
n≥1

∣∣∣∣∣∣
∫ T

0
K(t, s) fn(s,u(s))ds

∣∣∣∣∣∣
≤ sup

n≥1

∫ T

0
|K(t, s)| | fn(s,u(s))|ds

≤ sup
n≥1

∫ T

0
|K(t, s)| (pn(s) + qn(s) sup{|ui(s)| : i ≥ n})ds

≤ sup
n≥1

∫ T

0
|K(t, s)| pn(s)ds + sup

n≥1

∫ T

0
|K(t, s)| qn(s) sup{|ui(s)| : i ≥ n}ds

maxt∈I ||(F u)(t)||c0 ≤ maxt∈I

{
sup
n≥1

∫ T

0
|K(t, s)| qn(s) sup{|ui(s)| : i ≥ n}ds

}
‖F u‖ ≤ QMT .||u||
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The above inequality reduces to

r ≤ QMT.r

Let r0 denotes the optimal solution of the inequality. Consider the set B = B(u0, r0) = {u(t) ∈ C(I, c0) :
‖u‖C(I,c0) ≤ r0, u(0) = 0, u(T) = au(ξ)}, which is closed, bounded and convex, clearly F is bounded on B.
Now we show that F is continuous. Arbitrarily fix v ∈ B,

||(F u)(t) − (F v)(t)||c0
= sup

n≥1

∣∣∣∣∣∣
∫ T

0
K(t, s) fn(s,u(s))ds −

∫ T

0
K(t, s) fn(s, v(s))ds

∣∣∣∣∣∣
≤ sup

n≥1

∫ T

0
|K(t, s)| | fn(s,u(s))ds − fn(s, v(s))|ds

≤

∫ T

0
|K(t, s)| || fn(s,u(s))ds − fn(s, v(s))||c0 ds

Now using assumption A4 for any v ∈ B and for any arbitrary ε > 0, there exists δ > 0 such that
||( f u)(t) − ( f v)(t)||c0 ≤

ε
M for each t ∈ I and for each u ∈ B such that ||u − v|| ≤ δ.

||(F u)(t) − (F v)(t)||c0
≤

∫ T

0
|K(t, s)| ||( f u)(s) − ( f v)(s)||c0 ds

≤
ε
M

max
t∈I

∫ T

0
|K(t, s)|ds < ε.

thus F is continuous.
Now we establish the continuity of (F u) in (0,T). Let t0 ∈ (0,T) and ε > 0 be arbitrary then, by continuity
of K(t, s) w.r.t t we have δ(t0, ε) > 0 such that for |t − t0| < δ, |K(t, s) − K(t0, s)| < ε/(QT||u(s)||c0 ).

||(F u)(t) − (F u)(t0)||c0
= sup

n≥1

∣∣∣∣∣∣
∫ T

0
K(t, s) fn(s,u(s))ds −

∫ T

0
K(t0, s) fn(s,u(s))ds

∣∣∣∣∣∣
≤

∫ T

0
|K(t, s) − K(t0, s)| sup

n≥1
| fn(s,u(s))|ds

≤

∫ T

0
|K(t, s) − K(t0, s)| sup

n≥1
(pn(s) + qn(s){|ui(s)| : i ≥ n})ds

≤

∫ T

0
|K(t, s) − K(t0, s)| qn(s) sup

n≥1
{|ui(s)| : i ≥ n})ds

≤ Q
∫ T

0
|K(t, s) − K(t0, s)| ‖u(s)‖c0 ds < ε.

We claim that operator F is condensing with respect to Hausdorff MNC χ on the space C(I, c0). Using the
formula 3, we conclude that Hausdorff MNC for B ⊂ C(I, c0) is defined as

χC(I,c0)(B) = sup
t∈I

χc0 (B(t))
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χc0 (F B) = lim
n→∞

{
sup
u∈B

(
max

i≥n
|F ui(t)|

)}
≤ lim

n→∞

{
sup
u∈B

(
max

i≥n

∣∣∣∣∣∣
∫ T

0
K(t, s) fi(s,u(s))ds

∣∣∣∣∣∣
)}

≤ lim
n→∞

{
sup
u∈B

(
max

i≥n

∫ T

0
|K(t, s)|

(
pi(s) + qi(s) sup{|uk(s)| : k ≥ i}

)
ds

)}
≤ Q lim

n→∞

{
sup
u∈B

(
max

i≥n

∫ T

0
|K(t, s)| sup{|uk(s)| : k ≥ i}ds

)}
sup

t∈I
χc0 (F B) ≤ QMT sup

t∈I
lim
n→∞

{
sup
u∈B

(
max

i≥n
|ui(t)|

)}
χC(I,c0)(F B) ≤ QMTχC(I,c0)(B).

As QMT < 1, implying F is a Darbo condensing operator with darbo constant QMT, thus by Theorem1.4
F admits at least one fixed point in B, which is a solution for 10 in the space C(I, c0). Moreover for each
t ∈ [0,T], u(t) ∈ kerχC(I,c0) .

Example 2.2. Consider the following system of FDE in c0D4/3un(t) =
t exp(−nt)

(n+1)2 +
∑
∞

m=n
um(t)

(1+m2)(n2) t ∈ (0,T)
un(0) = 0, un(T) =

3√4 un(T/2); n = 1, 2, 3 . . . .
(13)

u(T/2) = {un(T/2)}∞n=1 ∈ c0.

Here ξ = T/2 and a =
3√4, and fn(t,u(t)) =

t exp(−nt)
(n+1)2 +

∑
∞

m=n
um(t)

(1+m2)(n2) . Here kernel K1(t, s) and K2(t, s) are

given as K(t, s) = 1
Γ(4/3)( 3√T− 3√2T)

K1(t, s), 0 ≤ t ≤ T/2,
K2(t, s), T/2 ≤ t ≤ T.

K1(t, s) =


(t − s)1/3( 3√T − 3√2T) − t1/3[(T − s)1/3

−
3√2(T − 2s)1/3]; 0 ≤ s ≤ t,

−t1/3[(T − s)1/3
−

3√2(T − 2s)1/3]; t ≤ s ≤ T
2 ,

−(t(T − s)1/3); T
2 ≤ s ≤ T.

K2(t, s) =

(t − s)1/3( 3√T − 3√2T) − t1/3[(T − s)1/3
−

3√2(T − 2s)1/3]; 0 ≤ s ≤ T
2 ,

(t − s)1/3( 3√T − 3√2T) − (t(T − s))1/3, T
2 < s ≤ t,−(t(T − s))1/3; t < s ≤ T.

Assumption (A1)and (A2) are satisfied. Moreover | fn(t,u(t))| ≤ pn(t) + qn(t) sup{|ui(t)| : i ≥ n}where

pn(t) =
t exp(−nt)

(n + 1)2 , qn(t) =
1
n2

∞∑
m=n

1
1 + m2 .

We first show that f (t,u(t)) ∈ c0. For any arbitrary t ∈ [0,T] and u ∈ c0 we have

lim
n→∞

fn(t,u(t)) = lim
n→∞

 t exp(−nt)
(n + 1)2 +

∑
m≥n

|um(t)|
(1 + m2)(n2)


≤ lim

n→∞

(
T

(n + 1)2 + sup
m≥n
|um(t)|

π2

6n2

)
< lim

n→∞

(
sup
m≥n
|um(t)|

π2

6n2

)
= 0.

It can be seen that assumption A4 is satisfied by functions pn(t) and qn(t). pn(t) converges uniformly to zero
and qn(t) is equibounded by π2

6 = Q. Now we show that assumption A4 is also satisfied. Let t ∈ I, v ∈ c0 be
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arbitrarily fixed, take any ε > 0,

||( f u)(t) − ( f v)(t)||c0 = sup
n≥1
|( f u)n(t) − ( f v)n(t)|

= sup
n≥1
| fn(t,u(t)) − fn(t, v(t))|

= sup
n≥1

∣∣∣∣∣∣∣
∞∑

m=n

um(t)
(1 + m2)(n2)

−

∞∑
m=n

vm(t)
(1 + m2)(n2)

∣∣∣∣∣∣∣
≤ sup

n≥1

∑
m≥n

∣∣∣∣∣um(t) − vm(t)
(1 + m2)(n2)

∣∣∣∣∣
≤ sup

n≥1
|un(t) − vn(t)|

π2

6

≤ ||u(t) − v(t)||c0

π2

6
< ε. when ||u(t) − v(t)||c0 < δ = ε

6
π2 .

Thus the system of FDE satisfies the hypotheses of the Theorem2.1, hence it has at least one solution in
C(I, c0). The interval of solution is [0,T] where T is choosen such that T < 6M

π2 .

3. Solution in Sequence Space `p

Various types of infinite systems of ordinary differential equations have been studied by several au-
thors, such as Cauchy initial value problem in sequence spaces `1 by Banaś et. al [5], and similar problem
in sequence space `p was studied by Mursaleen et. al. [16]. The second order boundary value problem, for
ODE in space `1 was investigated by Aghajani et. al. [2] and [17]. In this section we consider the infinite
system11 of fractional differential equation in the sequence space `p for 1 ≤ p < ∞.
We will investigate the solution under the following assumptions:

(B1) u(T) ∈ `p.

(B2) f = ( f1, f2, . . . ) continuously transforms the set I × `p to `p.

(B3) There exist nonnegative functions qi(t) and ri(t) such that for any t ∈ I and u(t) ∈ `p.

| fi(t,u)|p ≤ qi(t) + ri(t)|ui(t)|p

(B4) qi(t) are continuous and the series
∑
∞

i=1 qi(t) converges uniformly on I.

(B5) The function sequence ri(t) is equibounded on I, and limi→∞ sup ri(t) is integrable over I.

(B6) The sequence of function {( f u)(t)}t∈I is equibounded at each point of `p.

Theorem 3.1. If the system 11 satisfies the above assumptions B1-B6 and MT
2−p

p R1/p < 1, then it has at least one
solution u(t) such that u(t) = {ui(t)}∞i=1 ∈ `p(p ≥ 1) for each t ∈ [0,T], where M = maxt,s∈[0,T] K(t, s), ri(t) is
equibounded by R and Q = supt∈I |q(t)|, q(t) =

∑
∞

i=1 qi(t).

Proof. Let u(t) = {ui(t)}∞i=1 be function which satisfies the boundary conditions of the problem 11, and each
ui(t) is continuous on I. Define the operator F : B ⊂ C(I, `p)→ C(I, `p) as

(F u)(t) =

∫ T

0
K(t, s) f (s,u(s))ds (14)
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By assumption B2, F is well defined on C(I, `p). We show that F is bounded in the classical supremum
norm on C(I, `p), given by ‖u‖ = supt∈I ‖u(t)‖`p .

||(F u)(t)||p`p
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ T

0
K(t, s) f (s,u(s))ds

∣∣∣∣∣∣
∣∣∣∣∣∣
p

`p

≤ T
p−1

p Mp
∑
n≥1

∣∣∣∣∣∣
∫ T

0
fn(s,u(s))ds

∣∣∣∣∣∣
p

≤ T
p−1

p Mp
∑
n≥1

∫ T

0
| fn(s,u(s))|pds

≤ T
p−1

p Mp
∑
n≥1

∫ T

0
(qn(s) + rn(s)|un(s)|p)ds

≤ T
p−1

p Mp
∫ T

0

∑
n≥1

qn(s)ds + T
p−1

p R
∑
n≥1

∫ T

0
|un(s)|pds

‖(F u)‖p ≤ T
2p−1

p MpQ + sup
t∈I

T
2p−1

p R
∑
n≥1

|un(t)|p

‖(F u)‖p ≤ T
2p−1

p MpQ + T
2p−1

p R||u||pp

Above inequality can be written as

rp
≤ T

2p−1
p (MpQ + Rrp)

Let r0 denotes the optimal solution of the inequality. Now consider the set B = B(u0, r0) = {u(t) ∈ C(I, `p) :
‖u‖C(I,`p) ≤ r, u(0) = 0, u(T) = au(ξ) }, which is closed, bounded and convex. Now we show that F is
continuous. Arbitrarily fix v ∈ B,

∑
n≥1

|(F u)n(t) − (F v)n(t)|p =
∑
n≥1

∣∣∣∣∣∣
∫ T

0
K(t, s) fn(s,u(s))ds −

∫ T

0
K(t, s) fn(s, v(s))ds

∣∣∣∣∣∣
p

≤ Tp−1
∑
n≥1

∫ T

0
|K(t, s)|p | fn(s,u(s))ds − fn(s, v(s))|pds

≤ Tp−1Mp
∫ T

0

∑
n≥1

| fn(s,u(s))ds − fn(s, v(s))|pds

Now using assumption B6 for any arbitrarily fixed v ∈ B and ε > 0, there exists δ > 0 such that
∑

n≥1 |( f u)(t)−
( f v)(t)|p ≤ εp/(TM)p for each t ∈ I and for each u ∈ B such that ||u − v||`p ≤ δ.

∑
n≥1

|(F u)n(t) − (F v)n(t)|p


1/p

≤ T
p−1

p M

∫ T

0

∑
n≥1

| fn(s,u(s))ds − fn(s, v(s))|pds


1/p

||(F u)(t) − (F v)(t)||`p
≤ T

p−1
p M

(∫ T

0

εp

(TM)p ds
)1/p

< ε.

thus F is continuous.
Now we establish the continuity of (F u) in (0,T). Let t0 ∈ (0,T) and ε > 0 be arbitrary then, by continuity
of K(t, s), there exists δ = δ(t0, ε) > 0 such that, for |t − t0| < δ, we have |K(t, s) − K(t0, s)| < T1−pεp/(QT + rR̃),
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where R̃ =
∫ T

0 limn→∞ sup rn(s)ds.

∑
n≥1

|(F u)(t) − (F u)(t0)|p =
∑
n≥1

∣∣∣∣∣∣
∫ T

0
K(t, s) fn(s,u(s))ds −

∫ T

0
K(t0, s) fn(s,u(s))ds

∣∣∣∣∣∣
p

≤ Tp−1
∫ T

0
|K(t, s) − K(t0, s)|p

∑
n≥1

| fn(s,u(s))|pds

≤ Tp−1
∫ T

0
|K(t, s) − K(t0, s)|

∑
n≥1

(qn(s) + rn(s)|ui(s)|p)ds

≤ Tp−1

(
T1−pεp

QT + rR̃

) ∫ T

0

Q(s) + lim
n→∞

sup rn(s)
∑
n≥1

|ui(s)|p
 ds

||(F u)(t) − (F u)(t0)||`p < ε.

We proceed to show that operator F is condensing with respect to Hausdorff MNC χ on the space C(I, `p),
using formula 4 we define

χC(I,`p)(B) = sup
t∈I

χ`p (B(t)).

χ`p [(F B)(t)] = lim
n→∞

sup
u∈B

∑
i≥n

|F ui(t)|p


1/p


≤ lim
n→∞

sup
u∈B

∑
i≥n

∣∣∣∣∣∣
∫ T

0
K(t, s) fi(s,u(s))ds

∣∣∣∣∣∣
p

1/p


≤ T
1−p

p lim
n→∞

sup
u∈B

∑
i≥n

∫ T

0
|K(t, s)|p(qi(s) + ri(s)|ui(s)|p)ds


1/p


≤ T

1−p
p M lim

n→∞

sup
u∈B

∑
i≥n

∫ T

0
(qi(s) + ri(s)|ui(s)|p)ds


1/p


≤ T

1−p
p M lim

n→∞

sup
u∈B

∫ T

0

∑
i≥n

qi(s)ds + R
∑
i≥n

∫ T

0
|ui(s)|pds


1/p


sup

t∈I
χ`p [(F B)(t)] ≤ sup

t∈I
T

1−p
p M lim

n→∞

sup
u∈B

RT
∑
i≥n

|ui(t)|p


1/p
 ≤MT

2−p
p R1/pχ(B).

As MT
2−p

p R1/p < 1 implies F is a Darbo condensing operator, thus by Theorem 1.4 F has a fixed point in B,
which is a solution of 11 in space C(I, `p), p ≥ 1. Moreover for each t ∈ [0,T], u(t) ∈ kerχC(I,`p).

Example 3.2. Consider the following system of FDE in the space `2D5/4un(t) =
√

t sin(−nt)
n2 +

∑
∞

k=n
uk(t) ln(1+t)

k3(n+1)3 t ∈ (0,T)
un(0) = 0, un(T) =

4√2 un(T/3); n = 1, 2, 3 . . . .
(15)

where u(T/3) = {un(T/3)}∞n=1 ∈ `2.
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Comparing with our result we have, ξ = T/3 and a =
4√2 and fn(t,u(t)) =

√
t sin(−nt)

n2 +
∑
∞

k=n
uk(t) ln(1+t)

k3(n+1)3 . The
system of FDE is transformed by the following equation

un(t) =
1

Γ(5/4)(T1/4 −
4√2(T/3)1/4)

∫ T

0
K(t, s) fn(s,u(s))ds

where K(t, s) is given by K(t, s) = 1
Γ(1.25)( 4√T− 4√2 4√T/3)

K1(t, s), 0 ≤ t ≤ T
3

K2(t, s), T
3 ≤ t ≤ T

K1(t, s) =


(t − s)1/4(T1/4

− ( 2T
3 )1/4) − t1/4[(T − s)1/4

− ( 2T
3 − s)1/4]; 0 ≤ s ≤ t,

−t1/4[(T − s)1/4
− ( 2T

3 − 2s)1/4]; t ≤ s ≤ T
3 ,

−(t(T − s)1/4); T
3 ≤ s ≤ T.

K2(t, s) =


(t − s)1/4(T1/4

− ( 2T
3 )1/4) − t1/4[(T − s)1/4

− ( 2T
3 − 2s)1/4]; 0 ≤ s ≤ T

3 ,

(t − s)1/4(T1/4
− ( 2T

3 )1/4) − (t(T − s))1/4; T
3 < s ≤ t,

−(t(T − s))1/4; t < s ≤ T.

Assumption B1 is satisfied, moreover f ∈ `2 and f is continuous. We show that (B6) is satisfied i.e.
{( f u)(t)}t∈I is equicontinuous. Let v ∈ `2 and t ∈ [0,T] be arbitrary, for ε > 0 choose δ := ε

√
945

π ln(1+T)∑
n≥1

∣∣∣ f (t,u(t)) − f (t, v(t))
∣∣∣2 =

∑
n≥1

∣∣∣∣∣∣∣∑k≥n

uk(t) ln(1 + t)
k3(n + 1)3 −

∑
k≥n

vk(t) ln(1 + t)
k3(n + 1)3

∣∣∣∣∣∣∣
2

≤

∑
n≥1

∣∣∣∣∣∣∣∑k≥n

uk(t) − vk(t) ln(1 + t)
k3(n + 1)3

∣∣∣∣∣∣∣
2

≤

∑
n≥1

| ln(1 + t)|2

(n + 1)6

∑
k≥n

|uk(t) − vk(t)|2

k6

<
∑
n≥1

| ln(1 + t)|2

(n + 1)6 ||u(t) − v(t)||2`2

<
π2

945
| ln(1 + T)|2||u(t) − v(t)||2`2

||( f u)(t) − ( f v)(t)||`2 < ε, since ||u(t) − v(t)||`2 < δ.

Now we show that f satisfies (B3)

| fn(t,u(t))|2 =

∣∣∣∣∣∣∣
√

t sin(−nt)
n2 +

∑
k≥n

uk(t) ln(1 + t)
k3(n + 1)3

∣∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
√

t sin(−nt)
n2

∣∣∣∣∣∣
2

+
∑
k≥n

∣∣∣∣∣uk(t) ln(1 + t)
k3(n + 1)3

∣∣∣∣∣2
≤
|t|
n4 +

π2 ln(1 + t)
945n6 |un(t)|2

qn(t) = |t|/n4 and rn(t) =
π2 ln(1+t)

945n6 . The functions qn(t) are continuous and the series
∑

n≥1 qn(t) converges
uniformly to q(t) = |t|π

4

90 , satisfying B4, also, limn→∞ rn(t) = 0 which is integrable over I thus assumption B5
is satisfied. Hence by Theorem1.7 the system 15 has at least one solution in `2.
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