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Abstract. We establish results concerning the approximate controllability for time-dependent impulsive
neutral stochastic partial differential equations with memory in Hilbert spaces. By using semigroup theory,
stochastic analysis techniques and fixed point approach, we derive a new set of sufficient conditions for the
approximate controllability of nonlinear stochastic system under the assumption that the corresponding
linear system is approximately controllable. Further, the above results are generalized to cover a class of
much more general impulsive neutral stochastic delay partial differential equations driven by Lévy noise
in infinite dimensions. Finally, an example is provided to illustrate our results.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

This paper is concerned with the approximate controllability of the following time-dependent impulsive
neutral stochastic partial differential equations with memory

d[x(t) − G(t, x(t − τ))] = A(t)[x(t) − G(t, x(t − τ))]dt +
[
F(t, x(t), x(t − τ)) + Bu(t)

]
dt

+σ(t, x(t), x(t − τ))dW(t), tk , t ∈ J := [0,T],

∆x(tk) = Ik(x(t−k ), k ∈ {1, 2, ...,m},

x(t) = ϕ(t) ∈ Cτ = Cb
F0

([−τ, 0];H), −τ ≤ t ≤ 0, τ > 0,

(1)

where x(·) is a stochastic process taking values in a real separable Hilbert spaceH; A(t) : D ⊂H→H, t ∈ J
is a family of unbounded operators defined on a common domain D, which is dense in the space H and
generates a strong evolution operator U(s, t), 0 ≤ t ≤ s ≤ T. Assume that the mappings G : J ×H → H,
F : J ×H ×H → H, σ : J ×H ×H → L0

2 are Borel measurable functions and Ik : H → H, k = 1, 2, ...,m
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are continuous functions. The control function u(·) takes values in LF2 (J,U) of admissible control functions
for a separable Hilbert space U and B is a bounded linear operator from U into H. Furthermore, let
0 = t0 < t1 < · · · < tm < tm+1 = T be prefixed points, and ∆x(tk) = x(t+

k ) − x(t−k ), represents the jump of
the function x at time tk with Ik determining the size of the jump, where x(t+

k ) and x(t−k ) represent the right
and left limits of x(t) at t = tk, respectively. Let ϕ(t) : [−τ, 0] → H is an F0-measurable random variables
independent of the Wiener process W with E[sup

−τ≤s≤0 ‖ϕ‖
2
H

] < ∞.

Approximate controllability is one of the important fundamental concepts in mathematical control
theory and plays an important role in both deterministic and stochastic control systems. Roughly speaking,
controllability generally means that it is possible to steer a dynamical control system from an arbitrary
initial state to an arbitrary final state using the set of admissible controls. In the case of infinite-dimensional
systems, two basic concepts of controllability can be distinguished which are exact and approximate
controllability. This is strongly related to the fact that in infinite dimensional spaces there exist linear
subspaces, which are not closed. Exact controllability enables to steer the system to arbitrary final state
while approximate controllability means that system can be steered to arbitrary small neighborhood of final
state. In other words, approximate controllability gives the possibility of steering the system to states which
form the dense subspace in the state space. However, the concept of exact controllability is usually too
strong and, indeed has limited applicability in infinite-dimensional spaces (see [25]). Further, approximate
controllable systems are more prevalent and very often approximate controllability is completely adequate
in applications (see [15, 17] and the references therein). Therefore, it is important, in fact necessary to study
the weaker concept of controllability, namely approximate controllability for nonlinear systems.

As we all known, controllability of deterministic systems are widely used in many fields of science and
technology (for instance, see [6, 8, 13, 20, 24, 27] and the references therein). In practice, deterministic systems
often fluctuate due to environmental noise. Therefore, the study of stochastic problems are more applicable
in dynamical system theory. In [18], Mao studied the asymptotic properties of neutral stochastic differential
delay equations. Sathya and Balachandran [23] proved sufficient conditions for controllability of nonlocal
impulsive stochastic quasilinear integrodifferential systems by means of the Banach fixed point theorem. By
using the Sadovskii fixed point theorem, Muthukumar and Rajivganthi [19] investigated the approximate
controllability of fractional order neutral stochastic integro-differential systems with nonlocal conditions
and infinite delay. Besides the environmental noise, sometimes, we have to consider the impulsive effects,
which exist in many evolution processes, because the impulsive effects may bring an abrupt change at
certain moments of times (see, e.g. [14, 27]). Moreover, for most research about nonlinear stochastic
systems, the control function uα(t, x) was always constructed by its corresponding linear systems and
stochastic maximum principle [3], however, the stochastic maximum principle is not available in impulsive
stochastic systems as a result of its linear form. Therefore, there is a real need to discuss impulsive
differential control systems with memory (delay). In [10], Huan derived a set of sufficient conditions for the
controllability results of nonlocal second-order impulsive neutral stochastic integro-differential equations
with infinite delay in Hilbert spaces by means of the Banach fixed point theorem combined with theories
of a strongly continuous cosine families of bounded linear operators. Recently, Huan and Gao [11] have
extended the results of the paper [10] for a class of nonlocal second-order impulsive neutral stochastic
integro-differential equations with infnite delay and Poisson jumps. For more detail on the well-posedness
and controllability of stochastic systems with impulsive effect, we refer the reader to [1, 2, 5, 12, 23] and the
references therein.

However, to the best of our knowledge, it seems that little is known about approximate controllability
for time-dependent impulsive neutral stochastic partial differential equations with memory. Under the
Lipschitz conditions, the linear growth conditions are weakened and under the condition that the corre-
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sponding linear system is approximately controllable, the aim of this paper is to discuss this interesting
problem.

The main tools used in this paper include semigroup theory, stochastic analysis techniques and the
Banach contraction principle.

This paper is organized as follows: In Section 2, we recall some basic notations, definitions, preliminaries.
In Section 3 we prove the approximate controllability of system (1). An example is shown in the last section
to illustrate the viability of the abstract result of this work.

2. Preliminaries

Let (H, ‖·‖H, 〈·, ·〉H) and (K, ‖·‖K, 〈·, ·〉K) denote two real separable Hilbert spaces, with their vectors norms
and their inner products, respectively. We denote by L(K;H) be the set of all linear bounded operators
from K into H, which is equipped with the usual operator norm ‖ · ‖. In this paper, we use the symbol
‖ · ‖ to denote norms of operators regardless of the spaces potentially involved when no confusion possibly
arises. Let (Ω,F ,F = {Ft}t≥0,P) be a complete filtered probability space satisfying the usual condition (i.e.,
it is right continuous and F0 contains all P-null sets). Let W = (W(t))t≥0 be a Q-Wiener process defined on
the probability space (Ω,F ,F,P) with the covariance operator Q such that Tr(Q) < ∞. We assume that
there exists a complete orthonormal system {ek}k≥1 in K, a bounded sequence of nonnegative real numbers
λk such that Qek = λkek, k = 1, 2, ..., and a sequence of independent Brownian motions {βk}k≥1 such that
〈W(t), e〉K =

∑
∞

k=1

√
λk〈ek, e〉Kβk(t), e ∈ K, t ≥ 0.

Let L0
2 = L2(Q

1
2K;H) be the space of all Hilbert-Schmidt operators from Q

1
2K into H with the inner

product 〈Ψ, φ〉L0
2

= Tr[ΨQφ∗], where φ∗ is the adjoint of the operator φ.
Let τ > 0 and C := C([−τ, 0];H) denotes the family of all continuous functions from [−τ, 0] to H. The

space C is assumed to be equipped with the norm ‖ς‖C := sup
−τ≤t≤0 ‖ς(t)‖H, ς(t) ∈ C.

We also assume that Cb
F0

([−τ, 0];H) denotes the family of all almost surely bounded, F0-measurable,
C([−τ, 0];H)-valued random variables. For all t ≥ 0, xt = {x(t + θ) : −τ ≤ θ ≤ 0} is regarded as C([−τ, 0];H)-
valued stochastic process. Further, let PC(J,L2(Ω;H)) = {x(t) is continuous everywhere except for some tk

at which x(t−k ) and x(t+
k ) exist and x(t−k ) = x(tk), k = 1, 2, ...,m} be the Banach space of piece-wise continuous

function from J into L2(Ω;H) with the norm ‖x‖PC = supt∈J |x(t)| < ∞. Let PC = PC(J; L2) be the closed sub-
space of PC(J,L2(Ω;H)) consisting of measurable and Ft-adapted H-valued process x(·) ∈ PC(J,L2(Ω;H))
endowed with the norm ‖x‖2PC = E supt∈J ‖x(t)‖2

H
.

In what follows, we assume that {A(t), t ≥ 0} is a family of closed densely defined linear unbounded
operators onH and with domain D = D(A(t)) independent of t.

Definition 2.1. A family of bounded linear operators {U(t, s)}(t,s)∈∆ : U(t, s) :H→H for (t, s) ∈ ∆ := {(t, s) ∈ J× J :
0 ≤ s ≤ t ≤ T} is called an evolution system if the following properties are satisfied:

(1) U(t, t) = I where I is the identity operator inH.

(2) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t ≤ T.

(3) U(t, s) ∈ L(H) the space of bounded linear operators onH, where for every (t, s) ∈ ∆ and for each x ∈ H, the
mapping (t, s)→ U(t, s)x is strongly continuous.

Remark 2.2. If A(t), t ≥ 0 is a second-oder differential operator A, i.e. A(t) = A for each t ≥ 0. Then, A generates a
C0-semigroup {eAt, t ≥ 0}.

More details on evolution systems and their properties could be found on the books of Ahmed [4] and Pazy
[21].

Next, let us recall the definition of mild solution for (1).
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Definition 2.3. An Ft-adapted stochastic process x : J → H is called a mild solution of (1) if for each u ∈ LF2 (J,U)
and for arbitrary t ∈ J, P{ω :

∫
J ‖x(s)‖2

H
ds < +∞} = 1 it satisfies the integral equation

x(t) =U(t, 0)[ϕ(0) − G(0, ϕ)] + G(t, x(t − τ)) +

∫ t

0
U(t, s)[F(s, x(s), x(s − τ)) + Bu(s)]ds

+

∫ t

0
U(t, s)σ(s, x(s), x(s − τ))dW(s) +

∑
0<tk<t

U(t, tk)Ik(x(t−k )) (2)

for any x0(·) = ϕ(·) ∈ Cτ.

It is convenient to introduce the relevant operators and the basic controllability condition.

(i) The operator LT
0 ∈ L(LF2 (J,H),L2(Ω,FT,H)) is defined by

LT
0 u =

∫ T

0
U(T, s)Bu(s)ds,

where LF2 (J,H) is the space of all Ft-adapted, H-valued measurable square integrable processes on
J ×Ω. Clearly the adjoint (LT

0 )∗ : L2(Ω,FT,H)→ LF2 (J,H) is defined by

[(LT
0 )∗z](t) = B∗U∗(T, t)E{z | Ft}.

(ii) The linear controllability operator ΠT
0 which is associated with the operator LT

0 is defined by

ΠT
0 {·} = LT

0 (LT
0 )∗{·} =

∫ T

0
U(T, t)BB∗U∗(T, t)E{· | Ft}dt.

which belongs to L(L2(Ω,FT,H),L2(Ω,FT,H)) and the controllability operator ΓT
s ∈ L(H,H) is

ΓT
s =

∫ T

s
U(T, t)BB∗U∗(T, t)dt, 0 ≤ s < t.

Lemma 2.4. ([15]) For any h ∈ L2(Ω,FT,H), there exists z ∈ LF2 (J,L0
2) such that

h = Eh +

∫
J
z(s)dW(s).

Let x(t;ϕ,u) denotes state value of the system (1) at time t corresponding to the control u ∈ LF2 (J,U) and
the initial value ϕ. In particular, the state of system (1) at t = T, x(T;ϕ,u) is called the terminal state with
control u. RT := R(T, ϕ) = {x(T;ϕ,u) : u(·) ∈ LF2 (J,U)} is called the reachable set of the system (1).

Definition 2.5. The stochastic system (1) is said to be approximately controllable on the interval J if

RT = L2(Ω,FT,H),

where RT is the closure of the reachable set.
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3. Controllability Result

To study the approximate controllability of system (1), we will work under the following assumptions:

(H1) U(t, s) is a compact operator for t − s > 0 and there exists a constant C ≥ 1 such that

‖U(t, s)‖L(H) ≤ C for every (t, s) ∈ ∆.

(H2) There exists a positive constant C0 such that for all t ∈ J, x, y ∈H

‖G(t, x) − G(t, y)‖2H ≤ C0

(
‖x − y‖2H

)
.

(H3) There exists a positive constant C1 such that for all t ∈ J, x1, y1, x2, y2 ∈H

‖F(t, x1, y1) − F(t, x2, y2)‖2H ∨ ‖σ(t, x1, y1) − σ(t, x2, y2)‖2
L

0
2
≤ C1

(
‖x1 − x2‖

2
H + ‖y1 − y2‖

2
H

)
.

(H4) There exists some positive constants Qk, k = 1, 2, ...,m such that for all t ∈ J, x, y ∈H

‖Ik(x) − Ik(y)‖2H ≤ Qk‖x − y‖2H.

(H5) For all t ∈ J, there exists a positive constant M such that

‖G(t, 0)‖2H ∨ ‖F(t, 0, 0)‖2H ∨ ‖σ(t, 0, 0)‖2H ∨ ‖Ik(0)‖2H ≤M.

(H6) For 0 ≤ t < T, the operator
αR(α,ΓT

t ) := α(αI + ΓT
t )−1
→ 0 as α→ 0+ in the strong operator topology.

(H7) The functions F, σ are uniformly bounded.

Remark 3.1. In view of [17], the assumption (H6) is equivalent to the linear system of (1) is approximately control-
lable.

Let α > 0 and h ∈ L2(Ω,FT,H). Define the control function in the following form:

uα(t, x)

= B∗U∗(T, t)
{

R(α,ΠT
0 )

[
Eh −U(T, 0)[ϕ(0) − G(0, ϕ)] − G(t, x(t − τ)) −

∑
0<tk<T

U(T, tk)Ik(x(t−k )
]

+

∫ T

0
R(α,ΠT

s )z(s)dW(s) −
∫ T

0
R(α,ΠT

s )U(T, s)F(s, x(s), x(s − τ))ds

−

∫ T

0
R(α,ΠT

s )U(T, s)σ(s, x(s), x(s − τ))dW(s)
}
. (3)

Consider the operator Υ : PC(J,L2(Ω;H))→ PC(J,L2(Ω;H)) defined by

(Υx)(t) =U(t, 0)[ϕ(0) − G(0, ϕ)] + G(t, x(t − τ)) +

∫ t

0
U(t, s)[F(s, x(s), x(s − τ)) + Buα(s, x)]ds

+

∫ t

0
U(t, s)σ(s, x(s), x(s − τ))dW(s) +

∑
0<tk<t

U(t, tk)Ik(x(t−k ). (4)

In what follows, we shall show that system (1) is approximately controlable if for all α > 0 there exists a
fixed point of the operator Υ.
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Theorem 3.2. Let the assumptions (H1) − (H6) be hold. Then the operator Υ has a fixed point in PC provided that

5
(α2 + 4T2C4C4

B

α2

)[
C0 + 2T(T + 1)C2C1 + mC2

m∑
k=1

Qk

]
< 1, where CB = ‖B‖. (5)

Proof By our assumptions, the basic inequality
(∑n

i=1 xi

)p
≤ n(p−1)∨0 ∑n

i=1 xp
i , p > 0, Hölder’s inequality, and

the Doob martingale inequality, we obtain that for x ∈ PC

E‖uα(t, x)‖2

≤
7
α2 C2C2

B

{
‖Eh‖2 + 2C2(1 + C0)E‖ϕ‖2

C
+ 2

[
M + C0(E‖ϕ‖2

C
+ ‖x‖2PC)

]
(6)

+ 2mC2
m∑

k=1

Qk(M + ‖x‖2PC) + C2E
∫

J
‖z(s)‖2

L
0
2
ds + 2C2(T + 1)

[
MT + C1(τE‖ϕ‖2

C
+ 2T‖x‖2PC)

]}
.

Thanks to (6) we have

‖(Υx)(t)‖2PC

≤ 6
{

C2
‖ϕ(0) − G(0, ϕ)‖2

)
+ E‖G(t, x(t − τ)) − G(t, 0) + G(t, 0)‖2

+ C2TE
∫ t

0
‖F(s, x(s), x(s − τ)) − F(t, 0, 0) + F(t, 0, 0)‖2ds + C2C2

BT2E‖uα(s, x)‖2

+ C2E
∫ t

0
‖σ(s, x(s), x(s − τ)) − σ(t, 0, 0) + σ(t, 0, 0)‖2ds + C2E

∑
0<tk<t

‖Ik(x(t−k ) − Ik(0) + Ik(0)‖2
}

≤ 6
{

7
α2 T2C4C4

B

(
‖Eh‖2 + C2E

∫
J
‖z(s)‖2

L
0
2
ds

)
+

(
1 +

7
α2 T2C4C4

B

)(
2C2(1 + C0)E‖ϕ‖2

C

+ 2
[
M + C0(E‖ϕ‖2

C
+ ‖x‖2PC)

]
+ 2mC2

m∑
k=1

Qk(M + ‖x‖2PC)

+ 2C2(T + 1)
[
MT + C1(τE‖ϕ‖2

C
+ 2T‖x‖2PC)

])}
< ∞,

that is, Υ(PC) ⊂ PC.
Now, we are going to use the Banach fixed point theorem to prove that Υ has a unique fixed point in

PC. We claim that Υ is a contraction on PC. For any x, y ∈ PC, t ∈ J by the same ways as above, we can get

‖(Υx)(t) − (Υy)(t)‖2PC

≤ 5
[
C0 + 2T(T + 1)C2C1 + mC2

m∑
k=1

Qk

]
‖x − y‖2PC + 5T2C2C2

BE‖uα(t, x) − uα(t, y)‖2H

≤ 5
(α2 + 4T2C4C4

B

α2

)[
C0 + 2T(T + 1)C2C1 + mC2

m∑
k=1

Qk

]
‖x − y‖2PC.

By assumption (5), we conclude that Υ is a contraction mapping on PC. Thus by the Banach fixed point
theorem, has a unique fixed point x(·) ∈ PC. The proof is completed.

Theorem 3.3. Assume the condition in Theorem 3.2 and the assumption (H7) are satisfied, then system (1) is
approximately controllable on [0,T].
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Proof By Theorem 3.2, Υ has a unique fixed point x∗α in PC. By substituting (3) into (4) and using the
stochastic Fubini theorem [9], it can be easily seen that

x∗α(T) = h − αR(α,ΠT
0 )

[
Eh −U(T, 0)[ϕ(0) − G(0, ϕ)] − G(t, x∗(t − τ)) −

∑
0<tk<T

U(T, tk)Ik(x∗(t−k )
]

+

∫ T

0
αR(α,ΠT

s )U(T, s)F(s, x∗(s), x∗(s − τ))ds

+

∫ T

0
αR(α,ΠT

s )U(T, s)[σ(s, x∗(s), x∗(s − τ)) − z(s)]dW(s). (7)

It follows from the assumption (H7) that there exists CFσ > 0 such that

‖F(s, x∗(s), x∗(s − τ))‖2H + ‖σ(s, x∗(s), x∗(s − τ))‖2
L

0
2
≤ CFσ.

Then there is a subsequence still denoted by {F(s, x∗(s), x∗(s−τ)), σ(s, x∗(s), x∗(s−τ))}which converges weakly

to, say, {F(s), σ(s)} inH × L0
2. On the other hand, by assumption (H6), for all 0 ≤ t < T, αR(α,ΠT

s ) α→ 0+

−−−−−→ 0
strongly and moreover ‖αR(α,ΠT

s )‖ ≤ 1. Therefore, by the Lebesgue dominated convergence theorem and
the compactness of U(·, ·) it follows that

E‖x∗α(T) − h‖2

≤ 6E
∥∥∥∥αR(α,ΠT

0 )
[
Eh − αR(α,ΠT

0 )
[
Eh −U(T, 0)[ϕ(0) − G(0, ϕ)] − G(t, x∗(t − τ))

−

∑
0<tk<T

U(T, tk)Ik(x∗(t−k )
]

+ 6E
( ∫ T

0
‖αR(α,ΠT

s )‖‖U(T, s)‖‖F(s, x∗(s), x∗(s − τ)) − F(s)‖ds
)2

+ 6E
( ∫ T

0
αR(α,ΠT

s )U(T, s)F(s)ds
)2

+ 6E
∫ T

0
‖αR(α,ΠT

s )‖2‖U(T, s)‖2‖σ(s, x∗(s), x∗(s − τ)) − σ(s)‖2
L

0
2
ds

+ 6E
∫ T

0
‖αR(α,ΠT

s )U(T, s)σ(s)‖2
L

0
2
ds + 6E

∫ T

0
‖αR(α,ΠT

s )U(T, s)z(s)‖2
L

0
2
ds α→ 0+

−−−−−→ 0.

Thus, x∗α(T) → h holds in H and consequently we obtain the approximate controllability of system (1).
Theorem 3.3 is proved.

Remark 3.4. Stochastic partial differential equations driven by Wiener processes has been studied extensively by
many authors, and is an active research field. However, more recently, stochastic evolution equations and stochastic
differential equations with the perturbations of Poisson noise or Lévy noise have attracted more and more attentions,
for instances, [7, 22, 26], etc. In this remark, we will study the approximate controllability of following time-dependent
impulsive neutral stochastic delay partial differential equations driven by Lévy noise

d[x(t) − G(t, x(t − τ))] = A(t)[x(t) − G(t, x(t − τ))]dt +
[
F(t, x(t), x(t − τ)) + Bu(t)

]
dt

+σ(t, x(t), x(t − τ))dW(t) +
∫

Z L(t, x(t), x(t − τ), z)Ñ(dt, dz), tk , t ∈ J := [0,T],
∆x(tk) = Ik(x(t−k ), k ∈ {1, 2, ...,m},
x(t) = ϕ(t) ∈ Cτ = Cb

F0
([−τ, 0];H), −τ ≤ t ≤ 0,

(8)

where the functions G,F, σ are defined as in Theorem 3.3; L : J×H×H×Z→H. Let p = p(t), t ∈ Dp (the domain of
p(t)) be a stationaryFt-Poisson point process taking its value in a measurable space (Z,B(Z)) with a σ-finite intensity
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measure λ(dz) by N(dt, dz) the Poisson counting measure associated with p, that is, N(t,Z) =
∑

s∈Dp,s≤t IZ(p(s)) for
any measurable set Z ∈ B(K − {0}), which denotes the Borel σ-field of (K − {0}). Let

Ñ(dt, dz) := N(dt, dz) − λ(dz)dt

be the compensated Poisson measure that is independent of W(t).

An Ft-adapted càdlàg stochastic process x : J → H is called a mild solution of (8) if for each u ∈ LF2 (J,U)
and for arbitrary t ∈ J, P{ω :

∫
J ‖x(s)‖2

H
ds < +∞} = 1 it satisfies the integral equation

x(t) =U(t, 0)[ϕ(0) − G(0, ϕ)] + G(t, x(t − τ)) +

∫ t

0
U(t, s)[F(s, x(s), x(s − τ)) + Bu(s)]ds

+

∫ t

0
U(t, s)σ(s, x(s), x(s − τ))dW(s) +

∑
0<tk<t

U(t, tk)Ik(x(t−k )

+

∫ t

0

∫
Z

U(t, s)L(s, x(s), x(s − τ), z)Ñ(ds, dz) (9)

for any x0(·) = ϕ(·) ∈ Cτ.
By implementing appropriate assumptions on the functions, one can easily prove that by adapting and

employing the techniques used in Theorem 3.3, the system (8) is approximately controllable on [0,T].

4. An Example

In this section, an example is provided to illustrate the obtained theory. We consider the following
stochastic classical heat equation with memory of the form:

d[v(t, y) − 1(t, v(t − τ, y)] =
[ ∂2

∂y2 v(t, y) + a(t, y)v(t, y) − 1(t, v(t − τ, y)
]
dt + f (t, v(t, y), v(t − τ, y)dt

+ µ(t, y)dt + σ̂(t, v(t, y), v(t − τ, y)dW(t), y ∈ [0, π], tk , t ∈ J = [0,T],

v(t+
k , y) − v(t−k , y) = Ik(v(t−k , y), k ∈ {1, 2, ...,m},

v(t, 0) = v(t, π) = 0 t ∈ J,

v(θ, ·) = ϕ(θ, ·) ∈H = L2[0, π], ϕ(·, y) ∈ C([−τ, 0];R), θ ∈ [0, π],

(10)

where W(t) is a real standard Wiener process inH defined on a stochastic basis (Ω,F ,P).
We takeH = K = U = L2([0, π]) with the norm ‖ · ‖. Define A :H→H by Ax = x′′ with domain

D(A) = {x(·) ∈H : x, x′ are absolutely continuous, x′′ ∈H, x(0) = x(π) = 0}.

The spectrum of A consists of the eigenvalues−n2 for n ∈N, with associated eigenvectors en(y) :=
√

2
π sin ny,

n = 1, 2, 3, .... Furthermore, the set {en : n ∈N} is an orthogonal basics inH. Then

Ax =

∞∑
n=1

n2
〈x, en〉en, x ∈ D(A).

It is wellknown that A is the infinitesimal generator of a strongly continuous semigroup {S(t)}t≥0 onH and
is given (see Pazy [21], page 70) by

S(t)x =

∞∑
n=1

e−n2t
〈x, en〉en, x ∈H.
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It follows from this representation that S(t) is compact for every t > 0 and ‖S(t)‖ ≤ e−t for every t ≥ 0.
On the domain D(A), we define the operators A(t) : D(A) ⊂H→H by A(t)z(y) = Az(y) + a(t, y)z(y). Let

a(·, ·) be continuous and a(t, y) ≤ −λ, λ > 0 for all t ∈ J, y ∈ [0, π], it follows that the systemdv(t) = A(t)v(t)dt, t ≥ s,

v(s) = z ∈H,

has an associated evolution family {U(t, s)}t≥s as

U(t, s)z(y) =
(
S(t − s)e

∫ t
s a(ρ,y)dρz

)
(y).

From the above expression, it follows that U(t, s) is a compact operator and every t, s ∈ J with t > s

‖U(t, s)‖ ≤ e−(1+λ)(t−s).

Thus, (H1) is true.
Now, we define the linear continuous mapping B from

U =
{
u =

∞∑
n=2

unen : ‖u‖2U :=
∞∑

n=2

u2
n < ∞

}
toH as follows:

Bu = 2u2e1 +

∞∑
n=2

unen.

Put x(t)(·) = v(t, ·) and u(t) = µ(t, y) where µ(t, y) : J × [0, π]→ [0, π] is continuous.
We choose B = I the identity operator and define the operators G(t, v)(·) = 1(t, v(·)), F(t, v, v)(·) =

f (t, v(·), v(·)), σ(t, v, v)(·) = σ̂(t, v(·), v(·)). Then, under the above conditions, we can represent the stochastic
control system (10) in the abstract form (1).

Assume that the linear operator LT
0 be defined by

(LT
0 u)(y) =

∫ T

0
S(T − s)e

∫ t
s a(ρ,y)dρµ(s, y)ds.

On the other hand, because of the compactness of U(t, s) generated by A(t), the associated linear system of
(10) is not exactly controllable but it is approximately controllable (see [16]). Therefore, we can conclude
that the stochastic control system (10) is approximately controllable on [0,T] provided that all the conditions
of Theorem 3.3 are satisfied.
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