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Abstract. In this paper, a boundary version of the Schwarz lemma for meromorphic functions is investi-
gated. The modulus of the angular derivative of the meromorphic function In f (z) = 1

z +2nc0+3nc1z+4nc2z2+...
that belongs to the class ofM on the boundary point of the unit disc has been estimated from below.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

First, let us set the following standard notations: C denotes the complex numbers, E := {z ∈ C : |z| < 1}
is the unit disc and T := ∂E = {z ∈ C : |z| = 1} is the unit circle. Now, let us start by recalling the classical
form of the Schwarz lemma ([6], p.329).

Lemma 1.1 (Schwarz lemma). Let f : E→ E be holomorphic function and f (0) = 0. Then
∣∣∣ f (z)

∣∣∣ ≤ |z| for all z
and

∣∣∣ f ′(0)
∣∣∣ ≤ 1, with equality in either case if and only if is a rotation.

For historical background about the Schwarz lemma and its applications on the boundary of the unit
disc, we refer to (see [2], [20]). The basic tool in proving our results is the following lemma due to Jack ([2]).

Lemma 1.2 (Jack’s lemma). Let f (z) be holomorphic function in the unit disc E with f (0) = 0. If
∣∣∣ f (z)

∣∣∣ attains its
maximum value on the circle |z| = r at the point z0, then

z0 f ′(z0) = k f (z0),

where k ≥ 1 is a real number.

LetA denote the class of functions

f (z) =
1
z

+ c0 + c1z + c2z2 + ...
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that are holomorphic in the punctured discU = {z ∈ C : 0 < |z| < 1}. Define

I0 f (z) = f (z),

I1 f (z) =
1
z

+ 2c0 + 3c1z + 4c2z2 + ... =

(
z2 f (z)

)′
z

,

I2 f (z) = I1
(
I1 f (z)

)
,

and for n = 1, 2, 3, ...

In f (z) = I1
(
In−1 f (z)

)
=

1
z

+ 2nc0 + 3nc1z + 4nc2z2 + ... =
1
z

+

∞∑
k=2

knck−2zk−2

and

In+1 f (z) =
1
z

+ 2n+1c0 + 3n+1c1z + 4n+1c2z2 + ... =
1
z

+

∞∑
k=2

kn+1ck−2zk−2. (1.1)

Also,M be the subclass ofA consisting of all functions f (z) which satisfy

<

(
−z2

(
In+1 f (z)

)′)
> 0, |z| < 1, (1.2)

where In+1 f (z) is defined by (1.1).
Let f (z) ∈ M and consider the function

φ(z) =
1 + z2 (

In f (z)
)′

1 − z2 (
In f (z)

)′ . (1.3)

The function φ(z) is holomorphic in E and φ(0) = 0. That is,

φ(z) =
z2

2
(3nc1 + 2.4nc2z + ...) .

Differentiating (1.3) we obtain

z2 (
In f (z)

)′′ + 2z
(
In f (z)

)′ =
2φ′(z)(

1 + φ(z)
)2 .

We can easily confirm the identity

z
(
In f (z)

)′ = In+1 f (z) − 2In f (z). (1.4)

Differentiating (1.4) we take

z2 (
In f (z)

)′′ = z
(
In+1 f (z)

)′
− 3z

(
In f (z)

)′ .
Therefore, we have

−z2
(
In+1 f (z)

)′
= −z2 (

In f (z)
)′
−

2zφ′(z)(
1 + φ(z)

)2 .

Now, let us show that the function
∣∣∣φ(z)

∣∣∣ < 1 in E. If there exists a point z0 ∈ E such that

max
|z|≤|z0 |

∣∣∣φ(z)
∣∣∣ =

∣∣∣φ(z0)
∣∣∣ = 1,
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then Jack’s lemma gives us that φ(z0) = eiθ and z0φ′(z0) = kφ(z0). Thus, we have

−z2
0

(
In+1 f (z0)

)′
= −z2

0
(
In f (z0)

)′
−

2z0φ′(z0)(
1 + φ(z0)

)2

=
1 − φ(z0)
1 + φ(z0)

−
2kφ(z0)(

1 + φ(z0)
)2

=
1 − eiθ

1 + eiθ −
2keiθ

(1 + eiθ)2 .

and

<

(
−z2

0

(
In+1 f (z0)

)′)
=<

(
1 − eiθ

1 + eiθ −
2keiθ

(1 + eiθ)2

)
.

Therefore, we obtain

<

(
−z2

0

(
In+1 f (z0)

)′)
= <

(
1 − (cosθ + i sinθ)
1 + cosθ + i sinθ

−
2keiθ

(1 + eiθ)2

)
= <

(
1 − (cosθ + i sinθ)
1 + cosθ + i sinθ

− 2k
1

2 + eiθ + e−iθ

)
= <

(
1 − (cosθ + i sinθ)
1 + cosθ + i sinθ

−
2k

2 (1 + cosθ)

)
= −k<

( 1
1 + cosθ

)
≤ 0.

This contradict (1.2). Thus, there is no point z0 ∈ E such that
∣∣∣φ(z0)

∣∣∣ = 1 for all z ∈ E. Consequently, we
conclude that

∣∣∣φ(z)
∣∣∣ < 1 for |z| < 1. Thus, by the Schwarz lemma, we obtain

|c1| ≤
2
3n . (1.5)

Moreover, the equality in (1.5) occurs for the solution of equation(
In f (z)

)′ =
z2
− 1

z2(1 + z2)
,

with the condition at z = 0

lim
z→0

z2 f (z) = 0.

In particular, for n = 1, we have(
I1 f (z)

)′
=

z2
− 1

z2(1 + z2)
, (1.6)

with the condition at z = 0

lim
z→0

z2 f (z) = 0.

Thus, from (1.6), we obtain

f (z) =
1
z

+
2
3

z −
2
15

z3 +
2

35
z5
− ...

The following boundary version of the Schwarz lemma was proved in 1938 by Unkelbach in [21] and
then rediscovered and partially improved by Osserman in 2000 [17].
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Lemma 1.3. Let f (z) = cpzp + ... be a holomorphic function self-mapping ofE, that is
∣∣∣ f (z)

∣∣∣ < 1 for all z ∈ E. Assume
that there is a b ∈ T so that f extend continuously to b,

∣∣∣ f (b)
∣∣∣ = 1 and f ′(b) exists. Then

∣∣∣ f ′(b)
∣∣∣ ≥ p +

1 −
∣∣∣cp

∣∣∣
1 +

∣∣∣cp

∣∣∣ . (1.7)

The equality in (1.7) holds if and only if f is of the form

f (z) = −zp γ − z
1 − γz

, ∀z ∈ E,

for some constant γ ∈ (−1, 0].

Corollary 1.4. Under the hypotheses of Lemma 1.3, we have∣∣∣ f ′(b)
∣∣∣ ≥ p, (1.8)

with equality only if f is of the form

f (z) = zpeiθ,

where θ is a real number.

The following Lemma 1.5 and Corollary 1.6, known as the Julia-Wolff lemma, is needed in the sequel
[19].

Lemma 1.5 (Julia-Wolff lemma). Let f be a holomorphic function inE, f (0) = 0 and f (E) ⊂ E. If, in addition, the
function f has an angular limit f (b) at b ∈ T,

∣∣∣ f (b)
∣∣∣ = 1, then the angular derivative f ′(b) exists and 1 ≤

∣∣∣ f ′(b)
∣∣∣ ≤ ∞.

Corollary 1.6. The holomorphic function f has a finite angular derivative f ′(b) if and only if f ′ has the finite angular
limit f ′(b) at b ∈ T.

Inequality (1.8) and its generalizations have important applications in geometric theory of functions
(see, e.g., [6], [19]). Therefore, the interest to such type results is not vanished recently (see, e.g., [1], [2], [4],
[5], [10], [11], [17], [18], [20] and references therein).

Vladimir N. Dubinin has continued this line and has made a refinement on the boundary Schwarz
lemma under the assumption that f (z) = cpzp + cp+1zp+1 + ..., with a zero set {zk} (see [4]).

S. G. Krantz and D. M. Burns [9] and D. Chelst [3] studied the uniqueness part of the Schwarz lemma.
In M. Mateljević’s papers, for more general results and related estimates, see also ([12], [13], [14], [15] and
[16]).

Also, M. Jeong [8] showed some inequalities at a boundary point for different form of holomorphic
functions and found the condition for equality and in [7] a holomorphic self map defined on the closed unit
disc with fixed points only on the boundary of the unit disc.

2. Main Results

In this section, the modulus of the angular derivative of the meromorphic function In f (z) = 1
z + 2nc0 +

3nc1z + 4nc2z2 + ... that belongs to the class ofM on the boundary point of the unit disc has been estimated
from below.

Theorem 2.1. Let f (z) ∈ M. Assume that, for some b ∈ T,
(
In f (z)

)′ has angular limit
(
In f (z)

)′
z=b at b and(

In f (z)
)′

z=b = 0. Then we have the inequality∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1. (2.1)
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The equality in (2.1) occurs for the solution of equation(
In f (z)

)′ =
z2
− 1

z2(1 + z2)
,

with the condition at z = 0

lim
z→0

z2 f (z) = 0.

Proof. Consider the function

φ(z) =
1 + z2 (

In f (z)
)′

1 − z2 (
In f (z)

)′ .
φ(z) is a holomorphic function in the unit disc E and φ(0) = 0. From the Jack’s lemma and since f (z) ∈ M,
we have

∣∣∣φ(z)
∣∣∣ < 1 for |z| < 1. Also, we have

∣∣∣φ(b)
∣∣∣ = 1 for b ∈ T.

For p = 2, from (1.8), we obtain

2 ≤

∣∣∣φ′(b)
∣∣∣ =

∣∣∣∣∣∣∣∣
(
2b

(
In f (z)

)′
z=b + b2 (

In f (z)
)′′

z=b

) (
1 − b2 (

In f (z)
)′

z=b

)
(
1 − b2 (

In f (z)
)′

z=b

)2

+

(
2b

(
In f (z)

)′
z=b + b2 (

In f (z)
)′′

z=b

) (
1 + b2 (

In f (z)
)′

z=b

)
(
1 − b2 (

In f (z)
)′

z=b

)2

∣∣∣∣∣∣∣∣ ,
2 ≤

∣∣∣b2 (
In f (z)

)′′
z=b + b2 (

In f (z)
)′′

z=b

∣∣∣ = 2
∣∣∣(In f (z)

)′′
z=b

∣∣∣
and ∣∣∣(In f (z)

)′′
z=b

∣∣∣ ≥ 1.

Now, we shall show that the inequality (2.1) is sharp. Let(
In f (z)

)′ =
z2
− 1

z2(1 + z2)
.

Then, we have

(
In f (z)

)′′ =
2z

(
z4 + z2

)
−

(
4z3 + 2z

) (
z2
− 1

)
(z4 + z2)2 ,

and ∣∣∣(In f (z)
)′′

z=1

∣∣∣ = 1

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1
2

(6 + 3n
|c1|

2 + 3n |c1|

)
. (2.2)

The inequality (2.2) is sharp with equality for the solution of equation(
In f (z)

)′ =
z3 + az2

− az − 1
z5 + az4 + az3 + z2 ,

with the condition at z = 0

lim
z→0

z2 f (z) = 0,

where a = 3n

2 |c1| is an arbitrary number from [0, 1] (see (1.5)).
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Proof. Let φ(z) be as in the proof of Theorem 2.1. For p = 2, using the inequality (1.7) for the function φ(z),
we obtain

2 +
1 − |a2|

1 + |a2|
≤

∣∣∣φ′(b)
∣∣∣ = 2

∣∣∣(In f (z)
)′′

z=b

∣∣∣
Since

|a2| =

∣∣∣φ′′(0)
∣∣∣

2
=

3n

2
|c1| ,

then we have

2 +
1 − 3n

2 |c1|

1 + 3n

2 |c1|
≤ 2

∣∣∣(In f (z)
)′′

z=b

∣∣∣ ,
2 +

2 − 3n
|c1|

2 + 3n |c1|
≤ 2

∣∣∣(In f (z)
)′′

z=b

∣∣∣∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1
2

(
2 +

2 − 3n
|c1|

2 + 3n |c1|

)
and ∣∣∣(In f (z)

)′′
z=b

∣∣∣ ≥ 1
2

(6 + 3n
|c1|

2 + 3n |c1|

)
.

To show that the inequality (2.2) is sharp, take the holomorphic function

φ(z) =
1 + z2 (

In f (z)
)′

1 − z2 (
In f (z)

)′ = z2 z + a
1 + az

Then

φ′(z) = 2
2z

(
In f (z)

)′ + z2 (
In f (z)

)′′(
1 − z2 (

In f (z)
)′)2 =

(
3z2 + 2az

)
(1 + az) − a

(
z3 + az2

)
(1 + az)2 ,

φ′(1) = 2
2
(
In f (z)

)′
z=1 +

(
In f (z)

)′′
z=1(

1 −
(
In f (z)

)′
z=1

)2 =
3 + a
1 + a

and ∣∣∣(In f (z)
)′′

z=1

∣∣∣ =
1
2

(3 + a
1 + a

)
.

Since a = 3n

2 |c1| is satisfied with equality.

Theorem 2.3. Let f (z) ∈ M. Assume that, for some b ∈ T,
(
In f (z)

)′ has angular limit
(
In f (z)

)′
z=b at b and(

In f (z)
)′

z=b = 0. Then we have the inequality∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1 +
(2 − 3n

|c1|)
2

4 − 32n |c1|
2 + 4n+1 |c2|

. (2.3)

The inequality (2.3) is sharp with equality for the solution of equation(
In f (z)

)′ =
z2
− 1

z2(1 + z2)
,

with the condition at z = 0

lim
z→0

z2 f (z) = 0.
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Proof. Let φ(z) be as in the proof of Theorem 2.1. By the maximum principle for each z ∈ E, we have∣∣∣φ(z)
∣∣∣ ≤ ∣∣∣z2

∣∣∣. So,

ψ(z) =
φ(z)
z2

is a holomorphic function in E and
∣∣∣ψ(z)

∣∣∣ < 1 for |z| < 1.
In particular, we have∣∣∣ψ(0)

∣∣∣ =
3n

2
|c1| ≤ 1 (2.4)

and ∣∣∣ψ′(0)
∣∣∣ = 4n

|c2| .

Moreover, it can be seen that

bφ′(b)
φ(b)

=
∣∣∣φ′(b)

∣∣∣ ≥ ∣∣∣∣(b2
)′∣∣∣∣ =

b
(
b2

)′
b2 .

The function

Υ(z) =
ψ(z) − ψ(0)

1 − ψ(0)ψ(z)
=

3n

2 c1 + 4nc2z + .... − 3n

2 c1

1 − 3n

2 c1

(
3n

2 c1 + 4nc2z + ....
)

=
4nc2z + ....

1 − 3n

2 c1

(
3n

2 c1 + 4nc2z + ....
) =

4nc2z
1 − 32n

4 |c1|
2 + ...

is a holomorphic in the unit disc E, |Υ(z)| < 1 for |z| < 1, Υ(0) = 0 and |Υ(b)| = 1 for b ∈ T.
From (1.4), we obtain

2
1 + |Υ′(0)|

≤ |Υ′(b)| =
1 −

∣∣∣ψ(0)
∣∣∣2∣∣∣1 − ψ(0)ψ(b)

∣∣∣2
∣∣∣ψ′(b)

∣∣∣ ≤ 1 +
∣∣∣ψ(0)

∣∣∣
1 −

∣∣∣ψ(0)
∣∣∣ ∣∣∣ψ′(b)

∣∣∣
=

1 +
∣∣∣ψ(0)

∣∣∣
1 −

∣∣∣ψ(0)
∣∣∣ {∣∣∣φ′(b)

∣∣∣ − 2
}
.

Since

Υ′(z) =
1 −

∣∣∣ψ(0)
∣∣∣2(

1 − ψ(0)ψ(z)
)2ψ

′(z),

|Υ′(0)| =

∣∣∣ψ′(0)
∣∣∣

1 −
∣∣∣ψ(0)

∣∣∣2 =
4n
|c2|

1 − 32n

4 |c1|
2 =

4n+1
|c2|

4 − 32n |c1|
2 ,

we take

2

1 + 4n+1 |c2 |

4−32n |c1 |
2

≤
1 + 3n

2 |c1|

1 − 3n

2 |c1|

{
2
∣∣∣(In f (z)

)′′
z=b

∣∣∣ − 2
}

=
2 + 3n

|c1|

2 − 3n |c1|

{
2
∣∣∣(In f (z)

)′′
z=b

∣∣∣ − 2
}
,
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2
(
4 − 32n

|c1|
2
)

4 − 32n |c1|
2 + 4n+1 |c2|

2 − 3n
|c1|

2 + 3n |c1|
≤ 2

∣∣∣(In f (z)
)′′

z=b

∣∣∣ − 2

and

2 (2 − 3n
|c1|)

2

4 − 32n |c1|
2 + 4n+1 |c2|

+ 2 ≤ 2
∣∣∣(In f (z)

)′′
z=b

∣∣∣
Therefore, we obtain∣∣∣(In f (z)

)′′
z=b

∣∣∣ ≥ 1 +
(2 − 3n

|c1|)
2

4 − 32n |c1|
2 + 4n+1 |c2|

.

To show that the inequality (2.3) is sharp, take the holomorphic function

(
In f (z)

)′ =
z2
− 1

z2(1 + z2)
.

Then

(
In f (z)

)′′ =
2z

(
z4 + z2

)
−

(
4z3 + 2z

) (
z2
− 1

)
(z4 + z2)2

and ∣∣∣(In f (z)
)′′

z=1

∣∣∣ = 1.

Since |c1| =
2
3n , (2.3) is satisfied with equality.

If z2 (
In f (z)

)′ has no zeros different from z = 0 in Theorem 2.3, the inequality (2.3) can be further
strengthened. This is given by the following Theorem.

Theorem 2.4. Let f (z) ∈ M and z2 (
In f (z)

)′ has no zeros in E except z = 0 and c1 > 0. Assume that, for some b ∈ T,(
In f (z)

)′ has angular limit
(
In f (z)

)′
z=b at b and

(
In f (z)

)′
z=b = 0. Then we have the inequality

∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1 −
1
2

3n
|c1| ln2

(
3n

2 c1

)
3n |c1| ln

(
3n

2 c1

)
− 4n |c2|

. (2.5)

In addition, the equality in (2.5) occurs for the solution of equation

(
In f (z)

)′ =
z2
− 1

z2(1 + z2)

with the condition at z = 0

lim
z→0

z2 f (z) = 0.

Proof. Let c1 > 0 in the expression of the function f (z). Having in mind the inequality (2.4) and the function
z2 (

In f (z)
)′ has no zeros in E except E − {0}, we denote by lnψ(z) the holomorphic branch of the logarithm

normed by the condition

lnψ(0) = ln
(3n

2
c1

)
< 0.
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The auxiliary function

Φ(z) =
lnψ(z) − lnψ(0)
lnψ(z) + lnψ(0)

is a holomorphic in the unit disc E, |Φ(z)| < 1,Φ(0) = 0 and |Φ(b)| = 1 for b ∈ T.
For p = 1, from (1.7), we obtain

2
1 + |Φ′(0)|

≤ |Φ′(b)| =

∣∣∣2 lnψ(0)
∣∣∣∣∣∣lnψ(b) + lnψ(0)

∣∣∣2
∣∣∣∣∣ψ′(b)
ψ(b)

∣∣∣∣∣
=

−2 lnψ(0)

ln2 ψ(0) + arg2 ψ(b)

{∣∣∣φ′(b)
∣∣∣ − 2

}
.

Replacing arg2 ω(b) by zero, then we take

1

1 − 4n |c2 |
3n
2 |c1 |2 ln( 3n

2 c1)
≤

−1

ln
(

3n

2 c1

) {
2
∣∣∣(In f (z)

)′′
z=b

∣∣∣ − 2
}
,

−

3n
|c1| ln2

(
3n

2 c1

)
3n |c1| ln

(
3n

2 c1

)
− 4n |c2|

≤ 2
∣∣∣(In f (z)

)′′
z=b

∣∣∣ − 2,

−
1
2

3n
|c1| ln2

(
3n

2 c1

)
3n |c1| ln

(
3n

2 c1

)
− 4n |c2|

≤

∣∣∣(In f (z)
)′′

z=b

∣∣∣ − 1

and

∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1 −
1
2

3n
|c1| ln2

(
3n

2 c1

)
3n |c1| ln

(
3n

2 c1

)
− 4n |c2|

 .
Thus, we obtain the inequality (2.5) with an obvious equality case.

The following inequality (2.6) is weaker, but is simpler than (2.5) and does not contain the coeffient c2.

Theorem 2.5. Under the same assumptions as in Theorem 2.4, we have∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1 −
1
4

ln
(3n

2
c1

)
. (2.6)

In addition, the equality in (2.6) occurs for the solution of equation

(
In f (z)

)′ =
z2
− 1

z2(1 + z2)

with the condition at z = 0

lim
z→0

z2 f (z) = 0.

Proof. Let c1 > 0 . Using the inequality (1.8) for the function Φ(z), we obtain

1 ≤ |Φ′(b)| =

∣∣∣2 lnψ(0)
∣∣∣∣∣∣lnψ(b) + lnψ(0)

∣∣∣2
∣∣∣∣∣ψ′(b)
ψ(b)

∣∣∣∣∣ =
−2 lnψ(0)

ln2 ψ(0) + arg2 ψ(b)

{∣∣∣φ′(b)
∣∣∣ − 2

}
.
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Replacing arg2 ϕ(b) by zero, then

1 ≤ |Φ′(b)| ≤
−2

ln
(

3n

2 c1

) {
2
∣∣∣(In f (z)

)′′
z=b

∣∣∣ − 2
}
,

1 ≤
−2

ln
(

3n

2 c1

) {
2
∣∣∣(In f (z)

)′′
z=b

∣∣∣ − 2
}

and ∣∣∣(In f (z)
)′′

z=b

∣∣∣ ≥ 1 −
1
4

ln
(3n

2
c1

)
.

Therefore, we obtain the inequality (2.6) with an obvious equality case.
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[13] M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Revue Roum. Math. Pures Appl. Vol. 51

(2006) 56, 711-722.
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