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Abstract. In this paper, using the concept of C−class and Upper class functions we prove the existence
of unique common best proximity point. Our main result generalizes results of Kumam et al. [[17]] and
Parvaneh et al. [[21]].
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1. Introduction and Preliminaries

Consider a pair (A,B) of nonempty subsets of a metric space (X, d). Assume that f is a function from A
into B. An element w ∈ A is said to be a best proximity point whenever d(w, f w) = d(A,B),where

d(A,B) = inf{d(s, t) : s ∈ A, t ∈ B}.

Best proximity point theory of non-self functions was initiated by Fan [1] and Kirk et al. [[16]]; see also
[[19][15][11][13] [4][8][9][24][25][20][18]].

Definition 1.1. Consider non-self functions f1, f2, . . . , fn : A → B. We say the a point s ∈ A is a common best
proximity point of f1, f2, . . . , fn if

d(s, f1(s)) = d(s, f2(s)) = · · · = d(s, fn(s)) = d(A,B).

Definition 1.2. ([17])Let (X, d) be a metric space and ∅ , A,B ⊂ X. We say the pair (A,B) has the V-property if for
every sequence {tn} of B satisfying d(s, tn)→ d(s,B) for some s ∈ A, there exists a t ∈ B such that d(s, t) = d(s,B).

Definition 1.3. ([5]) A continuous function F : [0,∞)2
→ R is called C-class function if for any s, t ∈ [0,∞), the

following conditions hold:
(1) F(s, t) ≤ s;
(2) F(s, t) = s implies that either s = 0 or t = 0.
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An extra condition on F that F(0, 0) = 0 could be imposed in some cases if required. The letter C will
denote the class of all C- functions.

Example 1.4. ([5]) Following examples show that the class C is nonempty:

1. F(s, t) = s − t.
2. F(s, t) = ms,for some m ∈ (0, 1).
3. F(s, t) = s

(1+t)r for some r ∈ (0,∞).
4. F(s, t) = log(t + as)/(1 + t), for some a > 1.
5. F(s, t) = s

Γ(1/2)

∫
∞

0
e−x
√

x+t
dx, where Γ is the Euler Gamma function.

Definition 1.5. [6, 7]We say that the function h : R+
× R+

→ R is a function of subclass of type I, if x ≥ 1 =⇒
h(1, y) ≤ h(x, y) for all y ∈ R+.

Example 1.6. [6, 7]Define h : R+
×R+

→ R by:

(a) h(x, y) = (y + l)x, l > 1;
(b) h(x, y) = (x + l)y, l > 1;
(c) h(x, y) = xny, n ∈N;
(d) h(x, y) = y;
(e) h(x, y) = 1

n+1

(∑n
i=0 xi

)
y, n ∈N;

(f) h(x, y) =
[

1
n+1

(∑n
i=0 xi

)
+ l

]y
, l > 1, n ∈N

for all x, y ∈ R+. Then h is a function of subclass of type I.

Definition 1.7. [6, 7]Let h,F : R+
×R+

→ R, then we say that the pair (F , h) is an upper class, if h is a function
of subclass of type I and: (i) 0 ≤ s ≤ 1 =⇒ F [s, t] ≤ F [1, t], (ii) h(1, y) ≤ F [1, t] =⇒ y ≤ t for all t, y ∈ R+.

Example 1.8. [6, 7]Define h,F : R+
×R+

→ R by:

(a) h(x, y) = (y + l)x, l > 1 and F [s, t] = st + l;
(b) h(x, y) = (x + l)y, l > 1 and F [s, t] = (1 + l)st;
(c) h(x, y) = xmy, m ∈N and F [s, t] = st;
(d) h(x, y) = y and F [s, t] = t;
(d) h(x, y) = 1

n+1

(∑n
i=0 xi

)
y, n ∈N and F [s, t] = st;

(e) h(x, y) =
[

1
n+1

(∑n
i=0 xi

)
+ l

]y
, l > 1, n ∈N and F [s, t] = (1 + l)st

for all x, y, s, t ∈ R+. Then the pair (F , h) is an upper class of type I.

Let Φu denote the class of the functions ϕ : [0,+∞) × [0,+∞) → [0,+∞) which satisfy the following
conditions:

(a) ϕ continuous ;
(b) ϕ(u, v) > 0, (u, v) , (0, 0) and ϕ(0, 0) ≥ 0 .

Let Ψa be a set of all continuous functions ψ : R+ → R+ satisfying the following conditions:

(ψ1) ψ is continuous and strictly increasing.

(ψ2) ψ(t) = 0 if and only of t = 0.

Also we denote by Ψ the family of all continuous functions from [0,+∞) × [0,+∞) to [0,+∞) such that
ψ(u, v) = 0 if and only if u = v = 0 where ψ ∈ Ψ.
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Lemma 1.9. ([14])Suppose (X, d) is a metric space. Let {xn} be a sequence in Xsuch that d(xn, xn+1)→ 0 as n→∞.
If {xn} is not a Cauchy sequence then there exist an ε > 0 and sequences of positive integers {m(k)} and {n(k)} with

m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and
(i) lim

k→∞
d(xm(k)−1, xn(k)+1) = ε;

(ii) lim
k→∞

d(xm(k), xn(k)) = ε;

(iii). lim
k→∞

d(xm(k)−1, xn(k)) = ε

We note that also can see lim
k→∞

d(xm(k)+1, xn(k)+1) = ε and lim
k→∞

d(xm(k), xn(k)−1) = ε

Definition 1.10. ([21])Let (X, d) be a metric space, ∅ , A,B ⊂ X, α : A × A→ [0,∞) a function and f , 1 : A→ B
non-self mappings. We say that ( f , 1) is a triangular α-proximal admissible pair, if for all p, q, r, t1, t2, s1, s2 ∈ A,

T1 :


α(t1, t2) ≥ 1
d(s1, f (t1)) = d(A,B)
d(s2, 1(t2)) = d(A,B)

=⇒ α(s1, s2) ≥ 1

T2 :
{
α(p, r) ≥ 1
α(r, q) ≥ 1 =⇒ α(p, q) ≥ 1.

Let (X, d) be a metric space, ∅ , A,B ⊂ X. We define

A0 = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B}
B0 = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A} (1)

Definition 1.11. ([21])Let Let (X, d) be a metric space, ∅ , A,B ⊂ X, and f , 1 : A→ B non-self mappings. We say
that ( f , 1) is a generalized proximal C-contraction pair if, for all s, t, p, q ∈ A,

d(s, f (p)) = d(A,B)
d(t, 1(q)) = d(A,B)

}
=⇒ d(s, t) ≤

1
2

(
d(p, t) + d(q, s)

)
− ψ

(
d(p, t), d(q, s)

)
, (2)

in which ψ ∈ Ψ .

Definition 1.12. ([21])Let (X, d) be a metric space, ∅ , A,B ⊂ X, α : A × A→ [0,∞) a function and f , 1 : A→ B
non-self functions. If, for all s, t, p, q ∈ A,

d(s, f (p)) = d(A,B)
d(t, 1(q)) = d(A,B)

}
=⇒ α(p, q)d(s, t) ≤

1
2

(
d(p, t) + d(q, s)

)
− ψ

(
d(p, t), d(q, s)

)
, (3)

then ( f , 1) is said to be an α-proximal C1-contraction pair.

If in the definition above, we replace (2) by

(α(p, q) + l)d(s,t)
≤ (l + 1)

1
2

(
d(p,t)+d(q,s)

)
−ψ

(
d(p,t),d(q,s)

)
, (4)

where l > 0, then ( f , 1) is said to be an α-proximal C2-contraction pair.
In this paper, we generalize some results of Parvaneh et al. [[21]] to obtain some new common best

proximity point theorems. Next, by an example and some fixed point results, we support our main result.
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2. Main Results

Definition 2.1. Let A and B are two nonempty subsets of a metric space, (X, d). Let µ : A × A→ [0,∞) a function
and f , 1 : A → B non-self mappings. We say that ( f , 1) is a triangular µ − subproximal admissible pair, if for all
p, q, r, s, t1, t2, s1, s2 ∈ A,

T1 :


µ(t1, t2) ≤ 1,
d(s1, f (t1)) = d(A,B),
d(s2, f (t2)) = d(A,B)

=⇒ µ(s1, s2) ≤ 1

T2 :

µ(p, r) ≤ 1,
µ(r, q) ≤ 1

=⇒ µ(p, q) ≤ 1

Definition 2.2. Let Let (X, d) be a metric space, ∅ , A,B ⊂ X, and f , 1 : A → B non-self mappings. We say that
( f , 1) is a generalized proximal C-contraction pair of type C-class if, for all s, t, p, q ∈ A,

d(s, f (p)) = d(A,B)
d(t, 1(q)) = d(A,B)

}
=⇒ d(s, t) ≤ F

(1
2

(
d(p, t) + d(q, s)

)
, ψ

(
d(p, t), d(q, s)

))
, (5)

in which ψ ∈ Ψu .

Definition 2.3. Let (X, d) be a metric space, ∅ , A,B ⊂ X, α : A×A→ [0,∞) a function and f , 1 : A→ B non-self
functions. If, for all s, t, p, q ∈ A,

d(s, f (p)) = d(A,B)
d(t, 1(q)) = d(A,B)

}
=⇒ h(α(p, q), d(s, t)) ≤ F

(
µ(p, q),F

(1
2

(
d(p, t) + d(q, s)

)
, ψ

(
d(p, t), d(q, s)

)))
, (6)

then ( f , 1) is said to be an α, µ-proximal C-contraction pair of type C-class.

Theorem 2.4. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A0 be nonempty.
Moreover, assume that the non-self functions f , 1 : A→ B satisfy;
(i). f , 1 are continuous,
(ii). f (A0) ⊂ B0 and 1(A0) ⊂ B0,
(iii). ( f , 1) is a generalised proximal C−contraction pair of type C-class ,
Then, the functions f and 1 have a unique common best proximity point.

Proof. Choose, s0 ∈ A0 be arbitrary. Since f (A0) ⊂ B0, there exists s1 ∈ A0 such that

d(s1, f (s0)) = d(A,B).

Since 1(A0) ⊂ B0, there exists s2 ∈ A0 such that d(s2, 1(s1)) = d(A,B). Now as f (A0) ⊂ B0, there exists
s3 ∈ A0 such that d(s3, f (s2)) = d(A,B).
We continue this process and construct a sequence {sn} such thatd(s2n+1, f (s2n)) = d(A,B),

d(s2n+2, 1(s2n+1)) = d(A,B).
(7)

for each n ∈N
Claim(1).

lim
n→∞

d(sn, sn+1) = 0 (8)
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From (5) we get,

d(s2n+1, s2n+2) ≤ F
(1
2

(
d(s2n, s2n+2) + d(s2n+1, s2n+1)

)
, Ψ

(
d(s2n, s2n+2), d(s2n+1, s2n+1)

))
= F

(1
2

d(s2n, s2n+2), Ψ
(
d(s2n, s2n+2), 0

))
≤

1
2

d(s2n, s2n+2)

≤
1
2

[
d(s2n, s2n+1) + d(s2n+1, s2n+2)

]
(9)

which implies d(s2n+1, s2n+2) ≤ d(s2n, s2n+1).Therfore, {d(s2n, s2n+1)} is an non-negative decreasing sequence
and so converges to d > 0. Now, as n→∞ in (9), we getget

d ≤
1
2

d(s2n, s2n+1) ≤
1
2

(d + d) = d

that is,

lim
n→∞

d(s2n, s2n+1) = 2d. (10)

Again, taking n→∞ in (9), and using (10)we get

F(d, Ψ (2d, 0)) = d

So, d = 0, or , Ψ (2d, 0) = 0 and hence d = 0.
Claim(2).{sn} is cauchy.
By, (8) it is enough to show that subsequence {s2n} is cauchy. Suppose, to the contrary, that {s2n} is not a
Cauchy sequence.By lemma (1.9) there exists ε >0 for which we can find subsequences {s2nk }and {s2mk } of
{s2n}with 2nk> 2mk> 2k such that

ε = lim
k→∞

d(s2m(k), s2n(k)) = lim
k→∞

d(s2m(k), s2n(k)+1) (11)

= lim
k→∞

d(s2m(k)+1, s2n(k)) = lim
k→∞

d(s2m(k)+1, s2n(k)+1)

From (5) we have

d(s2nk+1 , s2mk ) ≤ F
(1
2

(
d(s2mk , s2nk ) + s2nk+1 , s2mk−1

)
, Ψ

(
d(s2mk , s2nk ), s2nk+1 , s2mk−1

))
(12)

Taking k→∞ in the above inequality and using (11), and the continuity of F,Ψ , we would obtain

F
(1
2

(ε + ε), Ψ (ε, ε)
)

= ε

and therefore, ε = 0, or , Ψ (ε, ε) = 0, which would imply ε = 0, a contradiction. Thus, {sn} is a cauchy
sequence. Since A is complete, there is a z ∈ A such that sn → z. Now, from
d(s2n+1, f (s2n)) = d(A,B), d(s2n+2, 1(s2n+1)) = d(A,B)
By continuity of f ang 1, taking n → ∞ we have d(z, f (z)) = d(z, 1(z)) = d(A,B). So, z is a common best
proximity point of the mappings f and 1. Let, w is also a common best proximity point of mappings f and
1. From (1) we have

d(z,w) ≤ F
(1
2

(
d(z,w) + d(w, z)

)
,−Ψ

(
d(z,w), d(w, z)

))
= F

(
d(z,w), Ψ

(
d(z,w), d(w, z)

)) (13)

So, d(z,w) = 0, or , Ψ (d(z,w), d(z,w)) = 0,Hence d(z,w) = 0, and therefore z = w.
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Theorem 2.5. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A0 be nonempty.
Moreover, assume that the non-self functions f , 1 : A→ B satisfy;
(i). f , 1 are continuous,
(ii). f (A0) ⊂ B0 and 1(A0) ⊂ B0,
(iii). ( f , 1) is an α, µ-proximal C-contraction pair of type C-class ,
(iv). ( f , 1) is a triangular α−proximal admissible pair and a triangular µ − subproximal admissible pair,
(v). there exist s0, s1 ∈ A0 such that d(s1, f (s0)) = d(A,B), α(s1, s0) ≥ 1, µ(s1, s0) ≤ 1. Then, the functions
f and 1 have a common best proximity point.Furthermore, if z,w ∈ X are common best proximity points and
α(z,w) ≥ 1,µ(z,w) ≤ 1, then common best proximity point is unique.

Proof. By (iv), we can find s0, s1 ∈ A0 such that

d(s1, f (s0)) = d(A,B), α(s1, s0) ≥ 1, µ(s1, s0) ≤ 1.

Define the sequence {sn} as in (7) of the theorem(2.4). Since, ( f , 1) is triangular α−proximal admissible and
triangular µ − subproximal admissible, we have α(sn, sn+1) ≥ 1, µ(sn, sn+1) ≤ 1 . Then

α(sn, sn+1) ≥ 1,
d(s2n+1, f (s2n)) = d(A,B)
d(s2n+2, 1(s2n+1)) = d(A,B).

(14)

and 
µ(sn, sn+1) ≤ 1,
d(s2n+1, f (s2n)) = d(A,B)
d(s2n+2, 1(s2n+1)) = d(A,B).

(15)

If s = s2n+1, t = s2n+2, p = s2n, q = s2n+1, and ( f , 1) is an α, µ-proximal C-contraction pair of type C-class.
Then,

h
(
1, d(s2n+1, s2n+2)

)
≤ h

(
α(s2n, s2n+1), d(s2n+1, s2n+2)

)
≤ F

[
µ(s2n, s2n+1),F

(1
2

(
d(s2n, s2n+2) + d(s2n+1, s2n+1)

)
, ψ

(
d(s2n, s2n+2), d(s2n+1, s2n+1)

))]
,

≤ F

[
1,F

(1
2

(
d(s2n, s2n+2) + d(s2n+1, s2n+1)

)
, ψ

(
d(s2n, s2n+2), d(s2n+1, s2n+1)

))]
,

so,

d(s2n+1, s2n+2) ≤ F
(1
2

(
d(s2n, s2n+2) + d(s2n+1, s2n+1)

)
, Ψ

(
d(s2n, s2n+2), d(s2n+1, s2n+1)

))
= F

(1
2

d(s2n, s2n+2), Ψ
(
d(s2n, s2n+2), 0

))
≤

1
2

d(s2n, s2n+2)

≤
1
2

[
d(s2n, s2n+1) + d(s2n+1, s2n+2)

]
(16)

which implies d(s2n+1, s2n+2) ≤ d(s2n, s2n+1).Therfore, {d(s2n, s2n+1)} is an non-negative decreasing sequence
and so converges to d > 0. Now, as n→∞ in (16), we get

d ≤
1
2

d(s2n, s2n+1) ≤
1
2

(d + d) = d
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that is,

lim
n→∞

d(s2n, s2n+1) = 2d. (17)

Again, taking n→∞ in (9), and using (17) we get

F(d, Ψ (2d, 0)) = d

So, d = 0, or , Ψ (2d, 0) = 0 and hence d = 0. Therefore,

lim
n→∞

d(sn, sn+1) = 0 (18)

Now we prove that

α(s2mk−1, s2nk ) ≥ 1, µ(s2mk−1, s2nk ) ≤ 1, nk > mk > k. (19)

Since ( f , 1) is triangular α− proximal admissible and triangular µ − subproximal admissible andα(s2mk−1, s2mk ) ≥ 1
α(s2mk , s2mk+1) ≥ 1µ(s2mk−1, s2mk ) ≤ 1
µ(s2mk , s2mk+1) ≤ 1

From (T2) of definition(1.10) and definition(2.1) we have

α(s2mk−1, s2mk+1) ≥ 1
µ(s2mk−1, s2mk+1) ≤ 1.

Again, since ( f , 1) is triangular α−proximal admissible and triangular µ − subproximal admissible andα(s2mk−1, s2mk+1) ≥ 1
α(s2mk+1, s2mk+2) ≥ 1µ(s2mk−1, s2mk+1) ≤ 1
µ(s2mk+1, s2mk+2) ≤ 1

From (T2) of definition(1.10) and definition(2.1) again, we have

α(s2mk−1, s2mk+2) ≥ 1
µ(s2mk−1, s2mk+2) ≤ 1.

By continuing this process, we get (19).
Now, we prove that {sn} is cauchy.

By, (18) it is enough to show that subsequence {s2n} is cauchy. Suppose, to the contrary, that {s2n} is not a
Cauchy sequence.By lemma (1.9) there exists ε >0 for which we can find subsequences {s2nk }and {s2mk } of
{s2n}with 2nk> 2mk> 2k such that

ε = lim
k→∞

d(s2m(k), s2n(k)) = lim
k→∞

d(s2m(k), s2n(k)+1) (20)

= lim
k→∞

d(s2m(k)+1, s2n(k)) = lim
k→∞

d(s2m(k)+1, s2n(k)+1)
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Now if let s = s2nk+1, t = s2mk , p = s2nk , q = s2mk − 1, then

h
(
1, d(s2nk+1, s2mk )

)
≤ h

(
α(s2nk , s2mk−1), d(s2nk+1, s2mk )

)
≤ F

[
µ(s2nk , s2mk−1),F

(1
2

(
d(s2nk , s2mk ) + d(s2mk−1, s2nk+1)

)
, ψ

(
d(s2nk , s2mk ), d(s2mk−1, s2nk+1)

))]
≤ F

[
1,F

(1
2

(
d(s2nk , s2mk ) + d(s2mk−1, s2nk+1)

)
, ψ

(
d(s2nk , s2mk ), d(s2mk−1, s2nk+1)

))]
Therefore,

d(s2nk+1 , s2mk ) ≤ F
(1
2

(
d(s2mk , s2nk ) + s2nk+1 , s2mk−1

)
, Ψ

(
d(s2mk , s2nk ), d(s2nk+1 , s2mk−1 )

))
(21)

Taking k→∞ in the above inequality and using (20), and the continuity of F,Ψ , we would obtain

F
(1
2

(ε + ε), Ψ (ε, ε)
)

= ε

and therefore, ε = 0, or , Ψ (ε, ε) = 0, which would imply ε = 0, a contradiction. Thus, {sn} is a cauchy
sequence. Since A is complete, there is a z ∈ A such that sn → z. Now, from
d(s2n+1, f (s2n)) = d(A,B), d(s2n+2, 1(s2n+1)) = d(A,B)
By continuity of f and 1, taking n → ∞ we have d(z, f (z)) = d(z, 1(z)) = d(A,B). So, z is a common best
proximity point of the mappings f and 1. Let, w is also a common best proximity point of mappings f and
1. Since α(z,w) ≥ 1, µ(z,w) ≤ 1from (6) we have

h
(
1, d(z,w)

)
≤ h

(
α(z,w), d(z,w)

)
≤ F

[
µ(z,w),F

(1
2

(
d(z,w) + d(w, z)

)
, ψ

(
d(z,w), d(w, z)

))]
,

≤ F

[
1,F

(1
2

(
d(z,w) + d(w, z)

)
, ψ

(
d(z,w), d(w, z)

)))
,

therefore ,

d(z,w) ≤ F
(1
2

(
d(z,w) + d(w, z)

)
,−Φ

(
d(z,w), d(w, z)

))
= F

(
d(z,w), Φ

(
d(z,w), d(w, z)

))
So, d(z,w) = 0, or , Ψ (d(z,w), d(z,w)) = 0,Hence d(z,w) = 0, and therefore z = w.

Definition 2.6. ([21])Let α : X ×X→ R be a function and f , 1 : X→ X self-mappings and p, q, r ∈ X be any three
elements. We say that ( f , 1) is a triangular α−admissible pair if

(i)α(p, q) ≥ 1 =⇒ α( f (p), 1(q)) ≥ 1 or α(1(p), f (q)) ≥ 1,

(ii)

α(p, r) ≥ 1
α(r, q) ≥ 1

=⇒ α(p, q) ≥ 1

Definition 2.7. Let µ : X × X → R be a function and f , 1 : X → X self-mappings and p, q, r ∈ X be any three
elements. We say that ( f , 1) is a triangular µ − subadmissible pair if

(i)µ(p, q) ≤ 1 =⇒ µ( f (p), 1(q)) ≤ 1 or µ(1(p), f (q)) ≤ 1,

(ii)

µ(p, r) ≤ 1
µ(r, q) ≤ 1

=⇒ µ(p, q) ≤ 1
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The corollary is an consequence of the last theorem.

Corollary 2.8. Let (X, d) be a complete metric space and f , 1 : X → X. Moreover, let the self functions f and 1
satisfy:
(i) f and 1 are continuous,
(ii)there exists s0 ∈ X such that α(s0, f (s0)) ≥ 1,
(iii) ( f , 1) is a triangular α−admissible pair and triangular µ − subadmissible pair ,
(iv)for all p, q ∈ X,

α(p, q)d( f (p), 1(q)) ≤ 1
2µ(p, q)

(
d(p, 1(q)) + d(q, f (p))

)
−Ψ

(
d(p, 1(q)), d(q, f (p)

)
(or)(
α(p, q) + l

)d( f (p),1(q))
≤ (l + 1)

1
2µ(p,q)

(
d(p,1(q))+d(q, f (p))

)
−Ψ

(
d(p,1(q)),d(q, f (p)

)
Then f and 1 have common fixed point. Moreover, if x, y ∈ X are common fixed points and α(x, y) ≥ 1, µ(x, y) ≤ 1,

then the common fixed point of f and 1 is unique, that is x = y.

Now, we remove the continuity hypothesis of f and 1 and get the following theorem.

Theorem 2.9. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete, the pair (A,B)
have the V−property, and A0 be nonempty. Moreover, assume that the non-self functions f , 1 : A→ B satisfy;
(i). f (A0) ⊂ B0 and 1(A0) ⊂ B0,
(ii). ( f , 1) is a generalised proximal C−contraction pairof type C-class,
Then, the functions f and 1 have a unique common best proximity point.

Proof. By Theorem(2.4), there is a cauchy sequence {sn} ⊂ A and z ∈ A0 such that (7) holds and sn → z. Moreover,
we have

d(z,B) ≤ d(z, f (s2n))
≤ d(z, s2n+1) + d(s2n+1, f (s2n))
≤ d(z, s2n+1) + d(A,B).

we take n→∞ in the above inequality, and we get

lim
n→∞

d(z, f (sn)) = d(z,B) = d(A,B). (22)

Since the pair (A,B) has the V−property, there is a p ∈ B such that d(z, p) = d(A,B) and so z ∈ A0. Moreover, Since
f (A0) ⊂ B0, there is a q ∈ A such that

d(q, f (z)) = d(A,B). (23)

Furthermore d(s2n+2, 1(s2n+1)) = d(A,B) for every n ∈N.
Since ( f , 1) is a generalised proximal C−contraction pair, we have

d(q, s2n+2) ≤ F
(1
2

(
d(z, s2n+2) + d(s2n+1, q)

)
, Ψ

(
d(z, s2n+2), d(s2n+1, q)

))
Letting n→∞ in the above inequality, we have

d(q, z) ≤ F
(1
2

(
d(z, q)

)
, Ψ

(
d(z, q), 0

))
So, d(q, z) = 0, or , Ψ (d(q, z), 0) = 0,Thus d(z, q) = 0, which implies that z = q. Then, by (23), z is a best proximity
point of f .
Similiarly, it is easy to prove that z is a best proximity point of 1. Then, z is a common best proximity point of f and
1. By the proof of Theorem(2.4), we conclude that f and 1 have unique common best proximity point.
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Theorem 2.10. Let A and B be two nonempty subsets of complete metric space (X, d). Let A be complete, the pair
(A,B) have V−property and A0 is non-empty. Moreover, suppose that the non-self functions f , 1 : A→ B satisfy:
(i) f (A0) ⊂ B0 and 1(A0) ⊂ B0,
(ii)( f , 1) is an α, µ-proximal C-contraction pair of type C-class,
(iii)( f , 1) is a triangular α−proximal admissible pair, and a triangular µ − subproximal admissible pair
(iv)there exist s0, s1 ∈ A0 such that d(s1, f (s0)) = d(A,B), α(s1, s0) ≥ 1, µ(s1, s0) ≤ 1.
(v)if {sn} is a sequence in A such that α(sn, sn+1) ≥ 1 ,µ(sn, sn+1) ≤ 1 and sn → s0 as n → ∞, then α(sn, s0) ≥
1, µ(sn, s0) ≤ 1 for all n ∈N

⋃
{0}.

Then f and 1 have a common best proximity point. Furthermore, if z,w ∈ X are common best proximity points and
α(z,w) ≥ 1, µ(z,w) ≤ 1, then common best proximity point is unique.

Proof. As similiar to the proof of Theorem (2.5) that there exist a sequence {sn} and z in A such that sn → z
and α(sn, sn+1) ≥ 1, µ(sn, sn+1) ≤ 1. Now, we have

d(z,B) ≤ d(z, f (s2n))
≤ d(z, s2n+1) + d(s2n+1, f (s2n))
≤ d(z, s2n+1) + d(A,B).

we take n→∞ in the above inequality, and we get

lim
n→∞

d(z, f (sn)) = d(z,B) = d(A,B). (24)

Since the pair (A,B) has the V−property, there is a p ∈ B such that d(z, p) = d(A,B) and so z ∈ A0. Moreover,
Since f (A0) ⊂ B0, there is a q ∈ A such that

d(q, f (z)) = d(A,B). (25)

Furthermore d(s2n+2, 1(s2n+1)) = d(A,B) for every n ∈ N. Also, by (v), α(sn, z) ≥ 1 , µ(sn, z) ≤ 1 for every
n ∈N

⋃
{0}. By ( f , 1) is an α, µ-proximal C-contraction pair of type C-class,we have

h
(
1, d(q, s2n+2))

)
≤ h

(
α(z, s2n+1), d(q, s2n+2)

)
≤ F

[
µ(z, s2n+1),F

(1
2

(
d(z, s2n+2) + d(s2n+1, q)

)
−Ψ

(
d(z, s2n+2), d(s2n+1, q)

))]
≤ F

[
1,F

(1
2

(
d(z, s2n+2) + d(s2n+1, q)

)
, ψ

(
d(z, s2n+2), d(s2n+1, q)

))]
Therefore

d(q, s2n+2)) ≤ F
(1
2

(
d(z, s2n+2) + d(s2n+1, q)

)
, ψ

(
d(z, s2n+2), d(s2n+1, q)

))
Letting n→∞ in the above inequality, we have

d(q, z)) ≤ F
(1
2

(
d(z, q)

)
, ψ

(
0, d(z, q)

))
So, d(q, z) = 0, or , Ψ (0, d(q, z)) = 0,thus d(z, q) = 0, which implies that z = q. Then, by (25), z is a best

proximity point of f . Similiarly, we can prove z is a best proximity point of 1. Therefore, z is an common
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best proximity point of f and 1. If z,w ∈ X are common best proximity points and α(z,w) ≥ 1, µ(z,w) ≤ 1,
then we get

d(z,w) ≤ F
(1
2

(
d(z,w) + d(w, z)

)
, Φ

(
d(z,w), d(w, z)

))
= F

(
d(z,w), Φ

(
d(z,w), d(w, z)

))
≤ d(z,w)

So, d(z,w) = 0, or , Ψ (d(z,w), d(z,w)) = 0,Therefore, d(z,w) = 0 and hence z = w.

The following corollary is an immediate consequence of the main theorem of this section.

Corollary 2.11. Let (X, d) be a complete metric space and f , 1 : X → X. Moreover, let the self functions f and 1
satisfy:
(i)there exists s0 ∈ X such that α(s0, f (s0)) ≥ 1,
(ii) ( f , 1) is a triangular α−admissible pair,
(iii)for all p, q ∈ X,

α(p, q)d( f (p), 1(q)) ≤ 1
2µ(p, q)

(
d(p, 1(q)) + d(q, f (p))

)
−Ψ

(
d(p, 1(q)), d(q, f (p)

)
(or)(
α(p, q) + l

)d( f (p),1(q))
≤ (l + 1)

1
2µ(p,q)

(
d(p,1(q))+d(q, f (p))

)
−Ψ

(
d(p,1(q)),d(q, f (p)

)
(iv)if {sn} is a sequence in A such that α(sn, sn+1) ≥ 1 and sn → s0 as n→∞, then α(sn, s0) ≥ 1 for all n ∈N

⋃
{0}.

Then f and 1 have common fixed point. Moreover, if x, y ∈ X are common fixed points and α(x, y) ≥ 1, then the
common fixed point of f and 1 is unique, that is x = y.

Example 2.12. Consider X = R with the usual metric, A = {−8, 0, 8} and B = {−4,−2, 4}. Then, A and B are
nonempty closed subsets of X with d(A,B) = 2, A0 = {0} and B0 = {−2}. Define f , 1 : A→ B by
f (0) = −2, f (8) = 4, f (−8) = −4 and 1(x) = −2 for all x ∈ A.
and Ψ : [0,∞) × [0,∞)→ [0,∞) by Ψ(s, t) =

√
st also F(s, t) = s − t. If,

d(u, f (p)) = d(A,B) = 2
d(v, f (q)) = d(A,B) = 2

then, u = v = p = 0 and q ∈ A. Hence all the conditions of Theorem(2.4) hold for this example and clearly 0 is the
unique best proximity point of f and 1.

Example 2.13. Let X = [0, 2] × [0, 2] and d be the Euclidean metric. Let
A =

{
(0,m) : 0 ≤ m ≤ 2)

}
B =

{
(2,m) : 0 ≤ m ≤ 2)

}
Then, d(A,B) = 2, A0 = A and B0 = B. Define f , 1 : A → B by f (0,m) = (2,m) and 1(0,m) = (2, 2). Also define
α, µ : A × A→ [0,∞) by µ(p, q) = 1 and

α(p, q) =

 10
9 i f p, q ∈ (0, 2) × {(0, 0), (0, 2)},

0 otherwise

and Ψ : [0,∞) × [0,∞)→ [0,∞) by

Ψ(s, t) = 2 f or all s, t ∈ X
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also F(s, t) = s
1+t ,h(x, y) = xy, and F (s, t) = st . Assume thatd(u, f (p)) = d(A,B) = 2

d(v, f (q)) = d(A,B) = 2

Hence, u = p and v = (0, 2), then u = v and (2) holds. If p , (0, 2), then α(p, q) = 0 and (2) holds, which implies that
( f , 1) is an α−proximal C-contraction pair of type C-class. Hence, all the hypothesis of the Theorem(∗) are satisfied.
Moreover, if {sn} is a sequence such that α(sn, sn+1) ≥ 1 for every n ∈ N ∪ {0} and sn → s0, then sn = (0, 2) for all
n ∈ N ∪ {0} and hence s0 = (0, 2). Then α(sn, s0) ≥ 1 for every n ∈ N ∪ {0}. Clearly, (A,B) has the V− property and
then all the conclusions of Theorem(2.10) hold. Clearly, (0, 2) is the unique common best proximity point of f and 1.

Example 2.14. Let X = [0, 3] × [0, 3] and d be the Euclidean metric. Let
A =

{
(0,m) : 0 ≤ m ≤ 3)

}
B =

{
(3,m) : 0 ≤ m ≤ 3)

}
Then, d(A,B) = 3, A0 = A and B0 = B. Define f , 1 : A→ B by

f (0,m) =

(3, 3) m = 3
2

(3, m
2 ) m , 3

2

and 1(0,m) = (3, 3). Also define α, µ : A × A→ [0,∞) by µ(p, q) = 1 and

α(p, q) =

3 i f p, q ∈ (0, 3
2 ) × A,

0 otherwise

and Ψ : [0,∞) × [0,∞)→ [0,∞) by

Ψ(s, t) =
1
2

(s + t) f or all s, t ∈ X

also F(s, t) = s − t,h(x, y) = xy, and F (s, t) = st .
It is easy to see that all required hypothesis of Theorem(2.10) are satisfied unless (iii). Clearly f and 1 have no common
best proximity point.It is worth noting that pair ( f , 1) does not have the triangular α−proximal admissible property.
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