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Abstract. In this paper, using the concept of C—class and Upper class functions we prove the existence
of unique common best proximity point. Our main result generalizes results of Kumam et al. [[17]] and
Parvaneh et al. [[21]].
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1. Introduction and Preliminaries

Consider a pair (A, B) of nonempty subsets of a metric space (X,d). Assume that f is a function from A
into B. An element w € A is said to be a best proximity point whenever d(w, fw) = d(A, B),where

d(A,B) = inf{d(s,t) : s € A, t € B).

Best proximity point theory of non-self functions was initiated by Fan [1] and Kirk et al. [[16]]; see also
[[19][15][11][13] [4][8][91[24][25][20][18]].

Definition 1.1. Consider non-self functions fi, f»,..., fa + A — B. We say the a point s € A is a common best
proximity point of f1, fa, ..., fu if

d(s, f1(s)) = d(s, f2(5)) = - -- = d(s, fu(s)) = d(A, B).

Definition 1.2. ([17])Let (X, d) be a metric space and 0 # A, B C X. We say the pair (A, B) has the V-property if for
every sequence {t,} of B satisfying d(s, t,) — d(s, B) for some s € A, there exists a t € B such that d(s,t) = d(s, B).

Definition 1.3. ([5]) A continuous function F : [0,00)> — R is called C-class function if for anys,t € [0, ), the
following conditions hold:

(1) F(s,t) <s;

(2) F(s, t) = s implies that either s = 0 or t = 0.
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An extra condition on F that F(0,0) = 0 could be imposed in some cases if required. The letter C will
denote the class of all C- functions.

Example 1.4. ([5]) Following examples show that the class C is nonempty:

F(s,t) =s—t.

F(s,t) = ms,for some m € (0,1).

F(s, t) = (1+t), for some r € (0, o).

F(s, t) = log(t +a°)/(1 + t), for some a > 1.

SANEERC A .

F(s, t) = ﬁ fo ‘P; . dx, where I is the Euler Gamma function.

Definition 1.5. [6, 7]We say that the function h: R* x R* — R is a function of subclass of type I, if x > 1 =
h(1,y) < h(x,y) for all y € R*.

Example 1.6. [6, 7]Define h: R* X R* — R by:

(a) hix,y
(b) h(x,y
(c) h(x,y) =x"y,n € N;

)= (y+151>1;
) =
)

(d) h(x,y) = y,
) =
) =

x+DY,1>1;

(e) h(x,y) = —= (Z? Oxi) y,neN;
(0 hxy) = [ (Erox) +1] 1> 1,neN
forall x,y € R*. Then h is a function of subclass of type I.

Definition 1.7. [6, 7]Let h, ¥ : R* X R* — IR, then we say that the pair (¥, h) is an upper class, if h is a function
of subclass of type I and: (i) 0 <s <1 = F[s,t] < F[1,t], (i) h(1,y) < F[1,t] = y < tforall t,y € R*.

Example 1.8. [6, 7]Define h, ¥ : R* X R* = R by:

(@) h(x,y) = (y+ 1%, 1> 1and Fls,t] =st+1;
(b) h(x,y) = (x+1)¥,1>1and F[s,t] = (1 +1)*;
(c) h(x,y) =x"y, m € Nand F[s,t] = st;

(d) h(x,y) = yand Fls,tl=t

(d) h(x,y) = L (Z?:o xi) y,n € Nand Fs, t] = st;
(e) h(x,y) = [M (Z;’zo xi) + l]y J>1,neNand Fls, t] = 1+ 1)
forall x,y,s,t € R*. Then the pair (¥, h) is an upper class of type L.

Let @, denote the class of the functions ¢ : [0, +00) X [0, +00) — [0, +c0) which satisfy the following
conditions:

(a) @ continuous ;
®) p,v)>0,(u,v)#(0,0) and ¢(0,0) > 0.

Let W, be a set of all continuous functions i : Ry — R, satisfying the following conditions:
(11) ¢ is continuous and strictly increasing.
(12) Y(t) = 0if and only of t = 0.

Also we denote by W the family of all continuous functions from [0, +o0) X [0, +0) to [0, +c0) such that
Y(u,v) = 0if and only if u = v = 0O where ¢ € V.
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Lemma 1.9. ([14])Suppose (X, d) is a metric space. Let {x,} be a sequence in Xsuch that d(x,, x,+1) = 0asn — oo.
If {x,} is not a Cauchy sequence then there exist an € > 0 and sequences of positive integers {m(k)} and {n(k)} with

m(k) > n(k) > k such that d(x,,x), Xux) = €, d(Xm)-1, Xng)) < € and
@) I}l_)n; AXm@-1, Xny+1) = &

(i) lim d(Xinge), Xny) = €;

(i) Him d(Xingo-1, Xu) = €

We note that also can see ]}im AXm@+1, Xny+1) = € and ]}im AXm(ky, Xny-1) = €

Definition 1.10. ([21])Let (X, d) be a metric space, D # A,B C X, a : AX A — [0, 00) a functionand f,g: A — B
non-self mappings. We say that (f, g) is a triangular a-proximal admissible pair, if for all p,q,1,t1,12,51,52 € A,

Ol(tl,tz) >1
Ty : d(Sl,f(tl)) = d(A, B) Sl CY(Sl,Sz) >1
d(sz, g(t2)) = d(A, B)

Tz-{ a(p,r) 21 = a(p,q) = 1.

a(r,g) =1

Let (X, d) be a metric space, 0 # A, B ¢ X. We define

Ap={xeA:d(x,y)=d(A, B) forsome y € B} 1
By ={yeB:d(x,y) =d(A,B) forsome x € A} 1)

Definition 1.11. ([21])Let Let (X, d) be a metric space, 0 # A,B C X, and f,g : A — B non-self mappings. We say
that (f, g) is a generalized proximal C-contraction pair if, for all s, t,p,q € A,

d(s, f(p)) = d(A, B) 1
a(t, 9(0)) = d(A, B) } = d(s,1) < 5 (d(p,1) +d(q,)) = Y(d(p, ), (4, 5)), 2)

in whichp € ¥ .

Definition 1.12. ([21])Let (X, d) be a metric space,  #+ A,B C X, a : AX A — [0,00) a function and f,g: A — B
non-self functions. If, for all s, t,p,q € A,

d(s, f(p)) = d(A, B) 1
d(i §<5>> =d(A,B) } = alp, (s, ) < 5(dp, 1) + d@,9)) = P(d(p, 1), d@,)), 3)

then (f, g) is said to be an a-proximal Ci-contraction pair.
If in the definition above, we replace (2) by

(@, 0) + D < (1 + i (wndas)-vlannaan) @

where [ > 0, then (f, g) is said to be an a-proximal C,-contraction pair.
In this paper, we generalize some results of Parvaneh et al. [[21]] to obtain some new common best
proximity point theorems. Next, by an example and some fixed point results, we support our main result.
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2. Main Results

Definition 2.1. Let A and B are two nonempty subsets of a metric space, (X,d). Let p: AX A — [0, 00) a function
and f,g : A — B non-self mappings. We say that (f, g) is a triangular u — subproximal admissible pair, if for all
P,4,1,5,t1,t2,51,52 € A,

u(t, ) <1,
Ty : d(Sl,f(tl)) = d(A, B), - [J(Sl,Sz) <1
d(sz, f(t2)) = d(A, B)

T.ymﬂsL
2.
ulrq) <1

Definition 2.2. Let Let (X, d) be a metric space, 0 #+ A,B C X, and f,g : A — B non-self mappings. We say that
(f, g) is a generalized proximal C-contraction pair of type C-class if, for all s, t,p,q € A,

= ulp,q) <1

d(s, f(p)) = d(A, B) 1
i %’)) Z dA'B) } = d(s, 1) < F(5(d(p, 1) +d(q,)), $(d(p, 1, d(@,9))), 5)

inwhichp € ¥, .

Definition 2.3. Let (X, d) be a metric space, ® # A,B C X, o : AXA — [0, o) a function and f,g : A — B non-self
functions. If, forall s, t,p,q € A,

d(s, f(p)) = d(A, B) 1
d(t,g(g)):d(A, B) }=>h<a<p,q>,d(s,t>>s?‘(u(m)f(i(d(p,t)+d(q,s)),z,b(d(p,t>,d<q,s>))), (6)

then (f, g) is said to be an a, y-proximal C-contraction pair of type C-class.

Theorem 2.4. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A be nonempty.
Moreover, assume that the non-self functions f, g : A — B satisfy;

(i). f,g are continuous,

(ii). f(AO) C By and g(Ao) C By,

(iii). (f, g) is a generalised proximal C—contraction pair of type C-class ,

Then, the functions f and g have a unique common best proximity point.

Proof. Choose, sy € Ag be arbitrary. Since f(Ag) C By, there exists s; € Ag such that
d(s1, f(s0)) = d(A, B).
Since g(Ap) C By, there exists s € Ap such that d(sy, g(s1)) = d(A, B). Now as f(Ay) C By, there exists

s3 € Ag such that d(S3, f(Sz)) = d(A, B)
We continue this process and construct a sequence {s,} such that

A(s2n+1, f(s21)) = d(A, B), )
d(s2n+2, 9(San+1)) = d(A, B).
for eachn € IN
Claim(1).
lim d(s,, Sys1) = 0 8)

n—o0
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From (5) we get,
1
d(s2n41,52n42) < F(E(d(52nzs2n+2) + d(52n+1,52n+1)), lJV(d(Szn,Sszrz), d(52n+1,52n+1)))
1
= F(Ed(szn, S2n42), llj(d(sznl Son+2), 0))
1
< Ed(52n152n+2)

1
< E[d(52n152n+1) + d(52n+1/52n+2)]

which implies d(s2n+1, S2n+2) < d(S2n, S2n+1)- Therfore, {d(s24, 521+1)} is an non-negative decreasing sequence
and so converges to d > 0. Now, as n — oo in (9), we getget

d< %d(sh,sz,ﬁl) < %(d +d)=d
that s,
lim d(s2n, S2041) = 2d. (10)
Again, taking n — oo in (9), and using (10)we get
F(d,W((24d,0)=d

So,d =0, or,¥(2d,0) = 0 and hence d = 0.

Claim(2).{s,,} is cauchy.

By, (8) it is enough to show that subsequence {s,,} is cauchy. Suppose, to the contrary, that {s,} is not a
Cauchy sequence.By lemma (1.9) there exists € >0 for which we can find subsequences {s», Jand {sy,} of
{so,}with 2n> 2m> 2k such that

€ = ]}l_{?o A(Som) Sange)) = ]}1_{510 A(Som() S2n(o+1) (11)
= ]}1_{11 A(Somp)+1, S2n(e)) = ]}l_glo A(S2m(ky+1, S2n(k)+1)
From (5) we have
1
d(San+1/ Ska) < F(E (d(SZMk/ San) + S21ppq 7 S2myq )/ lI/(d(Ska/ San)/ S21ppr 7 S2myq )) (12)
Taking k — oo in the above inequality and using (11), and the continuity of F,¥, we would obtain

F(%(e +¢€), (e, e)) =€

and therefore, € = 0, or , W(¢,€) = 0, which would imply € = 0, a contradiction. Thus, {s,} is a cauchy
sequence. Since A is complete, there is a z € A such that s, — z. Now, from

d(s2n+1, f(s20)) = d(A, B), A(s2n+2, 9(S2n+1)) = d(A, B)

By continuity of f ang g, taking n — oo we have d(z, f(z)) = d(z, g(z)) = d(A, B). So, z is a common best
proximity point of the mappings f and g. Let, w is also a common best proximity point of mappings f and
g. From (1) we have

d(z,w) < F(%(d(z, w) + d(w, z)), —‘I/(d(z, w), d(w, z)))
= F(d(z, ), V(d(z,w), d(w, 2))) (13)

So, d(z,w) =0, or , V(d(z, w), d(z, w)) = 0,Hence d(z, w) = 0, and thereforez = w. O
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Theorem 2.5. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and Ag be nonempty.
Moreover, assume that the non-self functions f, g : A — B satisfy;

(i). f, g are continuous,

(ii). f(A()) C By and g(Ao) C By,

(iii). (f, g) is an a, p-proximal C-contraction pair of type C-class ,

(iv). (f, g) is a triangular a—proximal admissible pair and a triangular u — subproximal admissible pair,

(v). there exist so,51 € Ag such that d(s1, f(so)) = d(A,B), a(s1,50) = 1,u(s1,50) < 1. Then, the functions
f and g have a common best proximity point.Furthermore, if z,w € X are common best proximity points and
a(z,w) > 1,u(z, w) < 1, then common best proximity point is unique.

Proof. By (iv), we can find sp, s; € Ag such that

d(s1, f(s0)) = d(A, B), a(s1,50) = 1, u(s1,s0) < 1.

Define the sequence {s,} as in (7) of the theorem(2.4). Since, (f, g) is triangular a—proximal admissible and
triangular u — subproximal admissible, we have a(sy, 5y+1) = 1, 1i(sp, Sn+1) < 1. Then

Uf(snrsnﬂ) >1,
d(52n+1,f(52n)) =d(A,B) (14)
d(s2n+2, g(S2n+1)) = d(A, B).

and

p(sn, sns1) < 1,
A(s2n+1, f(521)) = d(A, B) (15)
d(san+2, 9(San+1)) = d(A, B).

If s = spp41, t = Sou42, P = Sou, G = S2n+1, and (f, g) is an a, u-proximal C-contraction pair of type C-class.
Then,

h(1, d(s2041,52042)) < h(eU(520, 52041), d(S241, 52042))
< 7:[,“(5211152n+1) F( (d(52n152n+2) + d(52n+1/52n+1)) IP(d(Szn,Szwz), d(52n+1,52n+1)))],
< {1, B3 (a1 53052) + 52011, 52001)) 0520, 52002) 52001, 52000)|,

so,

A(521+1,521+2) (d(San Son+2) + A(S2n41, S2n41 )), W(d(SZn/ Son+2), A(Son+1, Szn+1)))

<H(3
3

Il
"H

d(s21, S2142), lp(d(SZn, Sn+2), 0)) (16)

IA

NIHNI’—‘

d(s21, 52n+2)
[d(SZn, Son+1) d(52n+1/52n+2)]

which implies d(S2,+1, San+2) < d(S2n, S2n+1)- Therfore, {d(s24, S2441)} is an non-negative decreasing sequence
and so converges to d > 0. Now, as n — oo in (16), we get

1 1
d< Ed(52n152n+1) < E(d +d) =
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that is,

lim d(sp, Sons1) = 2. 17)

Again, taking n — oo in (9), and using (17) we get
Fd,W(24,0)=d
So,d =0, or, ¥(2d,0) = 0 and hence d = 0. Therefore,

lim d(s;,8,41) =0 (18)

Now we prove that
05(52mk—1/52nk) >1, H(52mk—lrs2nk) <1, ne > my > k. (19)

Since (f, g) is triangular a— proximal admissible and triangular u — subproximal admissible and

LY(Ska_l, Ska) >1
a(Ska/ Ska+1) 21

H(Ska—lr Ska) <1
”(Szmk152mk+1) <1

From (T) of definition(1.10) and definition(2.1) we have

a(S2m—1,S2m+1) 1

IAN IV

M(Ska—lf Ska+1)

Again, since (f, g) is triangular a—proximal admissible and triangular u — subproximal admissible and

{a(Ska—l/ Som+1) = 1

A(S2m+1,S2m+2) 2 1

U(S2m—1,52m+1) < 1
p(S2m+1,52m+2) < 1

From (T3) of definition(1.10) and definition(2.1) again, we have

a(S2m-1, S2my+2)

>
US2m-1,52me42) <1

By continuing this process, we get (19).

Now, we prove that {s,} is cauchy.
By, (18) it is enough to show that subsequence {s,} is cauchy. Suppose, to the contrary, that {s,,} is not a
Cauchy sequence.By lemma (1.9) there exists € >0 for which we can find subsequences {sy, }and {syy, } of
{so, }with 2n> 2my> 2k such that

)
Il

%1_{?0 A(Som), Sange)) = ]}1_{2 A(S2mk), S2n(k)+1) (20)

Lim d(S2m(k)+1, S2nk) = Lim d(S2m(ky+1, S2n(k)+1)
k—o0 k—o0
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Now if let s = spy,41, = Som,, P = Sone, § = Som, — 1, then
h(1, d(San+1, Szmk)) < h(“(sznk, Ska—l)/ d(San+1, Ska))
1
< 7:[‘“(5271;(; Ska—l)l F(E(d(Sanr Ska) + d(52mk—1/ 52nk+1))r w(d(SZVlkl S2my )1 d(Ska—l/ San+1)))]

< 1, P (2 520) + a1, 5, 50)), (52 520, s 15,00

Therefore,

1
d(52nk+1 7 Ska) < F(E (d(SZ;nk/ San) + S21ps1 7 S2my_y )/ II/(d(s2mk/ San)r d(s2nk+1 7 S2my_4 ))) (21)

Taking k — oo in the above inequality and using (20), and the continuity of F,¥, we would obtain
1
F(E(e +¢€), Ve, e)) =€

and therefore, € = 0, or , ¥(e,€) = 0, which would imply € = 0, a contradiction. Thus, {s,} is a cauchy
sequence. Since A is complete, there is a z € A such that s, — z. Now, from

d(s2n+1, f(s21)) = d(A, B), d(s2n+2, 9(52n41)) = d(A, B)

By continuity of f and g, taking n — co we have d(z, f(z)) = d(z,g(z)) = d(A,B). So, z is a common best
proximity point of the mappings f and g. Let, w is also a common best proximity point of mappings f and
g. Since a(z, w) > 1, u(z, w) < 1from (6) we have

h(1,d(z,w)) < h(a(zw),d(z w))
< T[y(z, w),F(%(d(z, w) + d(w, z)), 1/J(d(z, w), d(w, z)))],

T[l,P(%(d(z, w) +d(w,2)), Y(d(z, w), d(w, 2)))),

A

IA

therefore ,
d(z, w) < F(%(d(z, w) + d(w, z)), —CD(d(z, w), d(w, z)))
= F(d(z, w), D(d(z, w), d(w,2)))

So, d(z,w) =0, or , V(d(z, w), d(z, w)) = 0,Hence d(z, w) = 0, and thereforez = w. O

Definition 2.6. ([21])Let a : X X X — R be a function and f, g : X — X self-mappings and p,q,r € X be any three
elements. We say that (f, g) is a triangular a—admissible pair if

@Dap,) 21 = a(f(p),9@) =1or alglp), f@) =1,

o Jap,r) 21
(i1) {a(r, D1 =  ap,q=1

Definition 2.7. Let p : X X X — R be a function and f,g : X — X self-mappings and p,q,r € X be any three
elements. We say that (f, g) is a triangular 1 — subadmissible pair if

Oup,g) <1 = u(f(p).g9@) <1or ulglp), f(@) <1,

, 1) <1
(z‘z‘){ﬁﬁf DI = weast
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The corollary is an consequence of the last theorem.

Corollary 2.8. Let (X,d) be a complete metric space and f,g : X — X. Moreover, let the self functions f and g
satisfy:

(i) f and g are continuous,

(if)there exists sy € X such that a(so, f(s0)) = 1,

(iii) (f, g) is a triangular a—admissible pair and triangular p — subadmissible pair ,

(iv)forallp,q € X,

alp, DA(f(p), 9@)) < 31, 9)(d(p, 99)) + d(q, Fp)) — (d(p, 9(@), d(q, £ ()
(or)
(atr.) + )" < 14 10 (a1 o0 {dnsnaa )

Then f and g have common fixed point. Moreover, if x, y € X are common fixed points and a(x, y) > 1, u(x,y) < 1,
then the common fixed point of f and g is unique, that is x = y.

Now, we remove the continuity hypothesis of f and g and get the following theorem.

Theorem 2.9. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete, the pair (A, B)
have the V—property, and Ay be nonempty. Moreover, assume that the non-self functions f, g : A — B satisfy;

(i). f(Ao) C By and g(Ao) C By,

(ii). (f, g) is a generalised proximal C—contraction pairof type C-class,

Then, the functions f and g have a unique common best proximity point.

Proof. By Theorem(2.4), there is a cauchy sequence {s,} C A and z € Ay such that (7) holds and s, — z. Moreover,
we have

d(z,B) < d(z, f(s21))
< d(z, Son+1) + d(s2n41, f(521))
< d(z,801+1) + d(A, B).

we take n — oo in the above inequality, and we get

lim d(z, f(s.)) = d(z, B) = d(A, B). (22)

Since the pair (A, B) has the V—property, there is a p € B such that d(z,p) = d(A, B) and so z € Ay. Moreover, Since
f(Ao) C By, thereis a q € A such that

d(q, f(2)) = d(A, B). (23)

Furthermore d(syu+2, 9(S2n+1)) = d(A, B) for every n € IN.
Since (f, g) is a generalised proximal C—contraction pair, we have

g 52052) < F(5(d2,520:2) + ds2001,0), W(Ae 52052), 5201, ))

Letting n — oo in the above inequality, we have

(4,2 < F(5(dz ), W(d(z.),0))

So, d(q,z) =0, 0or, W(d(g,z),0) = 0,Thus d(z,q) = 0, which implies that z = q. Then, by (23), z is a best proximity
point of f.

Similiarly, it is easy to prove that z is a best proximity point of g. Then, z is a common best proximity point of f and
g. By the proof of Theorem(2.4), we conclude that f and g have unique common best proximity point. [
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Theorem 2.10. Let A and B be two nonempty subsets of complete metric space (X, d). Let A be complete, the pair
(A, B) have V—property and Ay is non-empty. Moreover, suppose that the non-self functions f, g : A — B satisfy:

(i) f(Ao) € Bo and g(Ao) € Bo,

(ii)(f, g) is an a, u-proximal C-contraction pair of type C-class,

(iii)(f, g) is a triangular a—proximal admissible pair, and a triangular p — subproximal admissible pair

(iv)there exist so, 51 € Ao such that d(s1, f(so)) = d(A, B), a(s1,50) = 1, u(s1,s0) < 1.

()if {sn} is a sequence in A such that a(sy,sp+1) 2 1 ,u(Sn,5041) < 1 and s, — sy as n — oo, then a(s,,sy) =
1, p(sn, s0) < 1 for all n € N {0}

Then f and g have a common best proximity point. Furthermore, if z,w € X are common best proximity points and
a(z,w) > 1, u(z, w) < 1, then common best proximity point is unique.

Proof. As similiar to the proof of Theorem (2.5) that there exist a sequence {s,} and z in A such thats, — z
and a(sy, Sp+1) 2 1, 14(Sn, 8n41) < 1. Now, we have

d(z, B) < d(z, f(s2n))
< d(z, 50n+1) + d(s2n41, f(521))
< d(Zr Son+1) + d(Ar B)'

we take # — oo in the above inequality, and we get
lim d(z, f(sx)) = d(z, B) = d(A, B). (24)

Since the pair (A, B) has the V—property, there is a p € B such that d(z, p) = d(A, B) and so z € Ag. Moreover,
Since f(Ao) C By, there is a g € A such that

d(q, f(z)) = d(A, B). (25)

Furthermore d(sz,42, 9(S20n+1)) = d(A, B) for every n € IN. Also, by (v), a(sy,z) = 1, u(sy,z) < 1 for every
n € N U{0}. By (f, 9) is an a, p-proximal C-contraction pair of type C-class,we have

h(l, d(g, 52n+2)))
< h((X(Z, S2n+1 )/ d(q’ 52n+2))

< [ s, F(5(02 52012) + 52011, 0)) = W(dCe,52002), ds2011,) )|

< T[l,F(%(d(z, S2042) + (52041, 9) ), Y(d(z, 52042), d(52001,9)) )|

Therefore

1
(g, 520:2)) < F(5(A(z, 52042) + d(s2001, ), YAz 5202), dls2001, )
Letting 7 — oo in the above inequality, we have

dg,2)) < F(3(d(z,9), 1(0,d(z, )

So, d(g,z) = 0, or , W(0,d(q,z)) = 0,thus d(z,q) = 0, which implies that z = g. Then, by (25), z is a best
proximity point of f. Similiarly, we can prove z is a best proximity point of g. Therefore, z is an common



A. H. Ansari et al. / Filomat 31:11 (2017), 3459-3471 3469

best proximity point of f and g. If z, w € X are common best proximity points and a(z, w) > 1, u(z,w) < 1,
then we get

d(z,w) < F(%(d(z, w) + d(w, z)), (D(d(z, w), d(w, z)))
= F(d(z,w), ®(d(z, w), d(w,7)))

<d(z,w)
So, d(z,w) =0, or , ¥(d(z, w), d(z, w)) = 0,Therefore, d(z, w) = 0 and hence z = w. [
The following corollary is an immediate consequence of the main theorem of this section.

Corollary 2.11. Let (X, d) be a complete metric space and f,g : X — X. Moreover, let the self functions f and g
satisfy:

(i)there exists so € X such that a(so, f(s0)) = 1,

(ii) (f, g) is a triangular a—admissible pair,

(iif)forall p,q € X,

alp, DA(f(p), 9()) < 31, 9)(d(p, 99)) + d(q, Fp)) — W(d(p, 9(@), d(q, £ ()

(or)

(a(p,q

(iv)if {sn} is a sequence in A such that a(s,, Sy41) = land s, — spasn — oo, then a(sy, so) = 1 foralln € N J{0}.
Then f and g have common fixed point. Moreover, if x,y € X are common fixed points and a(x,y) > 1, then the
common fixed point of f and g is unique, that is x = y.

d , 1 _
Y410 10 (s son)-v{ansoia o)

Example 2.12. Consider X = R with the usual metric, A = {-8,0,8} and B = {—4,-2,4}. Then, A and B are
nonempty closed subsets of X with d(A, B) = 2, Ag = {0} and By = {-2}. Define f,g: A — B by

fO0)=-2, f(8) =4 f(-8) =—-4andg(x)=-2forall x € A.

and W : [0, 00) X [0, 00) — [0, 00) by W(s, t) = Vst also F(s, t) = s — t. If,

d(u, f(p)) = d(A,B) =2
d(v, f(q)) = d(A,B) =2

then,u =v = p = 0and q € A. Hence all the conditions of Theorem(2.4) hold for this example and clearly O is the
unique best proximity point of f and g.

Example 2.13. Let X = [0,2] X [0,2] and d be the Euclidean metric. Let

A={0,m):0<m<2)} B={@2m):0<m<2)

Then, d(A,B) = 2, Ay = A and By = B. Define f,g: A — B by f(0,m) = (2,m) and g(0,m) = (2,2). Also define
a,u:AXA—[0,00)by ulp,q) =1 and

10
- ? lf p’ q € (OI 2) X {(Or 0)r (O/ 2)}/
a(p.4) = {0 otherwise

and W : [0, 00) X [0, 00) — [0, o0) by

W(s,t)=2 foralls,teX
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also F(s, t) = $37,h(x, y) = xy, and F (s, t) = st . Assume that

d(u, f(p)) = d(A,B) =2
d(v, f(q)) = d(A,B) =2

Hence, u = pand v = (0,2), then u = v and (2) holds. If p # (0, 2), then a(p, q) = 0 and (2) holds, which implies that
(f, 9) is an a—proximal C-contraction pair of type C-class. Hence, all the hypothesis of the Theorem(+) are satisfied.
Moreover, if {s,} is a sequence such that a(s,,sy+1) = 1 for every n € N U {0} and s, — so, then s, = (0,2) for all
n € N U {0} and hence so = (0,2). Then a(sy,s0) = 1 for every n € N U {0}. Clearly, (A, B) has the V— property and
then all the conclusions of Theorem(2.10) hold. Clearly, (0, 2) is the unique common best proximity point of f and g.

Example 2.14. Let X = [0, 3] X [0, 3] and d be the Euclidean metric. Let
A={0m):0<m<3) B={@m):0<ms<3)|
Then, d(A,B) =3, Ao = Aand By = B. Define f,g: A — B by

-3
(3,3) m = 53
(3,% m;ti

f(O/ m) =

and g(0,m) = (3,3). Also definea, u: Ax A —[0,00) by u(p,q) =1 and

3 ifpge(03)xA,
0  otherwise

alp,q) =
and W : [0, 00) X [0, 00) — [0, o0) by

W(s, t) = %(s +t) foralls,teX

also F(s,t) = s — t,h(x, y) = xy, and F (s, t) = st .
It is easy to see that all required hypothesis of Theorem(2.10) are satisfied unless (iii). Clearly f and g have no common
best proximity point.It is worth noting that pair (f, g) does not have the triangular a—proximal admissible property.
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