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On Some Ćirić Type Results in Partial b-Metric Spaces
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Abstract. In this paper, some fixed point results of Ćirić type in partial b-metric spaces are complemented
and generalized. An example is given to support the obtained results.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Intoductions and Preliminars

Partial metric spaces [29] and b-metric spaces [8] are two well known generalizations of usual metric
spaces. Also, the Banach contraction principle is a fundamental result in the fixed point theory, which has
been used and extended in many different directions.

The following two definitions are consistent with Matthews [29] and [8].

Definition 1.1. A partial metric on a nonempty set X is a function p : X ×X→ [0,∞) such that for all u, v,w ∈ X,
if

p1) u = v if and only if p (u,u) = p (u, v) = p (v, v) ,
p2) p (u,u) ≤ p (u, v) ,
p3) p (u, v) = p (v,u) ,
p4) p (u,w) ≤ p (u, v) + p (v,w) − p (v, v) .
A partial metric space is a pair

(
X, p

)
such that X is a nonempty set and p is a partial metric on X.

For a partial metric p on X, the function dp : X × X→ [0,∞) given by

dp (u, v) = 2p (u, v) − p (u,u) − p (v, v) (1)

is a (usual) metric on X. Each partial metric p on X generates a T0 topology τp on X with a base of the family of open
p-balls

{
Bp (u, ε) : u ∈ X, ε > 0

}
, where Bp (u, ε) =

{
v ∈ X : p (u, v) < p (u,u) + ε

}
for all u ∈ X and ε > 0.

For more details on partial metric spaces see [7], [29], [31], [32], [34], [39], [47] and [48].
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Definition 1.2. [8] Let X be a (nonempty) set and s ≥ 1 be a given real number. A function b : X × X → [0,∞) is
called a b-metric on X if, for all u, v,w ∈ X, the following conditions hold:

b1) b (u, v) = 0 if and only if u = v,
b2) b (u, v) = b (v,u) ,
b3) b (u,w) ≤ s [b (u, v) + b (v,w)] .
In this case, the pair (X, b) is called a b-metric space.

As a generalization and unification of partial metric and b-metric spaces, Shukla [47] introduced the
concept of partial b-metric space as follows:

Definition 1.3. A partial b-metric on a nonempty set X is a mapping pb : X×X→ [0,∞) such that for all u, v,w ∈ X,
if

pb1) u = v if and only if pb (u,u) = pb (u, v) = pb (v, v) ,
pb2) pb (u,u) ≤ pb (u, v) ,
pb3) pb (u, v) = pb (v,u) ,
pb4) pb (u,w) ≤ s

[
pb (u, v) + pb (v,w)

]
− pb (v, v) .

A partial b-metric space is a pair (X, pb) such that X is a nonempty set and pb is a partial b-metric on X. The
number s ≥ 1 is called the coefficient of (X, pb).

In a partial b-metric space (X, pb), if u, v ∈ X and pb(u, v) = 0, then u = v, but the converse may not be
true. It is clear that every partial metric space is a partial b-metric space with the coefficient s ≥ 1 and every
b-metric space is a partial b-metric space with the same coefficient and zero self-distance. However, the
converse of these facts does not necessarily hold. For such examples see [32], [47] and [48].

In [32] authors say that
(
X, pb

)
is a partial b-metric space if pb4) is substituted for the following: for all

u, v,w ∈ X,

pb (u,w) ≤ s
[
pb (u, v) + pb (v,w) − pb (v, v)

]
+

1 − s
2

(
pb (u,u) + pb (v, v)

)
. (2)

Further, for all definitions of notions such as pb-convergence, pb-completeness, pb-Cauchy sequence in the
setting of partial b-metric spaces, the reader refers to [32], [47] and [48].

Definition 1.4. A triple (X,�, pb) is called an ordered partial b-metric space if (X,�) is a partially ordered set and pb
is a partial b-metric on X.

Let (X,�) be a partially ordered set and let f , 1 be two self-maps on X. We shall use the following
terminology [46]:

1) the elements u, v ∈ X are called comparable if u � v or v � u holds;
2) a subset K of X is said to be well ordered if every two elements of K are comparable;
3) f is called nondecreasing w.r.t. � if u � v implies f u � f v;
4) the pair

(
f , 1

)
is said to be weakly increasing if f u � 1 f u and 1u � f1u for all u ∈ X;

5) f is said to be 1-weakly isotone increasing if for all u ∈ X satisfies f x � 1 f u � f1 f u.
Otherwise, fixed point results in partially ordered metric spaces were firstly presented by Ran and

Reurings [44] and then by Nieto and López [35], [36]. Subsequently, many authors obtained several
interesting results in ordered metric spaces, ordered b-metric spaces and ordered partial metric spaces (see
[4], [5], [7], [22], [34], [37], [45], [46]). Otherwise, for more details from the general theory of fixed point
consider [4]-[48].

Altering distance functions were introduced by Khan et al. in [28] as follows.

Definition 1.5. A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following items are
satisfied:

a) ψ is continuous and nondecreasing;
b) ψ (t) = 0 if and only if t = 0.
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So far, many authors have studied fixed point theorems which are based on altering distance functions
(see, e.g., [7], [12], [16], [22], [38]).

In [32] authors introduced the following denotations and notions and proved the corresponding fixed
point theorems.

Let (X,�, pb, s > 1) be an ordered partial b-metric space, and let f , 1 : X→ X be mappings. Set

M f ,1
s (u, v) = max

{
pb (u, v) , pb

(
u, f u

)
, pb

(
v, 1v

)
,

pb
(
u, 1v

)
+ pb

(
f u, v

)
2s

}
(3)

and

M f
s (u, v) = max

{
pb (u, v) , pb

(
u, f u

)
, pb

(
v, f v

)
,

pb
(
u, f v

)
+ pb

(
f u, v

)
2s

}
. (4)

Definition 1.6. Let (X, pb, s > 1) be a partial b-metric space, and let ψ and ϕ be altering distance functions. The pair
( f , 1) of self-mappings f , 1 : X→ X is called a generalized (ψ,ϕ)s,2-contraction pair if

ψ
(
s2pb

(
f u, 1v

))
≤ ψ

(
M f ,1

s (u, v)
)
− ϕ

(
M f ,1

s (u, v)
)

(5)

for all u, v ∈ X.

Theorem 1.7. Let (X,�, pb, s > 1) be an ordered pb-complete partial b-metric space, and let f , 1 : X → X be two
weakly increasing mappings with respect to � . Suppose that ( f , 1) is a generalized (ψ,ϕ)s,2-contraction pair for some
altering distance functions ψ and ϕ. If f and 1 are continuous (resp. (X,�, pb, s > 1) is a regular), then f and 1 have
a common fixed point.

Definition 1.8. Let (X,�, pb, s > 1) be an ordered partial b-metric space, and let ψ and ϕ be altering distance
functions. A mapping f : X→ X is called a generalized (ψ,ϕ)s,1-weakly contractive mapping if

ψ
(
spb

(
f u, f v

))
≤ ψ

(
M f

s (u, v)
)
− ϕ

(
M f

s (u, v)
)

(6)

for all comparable u, v ∈ X.

Theorem 1.9. Let (X,�, pb, s > 1) be a pb-complete ordered partial b-metric space. Let f : X→ X be a nondecreasing,
with respect to �, continuous (resp. (X,�, pb, s > 1) is a regular) mapping. Suppose that f is a generalized (ψ,ϕ)s,1-
weakly contractive mapping. If there exists u0 ∈ X such that u0 � f u0, then f has a fixed point.

It shows, specifically, the following crucial lemma is often used in proving all main results in [32].

Lemma 1.10. Let (X, pb, s > 1) be a partial b-metric space and suppose that {an} and {bn} are convergent to a and b,
respectively. Then we have

1
s2 pb (a, b) −

1
s

pb (a, a) − pb (b, b)

≤ lim inf
n→∞

pb (an, bn) ≤ lim sup
n→∞

pb (an, bn)

≤ spb (a, a) + s2pb (b, b) + s2pb (a, b) . (7)

In particular, if pb (a, b) = 0, then we have lim
n→∞

pb (an, bn) = 0.
Moreover, for each c ∈ X, we have

1
s

pb (a, c) − pb (a, a) ≤ lim inf
n→∞

pb (an, c) ≤ lim sup
n→∞

pb (an, c) ≤ spb (an, c) + spb (a, a) . (8)

In particular, if pb (a, a) = 0, then we have

1
s

pb (a, c) ≤ lim inf
n→∞

pb (an, c) ≤ lim sup
n→∞

pb (an, c) ≤ spb (a, c) . (9)



D. Dolićanin–Ðekić / Filomat 31:11 (2017), 3473–3481 3476

In the next section the following new result in the framework of b-metric spaces which also holds as
well as for partial b-metric spaces, will be used.

Lemma 1.11. ([30] Lemma 2.2.) Every sequence {an} of elements from a b-metric space (X, d, s ≥ 1), having the
property that there exists γ ∈ [0, 1) such that d(an+1, an) ≤ γ d(an, an−1) for every n ∈N, is a b-Cauchy.

2. Main Results

In what follows, two new concepts which generalize Definition 1.6 and Definition 1.8 greatly will be
introduced. Further, very simple proofs of some common fixed point theorems in the new framework for
not only without considering the assumptions of Theorem 1.7 and Theorem 1.9, but also without utilizing
Lemma 1.10 in the proofs will be presented.

Definition 2.1. Let (X,�, pb, s > 1) be an ordered partial b-metric space, and let ψ and ϕ be altering distance
functions. The pair ( f , 1) of self-mappings f , 1 : X→ X is called a generalized (ψ,ϕ)s,ε-contraction pair if

ψ
(
s εpb

(
f u, 1v

))
≤ ψ

(
M f ,1

s (u, v)
)
− ϕ

(
M f ,1

s (u, v)
)

(10)

for all comparable u, v ∈ X, where ε > 1 is a real constant.

Remark 2.2. Definition 1.6 is the special case of Definition 2.1. Indeed, take ε = 2 in Definition 2.1, then generalized
(ψ,ϕ)s,ε-contraction pair is reduced to generalized (ψ, ϕ)s,2-contraction pair. Accordingly, Definition 2.1 is more
useful and meaningful in applications.

Theorem 2.3. Let (X,�, pb, s > 1) be a pb-complete ordered partial b-metric space, and let f , 1 : X → X be two
weakly increasing mappings with respect to � . Suppose that ( f , 1) is a generalized (ψ,ϕ)s,ε-contraction pair for some
altering distance functions ψ and ϕ and ε > 1. If f and 1 are continuous (resp. (X,�, pb, s > 1) is a regular), then f
and 1 have a common fixed point.

Proof. It is clear that (10) implies

s εpb
(

f u, 1v
)
≤M f ,1

s (u, v) , (11)

for all comparable u, v ∈ X.
Now, it follows immediately from (11) that z ∈ X is a fixed point of f if and only if z is a fixed point of 1.

Take u0 ∈ X and construct a sequence {un} in X such that u2n+1 = f u2n and u2n+2 = 1u2n+1 for all nonnegative
integers n. Since f and 1 are weakly increasing with respect to �, we have that

f u0 = u1 � u2 � u3 � · · · � un � un+1 � · · · . (12)

If u2n = u2n+1 for some n or u2n+1 = u2n+2 for some n, then obviously f and 1 have at least one common fixed
point. Therefore, we may, assume without loss of generality, that un , un+1 for all n ∈N.Now, we complete
the proof for three cases:

Case I: We shall prove that

pb (xn, xn+1) ≤ kpb (xn−1, xn) (13)

for all n ∈N, where k ∈ [0, 1
s ) ⊆ [0, 1).

Indeed, by (12), u2n and u2n+1 are comparable, then from (11) it establishes that

s εpb (u2n+1,u2n+2) = s εpb
(

f u2n, 1u2n+1
)
≤M f ,1

s (u2n,u2n+1)

= max
{

pb (u2n,u2n+1) , pb (u2n+1,u2n+2) ,
pb (u2n,u2n+2) + pb (u2n+1,u2n+1)

2s

}
≤ max

{
pb (u2n,u2n+1) , pb (u2n+1,u2n+2) ,

pb (u2n,u2n+1) + pb (u2n+1,u2n+2)
2

}
≤ max

{
pb (u2n,u2n+1) , pb (u2n+1,u2n+2)

}
. (14)
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If pb (u2n,u2n+1) ≤ pb (u2n+1,u2n+2), then (14) becomes

s εpb (u2n+1,u2n+2) ≤ pb (u2n+1,u2n+2) ,

which leads to a contradiction (because s ε > 1). Accordingly, we deduce that

s εpb (u2n+1,u2n+2) ≤ pb (u2n,u2n+1) . (15)

Again by (12), x2n and x2n−1 are comparable, then from (11) it establishes that

s εpb (u2n,u2n+1) = s εpb
(
1u2n−1, f u2n

)
= s εpb

(
f u2n, 1u2n−1

)
≤M f ,1

s (u2n,u2n−1)

= max
{

pb (u2n,u2n−1) , pb (u2n,u2n+1) ,
pb (u2n,u2n) + pb (u2n+1,u2n−1)

2s

}
≤ max

{
pb (u2n,u2n−1) , pb (u2n,u2n+1) ,

pb (u2n+1,u2n) + pb (u2n,u2n−1)
2

}
≤ max

{
pb (u2n,u2n−1) , pb (u2n,u2n+1)

}
. (16)

If pb (u2n−1,u2n) ≤ pb (u2n,u2n+1), then

s εpb (u2n,u2n+1) ≤ pb (u2n,u2n+1) .

This is a contradiction (because s ε > 1). Consequently, we demonstrate that

s εpb (u2n,u2n+1) ≤ pb (u2n−1,u2n) . (17)

Hence by (16) and (17), we get (13), where k = 1
s ε ∈ [0, 1

s ) ⊆ [0, 1).
Case II: We shall prove that {xn} is a pb-Cauchy sequence. In order to end this, for m,n ∈ N and m < n,

applying the triangle-type inequality pb4), we arrive at

pb (um,un)
≤ s

[
pb (um,um+1) + pb (um+1,un)

]
≤ spb (um,um+1) + s2 [

pb (um+1,um+2) + pb (um+2,un)
]

≤ · · · ≤ spb (um,um+1) + s2pb (um+1,um+2) + · · ·

+ sn−m−1 [
pb (un−2,un−1) + pb (un−1,un)

]
≤ spb (um,um+1) + s2pb (um+1,um+2)

+ · · · + sn−m−1pb (un−2,un−1) + sn−mpb (un−1,un) .

Note that (13) and sk < 1, it is easy to see that

pb (um,un) ≤
(
skm + s2km+1 + ... + sn−mkn−1

)
pb (u0,u1)

= sλm
[
1 + (sk) + ... + (sk)n−m−1

]
pb (u0,u1)

≤
skm

1 − sk
pb (u0,u1)→ 0, as m→∞. (18)

It follows that {un} is a pb-Cauchy sequence. Since
(
X, pb

)
is pb-complete, then from [15](Lemma 1), it implies

that {un} converges to some z ∈ X. Again by [15], Lemma 1 it may be verified that

lim
n→∞

pb (un, z) = lim
n,m→∞

pb (un,um) = 0 = pb (z, z) . (19)

Case III. (Existence of a common fixed point).
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(i) Let f and 1 be continuous. Then, by using pb4), we acquire that

1
s

pb
(
z, f z

)
≤ pb

(
z, f u2n

)
+ pb

(
f u2n, f z

)
(20)

and

1
s

pb
(
z, 1z

)
≤ pb

(
z, 1u2n+1

)
+ pb

(
1u2n+1, 1z

)
. (21)

Letting n→∞ in (20) and (21), and using the continuity of f and 1 together with (19), we claim that

1
s

pb
(
z, f z

)
≤ pb

(
f z, f z

)
,

1
s

pb
(
z, 1z

)
≤ pb

(
1z, 1z

)
. (22)

Now, we derive from (22) and pb2) that

1
s

max
{
pb

(
z, f z

)
, pb

(
z, 1z

)}
≤ pb

(
f z, 1z

)
. (23)

In view of pb(z, z) ≤ pb(z, f z) or pb(z, z) ≤ pb(z, 1z), then by (11), it establishes that

s εpb
(

f z, 1z
)
≤ max

{
pb (z, z) , pb

(
z, f z

)
, pb

(
z, 1z

)
,

pb
(
z, 1z

)
+ pb

(
f z, z

)
2s

}
≤ max

{
0, pb

(
z, f z

)
, pb

(
z, 1z

)
,max

{
pb

(
z, f z

)
s

,
pb

(
z, 1z

)
s

}}
= max

{
pb

(
z, f z

)
, pb

(
z, 1z

)}
. (24)

Further, combining (23) and (24), we speculate that

1
s

max
{
pb

(
z, f z

)
, pb

(
z, 1z

)}
≤

1
s ε

max
{
pb

(
z, f z

)
, pb

(
z, 1z

)}
. (25)

If pb
(
z, f z

)
> 0 or pb

(
z, 1z

)
> 0, then from (25) it leads to a contradiction. Hence, we have proved that f and

1 have at least one common fixed point.
(ii) Let

(
X,�, pb

)
be a regular ordered partial b-metric space. Using the given assumption on

(
X,�, pb

)
,

we have that un � z for all n ∈N. Finally, we show that f z = 1z = z. Actually, by (11), it ensures us that

s εpb
(
u2n+1, 1z

)
≤ max

{
pb (u2n, z) , pb (u2n,u2n+1) , pb

(
z, 1z

)
,

pb
(
u2n, 1z

)
+ pb (u2n+1, z)
2s

}
≤ max

{
pb (u2n, z) , pb

(
u2n,u2n+1

)
, pb

(
z, 1z

)
,

pb (u2n,u2n+1) + pb
(
u2n+1, 1z

)
+ pb (u2n+1, z)

2

}
(26)

Noting that pb
(
u2n+1, 1z

)
→ pb

(
z, 1z

)
, pb (u2n, z) → 0 = pb (z, z) and pb (u2n,u2n+1) → 0 as n → ∞ and taking

the limit from both sides of (26), we claim that

s εpb
(
z, 1z

)
≤ max

{
0, 0, pb

(
z, 1z

)
,

0 + pb
(
z, 1z

)
2

}
= pb

(
z, 1z

)
. (27)

This is a contradiction if pb
(
z, 1z

)
> 0. That is to say, z = f z. Similarly, we can show z = 1z. Therefore, z is a

common fixed point of f and 1.

Remark 2.4. Since any generalized (ψ,ϕ)s,2-contraction pair must be a generalized (ψ, ϕ)s,ε-contraction pair, thus
Theorem 2.3 greatly improves and expands Theorems 3, 4 as well as Corollaries 3 and 4 of [32].
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Remark 2.5. The proof of Theorem 2.3 does not rely on Lemma 1.6 as compared to the proofs of the main results of
[15]. Moreover, this proof is much shorter than [15]. As a result, this statement is more acceptable and applicable in
applications.

The following example illustrates this generalization to be genuine generalization.

Example 2.6. Let X = {0, 1, 2} be equipped with the following partial order:

�:= {(0, 0) , (1, 1) , (2, 2) , (0, 1)} .

Define a partial b-metric pb : X × X→ [0,∞) by

pb (u, v) =

{
0, u = v;
(u + v)2 , u , v.

. (28)

It is easy to see that (X, pb) is a pb-complete partial b-metric space with s = 9
5 . Define self-maps f = 1with f 0 = 10 = 0

and f 1 = f 2 = 11 = 12 = 2. Simple calculations show that f and 1 are weakly increasing mappings with respect to
� and that f and 1 are continuous. In order to check that

(
f , 1

)
=

(
f , f

)
is a generalized

(
ψ,ϕ

)
s,ε-contraction pair,

only the case u = 0, v = 1 is nontrivial. For this case we arrive at

s εpb
(

f 0, 11
)

=
(9

5

) ε
pb

(
f 0, f 1

)
=

(9
5

) ε
pb (0, 2) =

(9
5

) ε
· 4 (29)

and

M f ,1
s (0, 1) = M f , f

s (0, 1) = max

pb (0, 1) , pb
(
0, f 0

)
, pb

(
1, f 1

)
,

pb
(
0, f 1

)
+ pb

(
1, f 0

)
2 · 9

5


= max

{
1, 0, 9,

25
18

}
= 9. (30)

Now that
(

9
5

)2
· 4 > 9, then the pair

(
f , 1

)
=

(
f , f

)
is not a generalized

(
ψ,ϕ

)
9
5 ,2

-contractive for any altering functions

ψ and ϕ. However, there exists ε ∈ (1, 2) such that
(

9
5

) ε
· 4 ≤ 9, that is, the pair

(
f , 1

)
=

(
f , f

)
satisfies the condition

(11). Furthermore, there exist altering functions ψ and ϕ such that
(

f , 1
)

=
(

f , f
)

is a
(
ψ,ϕ

)
9
5 ,ε

-contractive. Indeed,
putting ψ (t) = t, we can find ϕ (t) = kt, k ∈ (0, 1) such that(9

5

) ε
· 4 ≤ 9 − ϕ (9) . (31)

Hence, our Theorem 2.3 does be a real generalization compared with Theorems 3 and 4, Corollaries 3
and 4 of [32].

Finally, the generalization of Definition 1.8 and Theorem 1.9 is stated as follows.

Definition 2.7. Let (X,�, pb, s > 1) be an ordered partial b-metric space, and let ψ and ϕ be altering distance
functions. A self-mapping f : X→ X is called a generalized (ψ,ϕ)s,ε-weakly contractive mapping if

ψ
(
s εpb

(
f u, f v

))
≤ ψ

(
M f

s (u, v)
)
− ϕ

(
M f

s (u, v)
)

(32)

for all comparable u, v ∈ X, where ε > 1 is a real constant.

Theorem 2.8. Let (X,�, pb, s > 1) be a pb-complete ordered partial b-metric space. Let f : X→ X be a nondecreasing,
with respect to �, continuous mapping (resp. (X,�, pb, s > 1) is a regular). Suppose that f is a generalized (ψ,ϕ)s,ε-
weakly contractive mapping. If there exists u0 ∈ X such that u0 � f u0, then f has a fixed point.
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Proof. First of all, the condition (32) implies

s εpb
(

f u, f v
)
≤M f

s (u, v) (33)

for all comparable u, v ∈ X. The rest of the proof is further similar to the proof of Theorem 2.3 so long as
putting 1 = f and therefore we omit it.

Next one very important recent example is presented in the framework of partial b-metric spaces:

Example 2.9. ([48]). Let X =
{
x; y; z

}
and put b : X × X→ [0; +∞) as follows.

1) b(x; x) = b(z; z) = 1 and b(y; y) = 0.5.
2) b(x; z) = b(z; x) = 1.5.
3) b(y; z) = b(z; y) = 1.
4) b(x; y) = b(y; x) = 3.
It is not difficult to check that (X; b) is a partial b-metric space with coefficient s = 3.
For each u ∈ X and each ε > 0,put B (u, ε) = {v ∈ X : b (u, v) < b (u,u) + ε} and putB = {B (u, ε) : u ∈ X and ε > 0} .

From [48] follows that B is not a base for any topology on X .
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D. Dolićanin–Ðekić / Filomat 31:11 (2017), 3473–3481 3481
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