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Abstract. The aim of the present paper is to study the dynamics of a class of orbitally continuous non-linear
mappings defined on the set of real numbers and to apply the results on dynamics of functions to obtain
tests of divisibility. We show that this class of mappings contains chaotic mappings. We also draw Julia sets
of certain iterations related to multiple lowering mappings and employ the variations in the complexity
of Julia sets to illustrate the results on the quotient and remainder. The notion of orbital continuity was
introduced by Lj. B. Ciric and is an important tool in establishing existence of fixed points.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Definitions and Preliminaries

A discrete dynamical system consists of a function and its iterates. We call the behaviour of points under
iteration of a function the dynamics of the function. We first give some well known definitions relevant to
our work.

Definition 1.1. If f is a function, the orbit of a point x is the set of points x, f (x), f 2(x), f 3(x), f 4(x), . . . where f 2x
denotes f ( f (x)), f 3(x) denotes f ( f ( f (x))) etc.

Orbits can be quite complicated sets even for simple mappings. However, orbits associated with fixed
points and periodic points are especially simple and these play a central role in the study of an entire
system.

Definition 1.2. The point x is called a fixed point of f if f (x) = x. A point x is called a periodic point of period n if
f n(x) = x. The least positive integer n for which f n(x) = x is called the prime period of x. The prime period need not
be a prime number (see Example 1.4 given below). The set of all iterates of a periodic point forms a periodic orbit.

Definition 1.3. A point x is an eventually fixed point of f if there exists an integer N > 0 such that f (n+1)(x) = f n(x)
for n ≥ N. A point x is eventually periodic of period k if there exists N > 0 such that f (n+k)(x) = f n(x) for n ≥ N.

Example 1.4 ([2, 3]). Let S1 denote the unit circle in the xy-plane and identify each point on the circle by the radian
measure in a counter-clockwise direction of the angle between the positive x-axis and the ray beginning at the origin
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and passing through the point. We, thus, denote a point in S1 by its angle θ measured in radians and the point
is determined by any angle of the form θ + 2kπ for an integer k. Let f (θ) = 2θ. Then f (θ + 2kπ) = f (θ) and
f n(θ) = 2nθ, so that θ is periodic point of period n if and only if 2nθ = θ + 2kπ for some integer k, i.e., if and only
if θ = 2kπ/(2n

− 1). Hence the periodic points of order n for f are the (2n
− 1)th roots of unity. For example, the

periodic points of prime period 4 are given by θ = 2kπ/15. It follows that the set of periodic points is dense in S1. It
may be noted that f (0) = 0 is fixed while if θ = 2kπ/2n, then f n(θ) = 2kπ, so that θ is eventually a fixed point. It
follows that the set of eventually fixed points is dense in S1. This mapping is referred to as the doubling map on S1

([3], p.124).

Definition 1.5. Let p be a periodic point of period n. A point x is forward asymptotic to p if limk→∞ f kn(x) = p. The
stable set of p denoted by Ws(p), consists of all points forward asymptotic to p. If p is non-periodic, we define x to be
forward asymptotic to p if | f i(x) − f i(p)| → 0 as i → ∞. If the sequence |x|, | f (x)|, | f 2(x)|, | f 3(x)|, . . . grows without
bound, then x is defined to be forward asymptotic to∞. The stable set of∞, denoted by Ws(∞), consists of all points
which are forward asymptotic to∞.

Definition 1.6. Let p be a periodic point of prime period n. The point p is called hyperbolic if, |( f n)′(p)| , 1 where
( f n)′(p) denotes the derivative of f n(x) at x = p.

The following Theorem tells about the behaviour under iteration of the points in the neighbourhood of
a hyperbolic fixed point.

Theorem 1.7 ([2, 3]). Let p be a hyperbolic fixed point of f and f ′(p) be the derivative of f (x) at x = p. If | f ′(p)| < 1,
then there is an open interval U containing p such that if x ∈ U then f n(x)→ p as n→∞. If | f ′(p)| > 1, then there
is an open interval U containing p such that if x ∈ U, x , p, then there exists k > 0 such that f k(x) < U.

Definition 1.8. Let p be a periodic point of f with prime period n. If |( f n)′(p)| < 1, then p is called an attracting
periodic point (an attractor) or a sink. If |( f n)′(p)| > 1, then p is called a repelling periodic point (a repeller) of f or a
source.

Most maps have only hyperbolic periodic points. However, non-hyperbolic periodic points often occur
in families of maps. When this happens, the periodic point structure often undergoes a bifurcation.

Definition 1.9. Let fc(x) be a parametrized family of functions. Then there is a bifurcation at c0 if there exists ε > 0
such that whenever a and b satisfy c0 − ε < a < c0 and c0 < b < c0 + ε, then the dynamics of fa(x) is different from
the dynamics of fb(x).

In other words, the dynamics of functions changes when the parameter value crosses through the point
c0.

Definition 1.10. A mapping f : J → J, J being an open interval, is said to be topologically transitive if for any pair
of open sets U,V ⊂ J there exists k > 0 such that f k(U) ∩ V , φ.

Intuitively, a topologically transitive map has points, which eventually move under iteration from one
arbitrarily small neighbourhood to any other.

Definition 1.11. A mapping f : J → J, J an interval, is said to have sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ J and any neighbourhood N of x, there exist y in N and n ≥ 0 such that
| f n(x) − f n(y)| > δ.

Definition 1.12. Let V be a set. Then f : V → V is said to be chaotic on V, in the sense of Devaney ([2]), if

a. f has sensitive dependence on initial conditions
b. f is topologically transitive
c. periodic points of f are dense in V.
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Example 1.13 ([2, 3]). If S1 is the unit circle in the plane then the doubling map f : S1
→ S1 of Example 1.4 defined

by f (θ) = 2θ is chaotic. Since the angle between two points is doubled upon iteration, f is sensitive to initial
conditions. Topological transitivity also follows from this observation since any small arc in S1 is eventually expanded
by some f k to cover all of S1, and in particular, any arc in S1. The density of periodic points has already been observed
in Example 1.4 above. For more details on the chaotic behaviour of the doubling map one can refer to Holmgren ([3],
p. 124).

Definition 1.14. Let f : A → A and 1 : B → B be two maps. Then f and 1 are said to be topologically conjugate
if there exists a homeomorphism h : A → B such that ho f = 1oh. The homeomorphism h is called a topological
conjugacy.

Mappings which are topologically conjugate are completely equivalent in terms of their dynamics.

Definition 1.15 ([1]). If f is a self-mapping of a metric space (X, d), then the set O(x, f ) = { f nx : n = 0, 1, 2, . . .} is
called the orbit of f at x and f is called orbitally continuous if u = limi f mi x implies f u = limi f f mi x.

The notion of orbital continuity was introduced by Ciric ([1]) and is an important tool in establishing
the existence of fixed points. Continuity of f obviously implies orbital continuity but not conversely ([1]).

2. Results

Let X denote the set of real numbers equipped with the Euclidean metric. In the sequel, for applying
our results to divisibility of polynomials by polynomials of the form z3

± q, we shall write the positive (resp.
negative) numbers in X either in the form 103x + y (resp. - (103x + y)) with x a non-negative integer and
0 ≤ y < 103 or in the form 103a + 102b + 10c + d (resp. - (103a + 102b + 10c + d)) where 0 ≤ d < 10 and
a, b, c are non-negative integers with b, c < 10. Given a positive real number x = 103p + q in X consider the
self-mapping fx on X induced by x under which the image of a positive number y = 103a3 + 102a2 + 10a1 + a0
in X is given by:

fx(y) = fx(103a3 + 102a2 + 10a1 + a0) = (102a2 + 10a1 + a0)p − a3q, (1)

and the image of y = −(103a3 + 102a2 + 10a1 + a0) is given by

fx(y) = fx(−(103a3 + 102a2 + 10a1 + a0)) = −((102a2 + 10a1 + a0)p − a3q), (2)

where p, a1, a2, a3 are non-negative integers, 0 ≤ a0, a1, a2 < 10 and 0 ≤ q < 103. In view of a property of
these mappings to be observed in Theorem 2.1 below, we refer to such selfmappings as multiple-lowering
mappings (see [8]) and mappings defined by (1) and (2) are called multiple-lowering mappings of order 3.
It follows from (1) and (2) that

| fx(y)| = | fx(103a3 + 102a2 + 10a1 + a0)| = |(102a2 + 10a1 + a0)p − a3q|
< max{103p + q, 103a3 + 102a2 + 10a1 + a0}

= max{x, y}, (3)

and

| fx(y)| = | fx(−(103a3 + 102a2 + 10a1 + a0))| = | − ((102a2 + 10a1 + a0)p − a3q)|
< max{103p + q, 103a3 + 102a2 + 10a1 + a0}

= max{x, |y|}. (4)

Pant [5–8] studied multiple-lowering mappings and their applications to divisibility of polynomials.
However, the mappings studied in [5–7] were defined on the set of nonnegative integers and such mappings
have a relatively simple dynamics and they do not exhibit the phenomena of chaos and bifurcation. In [8],
multiple-lowering mappings of order 7 defined on the set of non-negative real numbers were studied and
it was proved that such mappings exhibit the phenomena of chaos and bifurcation. The aim of the present
paper is to generalize the multiple lowering mappings of order 3 studied in [7] by extending the domain of
their definition from the set of non-negative integers to the set of real numbers and to study the dynamics
of these mappings. The next theorem describes the orbits of integers under iteration of such mappings.
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Theorem 2.1. Let X be the set of real numbers, p ≥ 1 an integer, and 0 ≤ q < 103. Let x = 103p + q and f = fx be
the multiple-lowering mapping on X induced by x and defined by (1), (2). Then every integral multiple of 103p + q is
an eventually fixed point of f . If q is also an integer then every integer in X that is not an integral multiple of 103p + q
is either an eventually fixed point or an eventually periodic point of f . Moreover, f is a nonlinear mapping.

Proof. Suppose that y = ±(103a3 + 102a2 + 10a1 + a0) is a non-zero integral multiple of 103p + q where
a0, a1, a2, a3 are non-negative integers such that a0, a1, a2 < 10. Then there exists an integer k ≥ 1 such that
103a3 + 102a2 + 10a1 + a0 = k(103p + q) and −(103a3 + 102a2 + 10a1 + a0) = −k(103p + q). Then f (103a3 +
102a2 + 10a1 + a0) = 102a2p + 10a1p + a0p − a3q = (pk − a3)(103p + q) and f (−(103a3 + 102a2 + 10a1 + a0)) =
a3q− (102a2p + 10a1p + a0p) = (a3 − pk)(103p + q), that is, f (y) is an integral multiple of 103p + q since a3, p, k are
integers. Further, since k ≥ 1,max{103p+q, 103a3 +102a2 +10a1 +a0} = 103a3 +102a2 +10a1 +a0. By virtue of (3)
and (4) we get,| f (y)| < y = 103a3+102a2+10a1+a0. Therefore, the f-image of an integral multiple of 103p+q is a
numerically smaller integral multiple of 103p+q. But there are exactly 2k−1 integral multiples, corresponding
to n = 0,±1,±2, ,±(k−1), of 103p+q which are numerically smaller than 103a3 +102a2 +10a1 +a0 = k(103p+q)
or numerically smaller than −(103a3 + 102a2 + 10a1 + a0) = −k(103p + q). Moreover, f (103p + q) = |qp− pq| = 0
and f (0) = f (103.0 + 102.0 + 10.0 + 0) = 0. Thus, if y = ±(103a3 + 102a2 + 10a1 + a0) = ±k(103p + q), k ≥ 1, then
f n(y) = 0 for some n ≤ 2k − 1 and f m(y) = 0 for each m ≥ n and f (0) = 0. In other words, 0 is a fixed point
of f and every other integral multiple of 103p + q is an eventually fixed point of f .

Now suppose that q is also an integer and a given integer y = ±(103a3 +102a2 +10a1 +a0) is not an integral
multiple of x = 103p + q. Then, by virtue of (3) and (4), there exists n > 0 such that 0 ≤ | f n(y)| < x = 103p + q.
Moreover, for each i > 0 we get 0 ≤ | f n+i(y)| < 103p + q. If 0 < | f n+i(y)| < 103p + q, then the points
{ f n+i(y) : i ≥ 0} form a periodic orbit and y = ±(103a3 + 102a2 + 10a1 + a0) is an eventually periodic point of
f , otherwise y is an eventually fixed point of f .

It is also clear from the above computations that irrespective of whether y is a multiple of x = 103p + q
or not there exists some positive integer n such that for each integer m ≥ n we have

0 ≤ | f m(y)| < x = 103p + q. (5)

To show that the mapping f is nonlinear, let us consider the case when p = 2 and q = 4, that is,
x = 103p + q = 2004. Then f (1503) = f2004(1503) = 1002 and f (1503 + 1503) = f (3006) = 0, that is,
f (1503 + 1503) , f (1503) + f (1503). This shows that f is not linear.

Remark 2.2. We thus see that when q is an integer, the orbits of integers under iterations of fx are relatively simple
sets since the integers are either eventually fixed points or eventually periodic points. However, the orbits of other
real numbers in X may be much more complicated sets if the mapping fx induced by x = 103p + q is chaotic. We now
demonstrate the presence of chaotic maps in the set of multiple-lowering mappings.

Theorem 2.3. Suppose f is the mapping defined by (1), (2) and induced by x = 1000k (corresponding to q = 0, p =
k, k = 2, 3, 4, . . .). Then the restriction of f on the closed interval [0, 1000k] is topologically conjugate to the mapping
1 on the unit circle S1 defined by 1(θ) = kθ, that is, f is chaotic on [0, 1000k]. Further, multiple lowering mappings
induced by two distinct integers of the form 1000k are not conjugate.

Proof. It is sufficient to prove the theorem for the case k = 2, in other cases the proof follows on similar lines.
On [0, 2000] the mapping f induced by x = 2000 (corresponding to q = 0, p = 2) can equivalently be defined
by:

f (y) = 2y if y < 1000, f (y) = 2y − 2000 if 1000 ≤ y < 2000,

f (y) = 2y − 4000 if y = 2000.

Similarly, 1 : S1
→ S1 given by 1(θ) = 2θ can equivalently be represented as:

1(θ) = 2θ if θ < π, 1(θ) = 2θ − 2π if π ≤ θ < 2π, 1(θ) = 2θ − 4π if θ = 2π.

Now define a mapping h : S1
→ [0, 2000], that is, h : [0, 2π]→ [0, 2000] by

h(θ) = 1000θ/π.
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We now show that f and 1 are topologically conjugate and h is a topological conjugacy by showing that h
is a homeomorphism and ho1 = f oh. The mapping h is clearly a one-one mapping of [0, 2π] onto [0, 2000]
and h is invertible with the inverse h−1 being given by h−1(y) = πy/1000 for each y in [0, 2000]. In view
of their simple definitions it is easy to see that both h and h−1 are continuous functions. Hence h is a
homeomorphism. The following computations show that ho1 = f oh:

(ho1)(θ) = 2000θ/π if θ < π,
(ho1)(θ) = (2000θ/π) − 2000 if π ≤ θ < 2π,
(ho1)(θ) = 0 if θ = 2π,
( f oh)(θ) = 2000θ/π if θ < π,
( f oh)(θ) = (2000θ/π) − 2000 if π ≤ θ < 2π,
( f oh)(θ) = 0 if θ = 2π.

Therefore, ho1 = f oh. Hence f and 1 are topologically conjugate and h is a topological conjugacy. Since
the doubling map is chaotic we conclude that the multiple-lowering map f = fx is chaotic when x = 2000.
Moreover, the mapping 1(θ) = kθ, k = 3, 4, 5, . . . , can be shown to be chaotic by using a method analogous to
that used in proving 1(θ) = 2θ to be chaotic and, then, the theorem can be proved for the cases k = 3, 4, 5, . . . ,
on similar lines as for the case k = 2. It is also easy to see that multiple lowering mappings induced by
1000k1 and 1000k2, k1 , k2, are not conjugate. For example if we consider multiple lowering mappings
induced respectively by x = 2000 and x = 3000 then the first mapping has only one fixed point y = 0 while
the latter has two fixed points y = 0 and y = 1500. Therefore, these two mappings fail to be conjugate.
It is clear from the above computations that the mapping f induced by x = 2000 is discontinuous at y = 1000
and y = 2000. In fact f is discontinuous at y = 1000k, k = 1, 2, 3, . . .. However, f is orbitally continuous since
for the chaotic mapping f , u = limi f mi t implies that t is either a periodic point or an eventually periodic
point and f u = limi f f mi t. Therefore, f is orbitally continuous.

Graphical Interpretation of Conjugacy: Let us consider the family of circles centered on the origin and
having radius ≤ 2000. On an arbitrary circle of radius ≤ 2000 centered on the origin in the complex plane
C, the doubling map can be defined by f (z) = z2/|z|. Similarly, corresponding to an arbitrary radius vector
of length 2000 in the complex plane C, the multiple lowering mapping corresponding to p = 2 and q = 0
can be defined as:

f (z) = 2z if |z| < 1000, f (z) = 2(|z| − 1000)z/|z| if 1000 ≤ |z| < 2000, f (z) = 0 if z = 2000.

Let us consider the periodic points of period 2 for the two mappings. The periodic points of period 2
for the doubling map on each circle are given by θ = 2kπ/3, that is,

θ = 0, θ = 2π/3, θ = 4π/3.

These periodic points for the family of circles have been graphically depicted in Figure 2.4 by three radii
vectors at an angle of 2π/3 with each other. The periodic points of period 2 for the multiple lowering map
on a radius vector z are given by kz/3, k = 0, 1, 2, that is, z1 = 0, z2 = z/3, z3 = 2z/3. These periodic points
for the family of radii vectors of length 2000 have been depicted in Figure 2.5 by two inner circles and the
center.
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We see that the periodic points for the doubling map on the family of circles are given by three radii
vectors whose arguments are in arithmetic progression while the periodic points for multiple lowering
mapping on the radii vectors are given by three concentric circles whose radii are in arithmetic progression.
We also see that there is a one-one correspondence between the periodic points of the two mappings. A
similar correspondence can be graphically depicted for periodic points of any order for the two mappings.

Remark 2.4. By employing a proof similar to that used in the proof of Theorem 3 in [8] it can be shown that (i)
bifurcation occurs in the family of multiple lowering mappings fx defined by (1) at x = 2000, (ii) for parameter values
x satisfying 1000 ≤ x < 2000 the mappings fx possess non-hyperbolic fixed points, and (iii) for x = 2000 each periodic
point is a repelling periodic point and the value of |( f n)′(p)| equals 2n at each periodic point of period n.

3. Applicatios to Divisibility

We now give a number theoretic application of the Theorem 2.1, which is a fixed point theorem, to obtain
a test of divisibility of one integer by another integer. The question of divisibility of one integer by another
or of one polynomial by another is an important question. However, before [5–8] the only important known
result on the divisibility of one polynomial by another is the well known Factor Theorem which states that
a linear polynomial x − a divides a polynomial f (x) if and only if f (a) = 0. Likewise, the general tests of
divisibility given in [5–8] are perhaps the only results of their type.

In proving the divisibility theorems we shall use the elementary result that if the integers a, b are relatively
prime and if a divides the product of the integers b and c then a divides c. In the sequel, we shall use the
notation x|y to show that x divides y.

Theorem 3.1. Let x = 103p + q and y = 103a3 + 102a2 + 10a1 + a0 be given integers where p > 0, q > 0, a0, a1, a2, a3
are integers and p, q are relatively prime. If f is the multiple lowering mapping induced by x = 103p + q then

103p + q|103a3 + 102a2 + 10a1 + a0 ⇔ 103p + q|102a2p + 10a1p + a0p − a3q, (6)

or equivalently, x|y⇔ x| f (y).

Proof. Let x| f (y), that is, 103p + q|(102a2p + 10a1p + a0p − a3q). Then there exists some integer k such that
102a2p+10a1p+a0p−a3q = k(103p+q). Then q(a3 +k) = p(102a2 +10a1 +a0−103k). This implies that p|q(a3 +k),
that is, p|(a3 +k) since p and q are relatively prime. Also, we get 103a3 +102a2 +10a1 +a0 = ((a3 +k)/p)(103p+q).
This means that 103p + q divides y = 103a3 + 102a2 + 10a1 + a0 since p|(a3 + k) and (a3 + k)/p is an integer.
Conversely, suppose that 103p+q|103a3+102a2+10a1+a0, that is, x|y. Then 103a3+102a2+10a1+a0 = k(103p+q)
for some integer k. This yields 102a2p + 10a1p + a0p − a3q = (pk − a3)(103p + q). Therefore,103p + q|(102a2p +
10a1p + a0p − a3q), that is, x| f (y). This establishes the theorem and (6) is proved.

In a similar manner, using mathematical induction we can prove the following:

Theorem 3.2. Let x = 103p + q and y = 103n+2a3n+2 + 103n+1a3n+1 + . . . + 10a1 + a0 be given integers where
p > 0, q > 0, a0, a1, a2, . . . , a3n+2 are integers and p, q are relatively prime. If f is the multiple lowering mapping
induced by x = 103p + q then

103p + q|103n+2a3n+2 + 103n+1a3n+1 + . . . + 10a1 + a0

⇔ 103p + q|{102(a2pn
− a5pn−1q + . . . + (−1)na3n+2qn) + 10(a1pn

− a4pn−1q + . . . +

(−1)na3n+1qn) + a0pn
− a3pn−1q + . . . + (−1)na3nqn

},

or equivalently, x|y⇔ x| f n(y).

We now generalize the above results on divisibility of numbers to obtain conditions of divisibility of polynomials
by cubic polynomials of the form z3 + q in a manner analogous to that employed in obtaining conditions of divisibility
of numbers by a number of the form 103p + q. In the process of generalization, without loss of generality, we can take
p = 1 and can represent a polynomial P(z) in the form P(z) = a3(z)z3 + a2z2 + a1z + a0 where a3(z) is a polynomial. In
the sequel, C will denote the field of complex numbers. As done in (1), we can define the multiple-lowering mapping
f induced by z3 + q as f (P(z)) = a2z2 + a1z + a0 − a3(z)q.
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Theorem 3.3. Let Q(z) = z3 + q and P(z) = a3(z)z3 + a2z2 + a1z + a0 be polynomials over C such that a3(z) is a
polynomial over C. If f is the multiple-lowering mapping induced by z3 + q then

z3 + q|a3(z)z3 + a2z2 + a1z + a0 ⇔ z3 + q|a2z2 + a1z + a0 − a3(z)q.

or equivalently, Q(z)|P(z)⇔ Q(z)| f (P(z)).

Proof. Suppose that z3 + q|a3(z)z3 + a2z2 + a1z + a0. Then there exists some polynomial k(z) over C such that

a3(z)z3 + a2z2 + a1z + a0 = k(z)(z3 + q).

Then, a0 = k(z)(z3 + q) − a3(z)z3
− a2z2

− a1z and a2z2 + a1z + a0 − a3(z)q = (z3 + q)(k(z) − a3(z)). This implies
that z3 + q divides a2z2 + a1z + a0 − a3(z)q.

Conversely, suppose that z3 + q|a2z2 + a1z + a0 − a3(z)q. Then there exists some polynomial h(z) over C
such that a2z2 + a1z + a0 − a3(z)q = h(z)(z3 + q). Then a0 = h(z)(z3 + q) − a2z2

− a1z + a3(z)q and

a3(z)z3 + a2z2 + a1z + a0 = (a3(z) + h(z))(z3 + q)

This implies that z3 + q divides a3(z)z3 + a2z2 + a1z + a0. This establishes the theorem.

Theorem 3.3 can be generalized by using mathematical induction to obtain the following:

Theorem 3.4. Let Q(z) = z3 + q and P(z) = a3n+2z3n+2 + . . . + a1z + a0 be polynomials over C. If f is the multiple-
lowering mapping induced by z3 + q then

f k(P(z)) = a0 − a3q + . . . + (−q)ka3k + (a1 − a4q + . . . + (−q)ka3k+1)z + (a2 − a5q + . . . + (−q)ka3k+2)z2

+(−q)k(a3k+3z3 + a3k+4z4 + . . . + a3n+2z3n+2−3k), 1 ≤ k ≤ n.

Moreover,

f n((P(z)) = (a2 − a5q + . . . + (−q)na3n+2)z2 + (a1 − a4q + . . . + (−q)na3n+1)z + a0 − a3q + . . . + (−q)na3n (7)

is the remainder on dividing P(z) by Q(z) and is a fixed point of f , and

z3 + q|a3n+2z3n+2 + a3n+1z3n+1 + . . . + a1z + a0

⇔ z3 + q|{(a2 − a5q + . . . + (−q)na3n+2)z2 + (a1 − a4q + . . . + (−q)na3n+1)z + a0 − a3q + . . . + (−q)na3n},

or equivalently, Q(z)|P(z)⇔ Q(z)| f n(P(z)).
It may be observed that f n(P(z)) is a polynomial of degree less than 3 and is a fixed point of f . In Theorem 3.4 if

we take a1 = a4 = . . . = a3n−2 = a3n+1 = 0, a2 = a5 = . . . = a3n−1 = a3n+2 = 0, write bn for a3n and write y for z3 then
we obtain the well-known Factor Theorem of algebra as a corollary of Theorem 3.4:

Corollary 3.5. If y − q and P(y) = bnyn + . . . + b1y + b0 are polynomials over C then

y − q|bnyn + bn−1yn−1 + . . . + b1y + b0 ⇔ y − q|bnqn + bn−1qn−1 + . . . + b1q + b0

⇔ bnqn + bn−1qn−1 + . . . + b1q + b0 = P(q) = 0.

We thus see that Theorem 3.4 is a generalization of the Factor Theorem. With the help of Theorem 3.4 we can compute
the quotient obtained on dividing a polynomial P(z) by z3 + q.

We do this in the next corollary which may be called as the Quotient Theorem.

Corollary 3.6 (The Quotient Theorem). The quotient on dividing the polynomial P(z) = a3n+2z3n+2 +a3n+1z3n+1 +
. . . + a1z + a0 by Q(z) = z3 + q is given by

3n+2∑
r=3

(ar(zr−3
− qzr−6 + q2zr−9

− . . . + (−1)[r/3]−1q[r/3]−1zr−3[r/3])), (8)

where [k] denotes the greatest integer not exceeding the number k.
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Proof. Consider the division of P(z) = a3n+2z3n+2 + a3n+1z3n+1 + . . . + a1z + a0 by the polynomial z3 + q. Then,
by virtue of Theorem 3.4, we get

P(z) − remainder = (z3 + q){a3 + a4z + a5z2 + a6(z3
− q) + a7(z4

− qz) + a8(z5
− qz2) +

a9(z6
− qz3 + q2) + a10(z7

− qz4 + q2z) + a11(z8
− qz5 + q2z2) + a12(z9

− qz6 + q2z3
− q3) + . . .}.

This proves the theorem.

4. Julia Sets Associated with Multiple-Lowering Mappings

Among the Julia sets, Julia sets of rational functions occupy the most prominent position and their
study is presently an area of intense research activity. Their beauty and complexity is fascinating. Suppose
Q(z) = z3 + q is a given polynomial, P(z) = a3n+2z3n+2 + . . . + a1z + a0 is any polynomial over the field C of
complex numbers, and f is the multiple-lowering mapping induced by Q(z). Then, by (7) and Theorem 3.4,
f n(P(z)) = (a2 − a5q + . . . + (−1)na3n+2qn)z2 + (a1 − a4q + . . . + (−1)na3n+1qn)z + a0 − a3q + . . . + (−1)na3nqn is the
remainder on dividing P(z) by Q(z) and f n(P(z)) is a fixed point of f . Moreover, P(z) is forward asymptotic
to the fixed point f n(P(z)). Similarly, by (8) and the Quotient Theorem, the quotient on dividing P(z) by
Q(z) is given by:

Quotient((P(z)/Q(z)) =

3n+2∑
r=3

(ar(zr−3
− qzr−6 + q2zr−9

− . . . + (−1)[r/3]−1q[r/3]−1zr−3[r/3])).

Let us now consider the iterations:

z→ P(z)/Q(z), z→ Quotient (P(z)/Q(z)) and z→ f n(P(z))/Q(z).

We draw some Julia sets of these iterations of rational functions and demonstrate that the Julia sets have
simplest shapes when P(z) is forward asymptotic to the zero polynomial and the complexity and beauty
of these sets increases with variations in P(z). The variations in the complexity of Julia sets are, in turn,
employed to illustrate our results on the value of quotient and remainder. We will be specially interested in
the Julia sets of the iteration z→ f n(P(z))/Q(z) as this iteration is defined by a multiple-lowering mapping
and is a new area for study. To fix the ideas let Q(z) = z3 + 1 and P(z) = z6 + 2z3 + a0 where a0 is a
parameter. Then a6 = 1, a5 = a4 = 0, a3 = 2, a2 = a1 = 0 and, using the Quotient Theorem, the quotient
equals a3z0 + a6(z3

− z0) = 2 + z3
− 1 = z3 + 1. Also, the remainder f n(P(z)),n ≥ 2, equals a0 − 1 and

f n(P(z))/Q(z) equals (a0 − 1)/(z3 + 1). Thus, P(z) is forward asymptotic to the zero degree polynomial
a0 − 1. It is obvious that P(z)/Q(z) and f n(P(z))/Q(z),n ≥ 2, will have simplest form for the values of a0 that
imply divisibility of P(z) by Q(z), and P(z) is forward asymptotic to the zero polynomial for such values
of a0. When the value of a0 is such that P(z) is divisible by Q(z), the remainder f 2(P(z)) will be zero and
the Julia set of the iteration z → f 2(P(z))/Q(z) will be the empty set. Similarly, P(z)/Q(z) will equal the
quotient in such a case and the Julia set of the iteration z → (P(z)/Q(z)) should be identical with that of
the iteration z → Quotient (P(z)/Q(z)). If the parameter a0 moves farther and farther away from its value
corresponding to divisibility of P(z) by Q(z), the modulus of the remainder will increase which should result
in a corresponding increase in the complexity and beauty of the Julia sets of the iterations z → P(z)/Q(z)
and z → f 2(P(z))/Q(z). Our results on the remainder and the quotient as given by Theorem 3.4 and the
Quotient Theorem will stand verified via the Julia sets if

(i) the Julia sets of the iterations z→ [Quotient(P(z)/Q(z))+ f 2(P(z))/Q(z)] and z→ P(z)/Q(z) are identical,
(ii) the Julia sets of the iteration z → f 2(P(z))/Q(z) are empty for a value of a0 which implies divisibility

of P(z) by Q(z), and
(iii) the Julia set of the iteration z→Quotient (P(z)/Q(z)) are respectively identical with the Julia set of the

iteration z→ P(z)/Q(z) when the value of a0 is such that f 2(P(z)) = 0.
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Fig. 4.1 gives the Julia sets of the iteration z → f 2(P(z))/Q(z) for seven values of a0 for the polynomial
P(z) = z6 + 2z3 + a0. Here f 2(P(z))/Q(z) equals (a0 − 1)/(z3 + 1).
The Julia sets in Fig. 4.1 exhibit a three-fold symmetry (see [4]). Periodicity in the Julia sets is also evident,
an identifiable copy of the set can be obtained by rotation through an angle 2π/3. It is obvious that a0 = 1
implies divisibility of P(z) by Q(z) and the corresponding Julia set is empty. As a0 moves farther and farther
away from the value 1 the complexity and beauty of the Julia sets goes on increasing.

Fig. 4.2 shows the Julia set of the iteration z→ Quotient(P(z)/Q(z)) for the already chosen seven values
of a0 for P(z) = z6 + 2z3 + a0. The Julia set is same in each case as the quotient is same in each of these cases
and equals z3 + 1. It is also clear that the Julia set of z→ z3 + 1 exhibits three-fold symmetry and periodicity
(see [4]).
Fig.4.3 shows the Julia sets of the iteration z→ [Quotient(P(z)/Q(z)) + f 2(P(z))/Q(z)] for the same values of
a0 as in Figs. 4.1 and 4.2.

The Julia sets of the iteration z→ P(z)/Q(z) for the chosen values of a0 are found identical with those in
Fig. 4.3 and, hence, have not been given separately. Identical Julia sets for the iterations z→ P(z)/Q(z) and
z → [Quotient(P(z)/Q(z)) + f 2(P(z))/Q(z)] provide illustration for our results on remainder and quotient.
Figures 4.2 and 4.3 verify the quotient theorem since the Julia set of the iteration z → Quotient(P(z)/Q(z))
in Fig. 4.2 is identical with the Julia set for a0 = 1 in Fig.4.3.
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