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A Fixed Point Theorem for Mappings on the {,,-Sum
of a Metric Space and its Application
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Abstract. The aim of this paper is to prove a counterpart of the Banach fixed point principle for mappings
f + €o(X) = X, where X is a metric space and £, (X) is the space of all bounded sequences of elements from X.
Our result generalizes the theorem obtained by Miculescu and Mihail in 2008, who proved a counterpart
of the Banach principle for mappings f : X" — X, where X" is the Cartesian product of m copies of X.
We also compare our result with a recent one due to Secelean, who obtained a weaker assertion under less
restrictive assumptions. We illustrate our result with several examples and give an application.

To the memory of Professor Lj. Ciri¢ (1935-2016)

1. Introduction

If (X,d) is a metric space and m € IN, then by X" we denote the Cartesian product of m copies of X.
We endow X" with the maximum metric:

dm((xo, vy xm_l), (yg, ceey ym—l)) = max{d(xo, yo), veey d(xm_l, ]/m—l)}-

Miculescu and Mihail in [6] and [7] obtained an interesting generalization of the Banach principle for
mappings defined on X™. Namely, they proved the following

Theorem 1.1. Assume that (X, d) is a complete metric space and g : X™ — X is such that the Lipschitz constant
Lip(g) < 1. Then there exists a unique point x. € X such that g(x., ..., x.) = x.. Moreover, for every xo, ..., Xu—1 € X,
the sequence (x) defined by

Xm+k = !](xk+m—1/ ey xk)/ k 2 0/ (1)
converges to X..

A point x. € X which satisfies the equality g(x., ..., x.) = x. is called a generalized fixed point of g.
An interesting study of such fixed points can also be found in the paper [1] of Professor Ljubomir B. Ciri¢
and S.B. Presic.
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Theorem 1.1 gave a background for a version of the Hutchinson-Barnsley fractals theory for such mappings
defined on finite Cartesian products — see the above mentioned papers and the references therein. Also,
note that the above theorem can be extended to mappings which satisfy weaker contractive conditions —
see, e.g., [9] and [10].

The next step was done by Secelean [8]. Denote by £« (X) the {-sum of a metric space X, that is, the set
of all bounded sequences of elements of X:

oo (X) := {(xx) € X : (x¢) is bounded}.
Endow £ (X) with the supremum metric:

ds((xn), (Yn)) = supld(xn, yn) : n € N}, )
where N* := {0, 1, 2, ...} (throughout the paper we enumerate sequences by nonnegative integers).

Remark 1.2. Let us notice that the notion of the {.(X)-sum of a family of spaces originates from functional
analysis; see, e.g., [4, p. xii].

Remark 1.3. Itis also worth to observe that if X is bounded, then £, (X) is exactly the product of countably
many copies of X, that is, £« (X) = [];2, X. On the other hand, if X is unbounded, then {.(X) is a proper
subspace of [];2, X.

If f: €o(X) = X, then we define f; : X — X by
fo(x) = f(x,x,...), xeX 3)
A point x. € X is called a generalized fixed point of f, if x. is a fixed point of f;, i.e., if x, satisfies:
fxe, %, ) = X
Secelean [8, Theorem 3.1] proved the following fixed point theorem:

Theorem 1.4. Assume that X is a complete metric space and f : {o(X) — X is such that Lip(f) < 1. Then there
exists a unique generalized fixed point x. of f. Moreover, for every x = (x,,) € {eo(X), the sequence (yi) defined by

vic = £ (Fo), f0a), i), ), k=20, @)
converges to x.. More precisely, for every k € IN*,
Lip(f)k+1 y §
d(x*, yk) < Tlp(f) sup{d(fs(x,),x,) :1€N }

Remark 1.5. In fact, Secelean formulated his result in a more general way. Firstly, he considered also
weaker contractive conditions and secondly, he studied also mappings defined on a finite product of
spaces. However, the idea of dealing with weaker contractive conditions is relatively similar (but much
more technically complicated), and also we will not be interested in the case of finite products here.

Remark 1.6. Theorem 1.4 can be viewed as a generalization of the Banach fixed point theorem or Theo-
rem 1.1. However, it seems that the iteration procedure (4) is not a very natural counterpart of (1). Itis rather
closer to iterating map f;.

We are going to show that under more restrictive (yet still natural) contractive conditions, we can obtain
a stronger thesis. In particular, our result will imply the whole Theorem 1.1. Also, we will present examples
that our assumptions are essential for the thesis and, in particular, that Theorem 1.4 is too weak to obtain
our assertion.
Finally, we will present an application.
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2. Other Metrics on £, (X)

2.1. Metrics ds ,) and dp )

Let (X, d) be a metric space. We start with defining other metrics on space €«(X). If (1,) is a sequence of
reals, then set:

s (a,) (X, Y) = suplayd(x,, y,) : n € N} for any x = (x4), ¥ = (Yn) € €eo(X)
and, if additionally a, > 0, n € N*, and p € [1, ), then set:

(o]

1/p
dp,(,,n)(x, y) = [Z ayd? (x,, yn)] forany x = (x), ¥ = (Yn) € {o0(X).

n=0

It turns out that under natural assumptions on a sequence (a,,), functions ds () and d, () are metrics with
good properties:

Proposition 2.1. Let (X, d) be a metric space such that X is not a singleton and (a,) be a sequence of reals. The fol-
lowing statements are equivalent:

(i) dsa,) is a metric on €e(X);
(i) a, > 0 for any n € N* and (a,) € lw.

Moreover, if (a,) is as in (ii), then the convergence with respect to ds ) implies the convergence in the Tychonoff
product topology (when considering €s(X) as a subspace of [, X).

Proof. (i) = (ii): Suppose, on the contrary, that 2, < 0 for some p € IN*. By hypothesis, there exist x, y € X
such that x # y. Define x := (x,x,..) and y = (x, ..., x, ¥, x, ...), where the p-th coordinate of y is equal to y.
Then

0 < ds (a,)(x,y) = max{0, a,d(x, y)} = 0,

which yields a contradiction. Thus a, > 0 for any n € IN".
We show that (a,) € l». Take again x,y € X with x # y and define x := (x,x,..) and y = (y,¥,...). Then

s o) (X, .
s (a,) (X, y) = sup, o @nd(x, y) = d(x, y) sUp, . n, SO SUP, cp n = "é(;f;)y) < oo. Thus (a,) is bounded.

The proof of (ii) = (i) is standard and we leave it to the reader.
Now assume that d; ,)(x*, x) — 0, where x* = (x¥);en+ and x = (¥;)jenv-. Then for any i € N,

0< aid(xi.‘, x;) < ds,(u”)(xk, X),
which implies that limi_« d(x¥, x;) = 0, i.e., (x*) converges to x in the Tychonoff topology. [

Proposition 2.2. Let (X, d) be a metric space such that X is not a singleton and (a,,) be a bounded sequence of positive
reals. Let T, denote the Tychonoff product topology on €« (X) and 4, be the topology induced by metric ds ).
The following statements are equivalent:

(i) T, = T4,

(ii) (a,) € co and (X, d) is bounded.

Proof. (i) = (ii): Suppose, on the contrary, that (a,) € co. Then there exist ¢y > 0 and a subsequence (a,)
such that [ for any j € IN*. Take x, y € X with x # y, and define x = (x, x, ...) and xk = (xi.‘)ieN*, where

k. x if lSk,
Ny if ik



J. Jachymski et al. / Filomat 31:11 (2017), 3559-3572 3562
Clearly, (x) converges to x in (X, 1,), so by (i), ds,(ﬂ”)(xk, x) — 0. On the other hand,

ds,(an)(xk, X) > sup anjd(xﬁ_,x) > eod(x,y),
JEN* !

so letting k tend to oo, we obtain 0 > &od(x, y) > 0, a contradiction. Thus (a,) € co.
Now, suppose that (X, d) is unbounded. Then there exists a sequence (xx) such that d(xx, xp) >

k € N. Set x := (xo, X, ...) and x* := (x¥);en-, where

k. X0 if i< k,
X; =

1

;- for any

x if i>k
Then (x*) converges to x in (X, 7,), so by (i), ds 4, (x*, x) — 0. However, if k > 1, then

ds (0 (5, x) = sup a;d(xj, X0) = ags1d(Xesn, x0) > 1,
j=k+1

which yields a contradiction.
(if) = (i): By the last part of Proposition 2.1, it suffices to show that the convergence in (X, 7,) implies

the convergence with respect to ds (;,). Assume that xk o, x, where x* = (x?)ieIN* and x = (x;)ien-. That means
limy_ 00 d(xf,‘, x;) = 0 for any i € N". Fix ¢ > 0. Since a, — 0, there is p € IN* such that fori > p, a; < 3.
Then aid(xf, x;) < e fori > pand k € IN". Since limy_,c d(xi.‘, x)=0fori=0,1,..,p, there is j € IN* such that
fork>jandi=0,..,p,d(x},x;) < &. Then fork > j, d;,)(x",x) < e. Thus we get that ds ,,)(x*,x) = 0. O

Using a similar argument as in the proofs of Propositions 2.1 and 2.2, it is possible to prove the following
two results for metrics d ().

Proposition 2.3. Let (X, d) be a metric space such that X is not a singleton, (a,) be a sequence of nonnegative reals
and p € [1, 00). The following statements are equivalent:

(i) dpa,) is a metric on leo(X);
(ii) a, > 0 for any n € N* and (a,) € I;.

Moreover, if (a,) is as in (ii), then the convergence with respect to dy ) implies the convergence in the Tychonoff
product topology.

Proposition 2.4. Let (X, d) be a metric space such that X is not a singleton and (a,) be a sequence of positive reals
such that (a,) € 1. The following statements are equivalent:

(i) t, =14

plan)’

(ii) (X,d) is bounded.

In what follows, when writing d; ,) (or d,(,,)) we automatically assume that (a,) is chosen so that d; 4,
(or dy,s,)) is a metric.
A natural question arises whether these metrics are complete if d is so. Clearly, if a, = 1 for all n € IN*, then
ds (s, is exactly the metric d; considered by Secelean, so it is complete. Also, if inf{a, : n € IN*} > 0, then the
metrics d; (,,) and d; are Lipschitz equivalent, hence d; ) is also complete.
The following example shows that the answer can be negative if a, — 0.

Example 2.5. Let (X,d) := (R,|-[) and for every k € IN*, let x*:=(0,1,..,k0,0,..). Then:

- ds (a,) (5, X41) = (k + 1)ags1, 50 if Y (k + 1ags1 < oo, then (xF) is Cauchy in ds ,);

-if p > 1, then dp, ) (&, ¥*1) = (k + 1)a, ", so if Y. (k + 1)a,”" < oo, then (x¥) is Cauchy in d,,,).
On the other hand, (x¥) cannot be convergent since, by Propositions 2.1 and 2.3, convergence in any of

metrics ds (,,), dp,a,) implies the convergence of each coordinate.
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Corollary 2.6. Assume that a, — 0.

(1) If (X, d) is bounded and complete, then {(X) is complete with respect to any of metrics ds ), dp,(a,)-

(2) If (X, d) is complete and (x*) = ((xf),-gN») is a Cauchy sequence in Lo, (X) (with respect to any of metrics ds (a,), dp,(a,))
such that the set {x* : i,k € IN*} is bounded in X, then (x*) is convergent to x = (x;), where x; = limy_e x¥, i € N*.
(3) If xk = (xi-()ie]N*, k € IN*, and x = (x;) are elements of {s(X) such that the set {xi.‘ : i,k € IN*} is bounded, then
P iff x* — x with respect to the Tychonoff topology on le(X), where d’ is any of metrics dsq,), dp a,).-

(4) If (X, d) is compact, then {w(X) is compact with respect to any of metrics ds ), dp,(a,)-

Proof. (1). If (x¥) = ((xi.‘)ieNv) is a Cauchy sequence in £(X), then each (xf)keN is Cauchy in (X, d), hence
convergent to some x; € X. Then by Propositions 2.2 and 2.4, x** — (x;) with respect to any of metrics
s (@), dp,(a)-

(2) follows from (1) used for the subspace € (Y) C €o(X), where Y := {xi.‘ 11,k € IN*J.

(3) follows from Propositions 2.2 and 2.4 and (1), used for Y := {xf 11,k € IN*}.
(4) is a direct consequence of Propositions 2.2 and 2.4. [J

Remark 2.7. It is worth to remark that the definitions of metrics d, (;,) and d,, (;,) base on the same ideas as
definitions of weighted L,-sum of spaces considered in functional analysis (see for example [2]). However,
our setting is strictly metric.

2.2. Particular versions of metrics d ) and d,, ,,): metrics ds, and dp

From now on we will assume that (a,) is a geometric sequence (7") for g € (0,1]. As we will show, the
obtained results in such a case imply corresponding results for the general case of (a,).
For g € (0,1], denote ds ; := ds 4, that is,

dsq(x,y) == sup{q"d(x,, yu) : 1 € N} forany x = (x,), ¥ = (¥s) € leo(X).

By Proposition 2.1, ds; is a metric. Observe that in this notation, the supremum metric d; is exactly the
metric ds 1.
If additionally g < 1 and p € [1, o), denote d,; := d,, (4, that is,

o0 Lp
dyq(x, y) = [Z q'd’ (xn, ]/n)] for any x = (xx), y = (¥n) € lo(X).
n=0

By Proposition 2.3, d,, ; is a metric.
The following result shows some connections between d; ; and d,, ;.

Proposition 2.8. In the above frame, assume that q < 1and p > 1. Then the following statements hold:
(1) ds,q < dp,q}’/'
(ii) ifg<q <1, thends; <ds,;

T -1/p
’ 9 .
(iii) if "7 < q’ <1, then d,, < (1 - (q,)p) ds g

(iv) forevery x,y € Loo(X), limy oo dp 4(x, y) = ds1(x, y).

Proof. Letx = (x,), y = (Yn) € Ceo(X).
We prove (i). Since 4" — 0 and (d(x,, ¥,)) is bounded, we have for some kg € IN*:

neN*

00 1/p
1/
ds,q(x, y) = sup qnd(xnr ]/n) = qkod(xko/ yko) = (qpkodp(xk[)’ yko)) ' < [Z(qp)"dp(xn/ ]/n)] = dp,q*"(x/ y)
n=0
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(ii) follows from the fact that for any n € IN*, §"d(x,,, y) < (9°)"d(xXn, Yn).

(iii) follows from
00 1p
n n P
dyq(x,y) = [Zq @ (xn, Yo ] [Z;‘ (@', ) J

0 q n\1/p . Y
= [Z‘ ((q’)P) ] Asg (%, Y) = (1 - (q,)p) ds g (x, ).

n=0

We prove (iv). Let € > 0. Then there exists ky € IN* such that:

1 1/p 1
ds1(x,y) < d(xk,, yi,) + = o ( P (i, i)+ € < qko—/pd,,,q(x, y)+e

Hence, g/7ds1(x,y) < dpg(x,y) + € and therefore: ds1(x,y) < liminf, .o dp,(x,y) + €. Since ¢ > 0 was
arbitrary, we have ds1(x,y) < liminf, .o dy4(x,y). On the other hand, (iii) (with 4 = 1) implies that
limsup, ., dp,(x, y) < ds1(x, y). Thus we arrive to the desired equality. [J

By the previous section, if X is bounded, then all metrics ds,; and d,, are equivalent (and generate the
Tychonoff topology on £w(X) = [1;, X). In general, this is not the case. For example, d,, and d, ;» need not
be equivalent (recall point (i) of the above proposition), as the next example shows:

Example 2.9. Letg € (0,1), (IR, |- |) be the Euclidean space and p > 1. For k € IN, let ¥k = (xf)ieN» be defined
by

1 o
&l wmg iisk
l 0 if 1>k

Then x* — (0), the zero sequence, with respect to d; 4, but does not converge with respect to d, ;. Indeed,
for every k € IN*,

1

ds,q(xk, 0)) = sup{qnd(xlrcuo) nelN} = (k+ 1)1’

but

1/p X 1/p
Ay (<, 0)>—[Z<qp"dp(x 0>) [Za (k+1)J =1 ©)

3. Main Results

3.1. Sequences of generalized iterates and a selfmap of £eo(X)
For any mapping f : £w(X) — X, define f : £(X) — €w(X) as follows:

F((n)) = (F((xa)), X0, 1, ...) for any (x,) € £eo(X).
Now if x := (x,,) € £oo(X), then we set #° := x and
xl= f(a?o) and ¥ := f(JZO).

Assume that for some k € IN, we defined x' € X, and ¥ € £(X) fori € {1, ..., k}. Then set

L= f(#) and ! := f(#)
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In this way we defined sequences (x¥) € X and (¥) C £ (X). Observe that for every k € IN,

F = (FEY), .., fE), x0,x1,...) = (&, ..., xY, x0, %1, .00). (6)

Clearly, (#) is the sequence of iterates of x = (x,) € {w(X) of mapping f. We will say that (x*) is the sequence
of generalized iterates of function f at x.
Recall that x, € X is a generalized fixed point of f, if

flx, x.,..) = X

Definition 3.1. A generalized fixed point x. € X of map f : {eo(X) — X is called a generalized contractive
fixed point (GCFP), if for every x € {(X), the sequence (k) of generalized iterates converges to x..

The above definition is a counterpart of the notion of a contractive fixed point of a selfmap of a metric space
introduced by Leader and Hoyle [3]:

if g: Y — Y, then a fixed point y. € Y of g is called a contractive fixed point (CFP), if for every y € Y, the
sequence of iterates (g" (y)) converges to y..

We will show that the existence of a GCFP of f is strongly related to the existence of a CFP of f. We start
with the lemma which follows directly from (6):

Lemma 3.2. In the above frame let x = (x,) € €o(X).

(i) If ¥ — x for some x € L(X) with respect to the Tychonoff topology, then x = (x, x, x, ...) for some x € X, and

- x.

(ii) If x* — x for some x € X, then ¥ — x with respect to the Tychonoff topology, where x = (x, x, X, ...).
We are ready to state the theorem:
Theorem 3.3. In the above frame,
(i) f has a GCFP iff f has a CFP with respect to the Tychonoff topology on €u(X);
(ii) if x. is a CFP of f with respect to the Tychonoff topology, then x. = (x., X, ...), where x, is a GCFP of f.

Proof. Let x. be a CFP of f Then by Lemma 3.2(i), x. = (x.,x.,...) for some x, € X and x* — x, for every
x € €(X) (as ¥ — x. by hypothesis). Also,

(Fre, Xy i), Xy Xy o) = f(Xa, Xy ) = (X, Xy o),

S0 x, is a generalized fixed point of f, and in view of the above observations, it is a GCFP. Conversely, if x.
is a GCFP of f, then by Lemma 3.2(ii), #* — x, for any x € £o(X), where x, = (x., X., X., ...). As x. is obviously
a fixed point of f,itisa CFP. O

Remark 3.4. It is worth to observe that the convergence of the sequence () of iterates of f with respect to
the Tychonoff topology is equivalent to the convergence with respect to any of metrics d,; and d, ; if g < 1.
Indeed, this follows from Corollary 2.6 and (6).

3.2. A fixed point theorem

If f : {o(X) — X, then let L ;(f) be the Lipschitz constant of f with respect to d; on {w(X), and let L, 4(f)
be the Lipschitz constant of f with respect to d,; on - (X). Similarly, by is,,,( f) and l,,,q( f) we denote the
Lipschitz constants of corresponding map f.

Remark 3.5. In this framework, Secelean’s Theorem 1.4 says that if L;1(f) < 1, then f admits a unique
generalized fixed point, and for every (x,) € £ (X), the sequence (y) defined by (4) converges to this fixed
point.
Our main result says what happens if we assume contractive conditions with respect to d,,; or ds, with
g<1l
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The next lemma shows the relationships between Lipschitz constants of f and f with respect to the
considered metrics.

Lemma 3.6. In the above frame, if f : {o(X) — X, then

(i) Log(f) < max{q, Lsq(f)}, where g < 1;

(i) Lyqo(f) < ((Lp,q(f))F’ + q)l/p, where g < 1andp > 1.

Proof. Let x = (x4), ¥y = (Yn) € €e(X). We have:
dsq(F(%), f(y)) = sup {d(f(x), f()), 4d(X0, Y0), s " A(Xn1, Y1), -}

< sup ({Lsg(Adsg(x, )} U {g"d(x-1, Y1) : 1 € N})

< maX{Ls,q(f)ds,q(xr Y), qu,q (x, y)} = max{g, Ls,q (f)}ds,q(x/ Y),
sowe get (i). If p > 1 and g < 1, then

0o 1/p
dpq(f(x), f(y)) = [d”(f ), f(y) + Z q'd’ (xn, ]/n—l)]
n=1

0o 1/p
< | Wpg APy 9) + Y 4" (s, yn_o) < (LAY sy, ) + sy, )

n=1
1/p
= ((Lp,q(f))p + q) dp,q(xf v),
so we get (ii). O
We are ready to state the main result of the paper.

Theorem 3.7. Assume that (X,d) is a complete metric space, and f : €(X) — X satisfies one of the following
conditions:

Q) Ls4(f) <1 forsomeq € (0,1);

(P)  Ly(f) <@ =" forsomeq e (0,1)andp € [1,0).

Then f has a GCFP.
Moreover, if x. € X is a GCFP of f and x € {(X), then

(i) if Ls 4(f) < 1 for some q <1, it holds

max{Ls,(f), g}

a0 < Log( Ny o

dsg (2, 2°); (7)

(ii) if Lyg(f) < (1= )7, it holds

((Lp,q(f))p + ‘7)7 . dp,q(il/fco)' (8)

d(x, x.) < Ly o(f) T
1= ((Lpg()F +9q)7
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Proof. We first deal with the case L, 4(f) < (1 — q)'/7. By Lemma 3.6, the Lipschitz constant of f satisfies

L) < Log(F + )7 < (A=) + )7 =1,

SO f~ is a Banach contraction with respect to d,; on £« (X). Now take any x = (x,) € {»(X). Then for every
m > k, we have

g (B, 27 < dly (&, F1) ot (@71, 2) < dyg (), FHE) + ot g (F71 @), f171(7)

pq(f))k @ ),
~Lpy(f) Tra

which means that (¥) is a Cauchy sequence with respect to d,, ;. Moreover

d k+1 . m+1y _ =k ~m ~k ~m (i‘p'q(f))k ~0 ~1
(7, XM = d(f (), f(27) < Lp,q(f)dp,q(x XM < Lp,q(f)Tf) pq( )

P4 (

Ly @pg(@, 3 + oo+ L) ey (3, 21) < ——= N

which means that () is a Cauchy sequence in X. Hence the set {x* : ke N}U {x, : n € N*} is bounded

and by Corollary 2.6(2), & by x for some x € £(X). Since f is continuous with respect to dj, ,, the point x
is a fixed point of f, which must be unique as L, ,(f) < 1. Hence x is a CFP of f (with respect to Tychonoff
topology — see Remark 3.4), and by Theorem 3.3, x = (x., x., ...), where x. is a CGFP of f. Moreover, by the
above computations, for every x € X and m > k, we have

d( k+1 m+1) <qu(f) ( p“z( )) dpq(xo fl) <L q( ((LPq(f))p"'Q)”

Lpa(f) T (WY + )7

dpq(%',3°). ©)

Letting m — oo, we get

(LAY +) 7
1= (Lpg(HY +q)7

d(xk/ x.) < Lpg(f) dp,q(ilszo)

for all k € IN.
To get the assertion for assumption (Q) we could follow the same lines. However, as we will see in a
moment, conditions (Q) and (P) are equivalent. [J

Remark 3.8. As was announced, a bit surprisingly, conditions (P) and (Q) are equivalent. In fact, each of
them is also equivalent to a particular version of (P). More precisely, for every f : {o(X) — X, the following
conditions are equivalent:

(i) f satisfies (Q), that is, for some g € (0,1), Ly ;(f) < 1;
(ii) f satisfies (P), that is, for some g € (0,1) and p € [1, ), L, 4(f) < (1 - q)r;
(iii) for every g € (0,1) there exists p € [1, o) such that L, 4(f) < (1 —¢q)'/7.
We first prove (i) = (iii). Assume that L, ;(f) < 1 for some g € (0, 1), and choose any g € (0, 1). Observe that

lim(1 - go)'7 =1,
p—)oo

sowe can take p € [1,00) so that Ly4(f) < (1-40)'/” and also g7 < go. Thenletq’ € [g,1) be such that (7')" = go.
By Proposition 2.8(i),(ii) we have for all x, y € £s(X),

d(f(x), f(y)) < Ls,q(f)ds,q(x/ y) < Ls,q(f)ds,q’ (x,y) < Ls,q(f)dp,(Q’)” (x,y) = Ls,q(f)dp,qo (x, y)-
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Hence Ly q,(f) < Log(f) < (1 — g0)*/P. Thus we get (iii).
Implication (iii) = (ii) is obvious.
Finally, we prove (ii) = (i). Assume that L, ,(f) < (1 — )P for some g € (0,1) and p € [1, ). By Proposi-
tion 2.8(iii) for g’ > g'/7:
Lyq(f)

_ A yyp’
(a (q')”) ’

Ls g (f) <
Taking the limit with g — 1, we get

Lpq(f) < 1-q' _
(L= ~A-gqtr

which means that L ;(f) < 1 for some g < 1 and we get (i).

i ’ <
Yim Lo (f) <

Remark 3.9. In view of (iii) from Remark 3.8, we see that for every gy € (0, 1), condition (P) is equivalent to
(Pgo) Lpgo(f) < (1 —qo)"? for some p € [1,0).

Later we will see that we cannot restrict to arbitrary go in (Q), and also we cannot restrict to arbitrary
po € [1,00) in (P).

Remark 3.10. Since (P) and (Q) are equivalent, formally it is enough to consider just one of them ((Q) seems
to be more natural). On the other hand, the theory works properly for both types of metrics. In particular,
we get natural estimations (7) and (8).

Remark 3.11. By Proposition 2.8(ii) we see that for any q € (0,1), Ls1(f) < Ls4(f). Hence if (Q) (or,
equivalently, (P)) is satisfied, then also the assumptions of Theorem 1.4 are satisfied. (In fact, at the end
of [8], Secelean considered the metric d, 1 and observed these relationships.). It turns out that the converse
is not true, as the next example shows.

Example 3.12. Let X := [0,1] and f((x,)) := %sup{x,1 :n € IN*}. Then clearly Lsi(f) = % < 1, so the
assumptions of Theorem 1.4 are satisfied and x. = 0 is a generalized fixed point of f. However, if
x = (¥4) € €o([0,1]) is such that for some i € N*, x; := § > 0, then for any k € N, x* > 16. In particular, the
sequence of generalized iterations (x*) does not converge to x. = 0 and f has no GCFP.

Remark 3.13. Theorem 3.7 can be formulated in a more general way. Namely, assume that (X, d) is complete
and a sequence (a,) of positive reals satisfies M := sup,,. 7 < 1, and let f : {w(X) — X be such that one
of the following conditions holds:

(i) aoLs@)(f) <1;
(i) Lpan(f) < (1) for some p € [1, ),

where L ,,)(f) and L, (4,)(f) are Lipschitz constants of f with respect to metrics d; ) and d,, (5,), respectively.
Then f has a GCFP.

However, this assertion follows directly from Theorem 3.7. Indeed, for any x = (x,), ¥y = (¥n) € {x(X) we
have:

) 1/p 0 1/p
Ay ) () = (2 anl? (xn, y,o] < (2 aoM"d (x,, yn>] = a0, d, m(x, )
n=0 n=0
and therefore L, n(f) < a(l)/ pL,,,(a”)( f), so (ii) implies (P). Similarly, we can see that (i) implies (Q).
In the last section we are going to use Theorem 3.7 to prove Theorem 1.1. However, now we will show

another connection between mappings on finite Cartesian products and mappings defined on spaces of
sequences:
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Theorem 3.14. Assume that (X, d) is a complete metric space and let f : £o(X) — X satisfy (Q) (or, equivalently, (P))
forq € (0,1). Choose any x € X and for any n € N, define f, : X" — X as follows:

v(xo,.“,xn,l)GX” fn (X(), weey xn—l) = f(XO, ver Xn-1,%, X, ) (10)

Then for any n € IN, Lip(fy) < Ls4(f) (wr.t. maximum metric d,, on X") and the sequence (x}') of generalized
fixed points of f,s” (whose existence follows from Theorem 1.1) converges to x., a generalized fixed point of f. More
precisely, for every n € N,

Lsq(f)

d(x],x.) < ﬂl"m

d(x., x). (11)

Proof. Assume that Ls 4(f) < 1 for some q € (0, 1). For every n € N, we have
d (_fﬂ(xOI cey x}’l—l)/ fn(y()/ cey ]/n—l)) = d (f(xOI b4 xn—llx/ xl )I f(]/OI a4 ]/n—llx/ xl ))
< Ls,q(f)ds,q((x()/ veer Xn-1,%, )/ (yO/ weey yn—l/ X, ))

= Ls,q(f) max{qkd(xk/ ]/k) k= 0/ = 1} < leq(f)dm((XO, [y xn—l)l (yOI [y yn—l))‘

Hence Lip(f,) < Ls4(f) < 1 and the assumptions of Theorem 1.1 are fulfilled. Thus f, has a fixed point
x" € X. Then we have

ad!, x) = d(f !, ., xl,x,0), f(, oo X, Xey o)) S Lo g(F)ds g (02, o XY, X, 100), (X sy Xy Xy 00)

= Ly q(f) max{d(x, x.), 4"d(x., )} < Log()(d(x), x.) + 4" d(x., x)).

Hence

Lsq(f)

T=L,f d(x., x).

d(x,x) < q"
O

Finally, we give an example which shows that the thesis of the above theorem need not hold under the
assumption Ly 1(f) < 1:

Example 3.15. Consider function f from Example 3.12. Take any x > 0 and for everyn € N, let £, : [0, 1]" —
[0, 1] be defined by (10), i.e.,

fu(X0, - Xn=1) == f(x0, ey Xn=1, X, X, ...).

Then, clearly, f,(xo, ..., Xp—1) = %x for every (xy, ..., X,—1). In fact, x = %x, so (x7) does not converge to x. = 0.

4. An Example

To illustrate the considered machinery, we will calculate Lipschitz constants L, (f) and Ls,(f) in the
case of mappings f : €o(R) = R of the form

fx) = Z buxn, for x = (xy) € Loo(R) 12)

nelN*

for some sequence (b,,) of reals with ), n- 1b,] < 00. We will use these calculations in a discussion connected
with Remark 3.8.
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Proposition 4.1. If f : {(R) — R is defined by (12), then

L =Y o
=0

and if g < 1, then

_y \@=D/p
o |bP/®-D ) .
Lp,q(f) — (Zn =0 |(Z |)1/(;771) Zf p > 1'
sup{ nE]N*} if p=1.

b Then for every x = (x), ¥ = (Yn) € {(IR), we have

i bnxn - bnyn
n=0

:ZZ—q Ixn—yn)<th fon = 9] = s )
n=0

Proof. Letg < 1. Setl; := SUP, e

0o

< Z |bn| ‘xn - ynl

n=0

d(f(x), f(y)) =

Now assume that I; < oo, and let ¢ > 0. Then there is 1y such that I ::g‘ > —e. Ify, =0foralln € N* and
=0 forn # ng and x,,, = 1, then

| | 1D, |
n

T’lo| 710| -

1f () = fFWI = 1buy x| =

2 (h = &)dy4(x, ).

Hence Ly, = I;. In a similar way we can show that L;; = ; when I; = o
Now assume p > 1. Then for every x = (x,), ¥ = (yx) € {«x(R), we have by the Holder inequality:
1/
Z n)l/p (q ) : |x” y”)

i by (xn — yn)
n=0 :0

(=-D/p o r-1)/p
[bal’ &~ Ib, /=D
(ZA (qﬂ)l/(p 1) Zq X, — yn Z )1/(P—1) dp,q((xn)/ (yn))

n=0

o)

If(x) = f)l =

Observe that the first inequality is the equality if b,(x, — y,) = 0 for all n € IN*. Moreover, from the

Holder inequality we know that the second inequality is the equality iff the sequences (( (q‘f)"l'/p )p/(p 1)),

(((q”)l/ Plx, — ynl)p) are linearly dependent. For every n € IN*, let y,, := 0, and define

b\ -0
% = | sen(by )( ) if n<N, (13)
0 if n>N,

where sgn(-) denotes the sign function. Then by previous observations, replacing (b,,) by (b;,) defined by
bl, .= b, forn < N and b, := 0 for n > N, we have

b, (p=1/p
If(x) = f)l = [ W] dp,g(x, ).

0o b /e-0 w-Dip

Since N was taken arbitrarily, we get L, ,(f) = (X,=o @
Finally, for any g4 < 1 and every x = (x,,), ¥ = (y») € {(R), we have

(e8] (e8]

lfx) = fyl < Z bl — Z Z— "oty = Yl < [Z %]ds,q(x, Y).

n=0 n=0 n=0
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Now let y,, := Oforalln € IN*, fixany N € N, and define x, := 0 forn > Nand forn =0, ...,,N, set x,, := %ﬁh”).
Then N N N
n ,,S n(b ) b, by
If(x) = f(y)l = anxn = Zq g Zq_ Z[Z 7" ds,q(x, ).
n=0 n=0 n=0 n=0

Since N was arbitrary, we have L, ;(f) = X ,.en 'g—,"l‘ O

Remark 4.2. It is very likely that the above result can be obtained from functional analysis machinery,
since f is a linear map which is a sum of linear maps. However, we presented here the proof for the sake
of completeness.

Example 4.3. We will consider functions f : £« (R) = R of the form (12) with different sequences (b,).
(1) Let by = 0 and b,, = b", where b € (0, %] is fixed. By Proposition 4.1,

= (b Lif g>b
= - = qu !
Now if b < 1/2, then L, 4,(f) < 1iff g > 2b. This shows that in the formulation of condition (Q) we cannot
restrict to some particular value g (compare Remark 3.9).

Ifb=1/2,then 7, b, = 1, s0 every x € Ris a generalized fixed point of f. Also lim,_; L,4(f) = 1, which

shows that in Theorem 3.7 we cannot assume that L, ;(f) > 1.
(2) Letb, =0forn # 1 and by = b, where b € (0,1] is fixed. By Proposition 4.1, for every p € [1, o),

b
Log(f) = ==

Now if b < 1, then L, 4(f) < (1 - q)'? iff b < (g — g*)'/P. In particular, we can choose g € (0,1) and p € [1, %)
such that L, 4(f) < (7 — ¢*)"/P. However, if we fix pg € [1, ), then
1
sup{(q )P pell,polqe O, 1)} T < 1.

This shows that in the formulation of condition (P) we cannot restrict to some particular value of py.
Lyl _

If b = 1, then every x € R is a generalized fixed point of f. Also, for every g € (0,1), lim; e e

limy W = 1. This shows that in Theorem 3.7 we cannot assume that L, ;(f) > (1 — g)'/7.

5. Applications

At first we show that Theorem 3.7 implies Theorem 1.1 and, in particular, the classical Banach fixed
point theorem. Recall that by X" we denote the Cartesian product of m copies of X and we endow X" with
the maximum metric

A (X0, s Xm-1), (Y0, s Ym-1)) := max{d(xo, Yo), -, A(Xm-1, Ym-1)}-
Proof. (of Theorem 1.1) Choose g € (0,1) such that Lip(g) < g"!. Define f : £(X) = X by f(xo,x1,%2,...) :=
g(xo, ..., Xm—-1). For every x = (x,,), ¥ = (yn) € {e(X), we have
d(f(x)/ f(]/)) = d(g(x()/ sy xm—l)/ !](yo; sy ]/m—l)) S Llp(g) max{d(x()/ ]/O)/ sy d(xm—ll ym—l)}

p(g) Lip(g)

{ Od(xo, }/0), - 4q m 1d(xm—l/ ym—l)} < qm—_lds,q(x/ }/)

Hence Lg,(f) < L;f,—f’;) < 1, so mapping f satisfies the assumptions of Theorem 3.7. It remains to observe
that if xo, ..., xy-1 € X, then sequence (xx) defined by (1), is the sequence of generalized iterates of f at
X := (Xp—1, .-, X0, X0, X0, -..). [
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The second application of our result deals with a recursive procedure which “looks back” at all previously
defined elements.

Example 5.1. Fix (b,) C R, ¢ € R, and consider the sequence (x) defined by the following linear recursion:

xli=¢,
=+ boxk Tt + b2 4+ L+ box!, k> 2.

Then (x¥) is the sequence of iterates of y = (0,0, ...), of the map f(x) := Yoo bux, +c. Thus if the assumptions
of Theorem 3.7 are satisfied (the Lipschitz constants can be calculated as in Proposition 4.1), then x* — x.,
where x, is the GCFP of f, that is

00

Xe = f(Xe, Xo, ) = anx* +c= an X. +¢,
n=0 n=0
o _ c
which gives x. = —=5—+ by’
For example, assume that b, := 55, 7 € N*and ¢ = 1. Setting g = 2, we have that L, ,(f) = §, so f fulfills the
assumptions of Theorem 3.7. Thus ¥ — x, = m = 3. Moreover, by the second part of Theorem 3.7,
forevery k € N,
max{Ls,(f), g}
1 —max{Ls4(f), g}

since ds (%', (0)) = ds4((c, 0,0, ...),(0,0,..)) =c = 1.

deg(7, (0)) =9 (§)k

Ik = 3] < Lo g(f) 5

Remark 5.2. As we have already mentioned, Secelean [8] used his theorem to study the Hutchinson—
Barnsley theory of fractals for maps defined on £« (X). In our paper [5] we use results of this article to obtain
an appropriate version of the Hutchinson-Barnsley theory in such setting.
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