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Abstract. One impetus for writing this paper is the issue of approximation pseudospectrum introduced
by M. P. H. Wolff in the journal of approximation theory (2001). The latter study motivates us to investigate
the essential approximation pseudospectrum of closed, densely defined linear operators on a Banach space.
We begin by defining it and then we focus on the characterization, the stability and some properties of these
pseudospectra.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

This research paper is centralized on the study of the approximation pseudospectrum. We survey the
historical development of this subject. In 1967, J. M. Varah [18] introduced the first idea of pseudospectra. In
1986, J. H. Wilkinson [19] came with the modern interpretation of pseudospectrum where he defined it for
an arbitrary matrix norm induced by a vector norm. Throughout the 1990s, L. N. Trefethen [13–15, 17] not
only initiated the study of pseudospectrum for matrices and operators, but also he talked of approximate
eigenvalues and pseudospectrum and used this notion to study interesting problems in mathematical
physics. By the same token, several authors worked on this field. For example, we may refer to E. B. Davies
[5], A. Harrabi [6] and M. P. H. Wolff [20] who has introduced the term approximation pseudospectrum for
linear operators.

Pseudospectra are interesting objects by themselves since they carry more information than spectra,
especially about transient instead of just asymptotic behaviour of dynamical systems. Also, they have
better convergence and approximation properties than spectra. The definition of pseudospectra of a closed
densely defined linear operator T, for every ε > 0, is given by:

σε(T) := σ(T) ∪
{
λ ∈ C such that ‖(λ − T)−1

‖ > 1
ε

}
.

or by

Σε(T) := σ(T) ∪
{
λ ∈ C such that ‖(λ − T)−1

‖ ≥
1
ε

}
.
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By convention, we write ‖(λ − T)−1
‖ = ∞ if λ ∈ σ(T), (spectrum of T). For ε > 0, it can be shown that σε(T)

is a larger set and is never empty. The pseudospectra of T are a family of strictly nested closed sets, which
grow to fill the whole complex plane as ε → ∞ (see [6, 14, 15]). From these definitions, it follows that the
pseudospectra associated with various ε are nested sets. Then for all 0 < ε1 < ε2, we have

σ(T) ⊂ σε1 (T) ⊂ σε2 (T) and σ(T) ⊂ Σε1 (T) ⊂ Σε2 (T),

and that the intersections of all the pseudospectra are the spectra,⋂
ε>0

σε(T) = σ(T) =
⋂
ε>0

Σε(T).

In [1–4], A. Ammar and A. Jeribi defined the notion of Weyl pseudospectra of a closed densely defined
linear operator on a Banach space X by:

σw,ε(T) :=
⋂

K∈K (X)

σε(T + K),

:=
⋃
‖D‖<ε

σw(T + D) (see [2, Theorem 2.3]),

where
σw(T) :=

⋂
K∈K (X)

σ(T + K),

andK (X) is the subspace of compact operators from X into X.
In [20], M. P. H. Wolff has given a motivation to study the essential approximation pseudospectrum. In

this paper, the notion of essential approximation pseudospectrum can be extended by devoting our studies
to the essential approximation spectrum. For ε > 0 and T ∈ C(X), we define

σeap,ε(T) =
⋂

K∈K (X)

σap,ε(T + K), (1)

Σeap,ε(T) =
⋂

K∈K (X)

Σap,ε(T + K),

where

σap,ε(T) := σap(T) ∪
{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ < ε

}
,

Σap,ε(T) := σap(T) ∪
{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ ≤ ε

}
,

and
σap(T) :=

{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ = 0

}
.

In the following, we measure the sensitivity of the set σap(T) with respect to additive perturbations of T by
an operator D ∈ L(X) of a norm less than ε. So we define the approximation pseudospectrum of T by

σap,ε(T) =
⋃
‖D‖<ε

σap(T + D), (see Theorem 3.3) (2)

and we characterize the essential approximation pseudospectrum by: λ < σeap,ε(T) if, and only if, for all
D ∈ L(X) such that ‖D‖ < ε, we have λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.



A. Ammar et al. / Filomat 31:11 (2017), 3599–3610 3601

The essential approximation pseudospectrum σeap,ε(.) nicely blends these properties of the essential and the
approximation pseudospectrum, and accordingly we are interested by the following essential approxima-
tion spectrum

σeap(T) :=
⋂

K∈K (X)

σap(T + K). (3)

We have already mentioned that (1) inherits an ε-version from (3). We will also show that there is an
essential version of (2), that is

σeap,ε(T) =
⋃
‖D‖<ε

σeap(T + D) (see Theorem 4.5).

Throughout the paper, we denote by L(X) (resp. C(X)) the set of all bounded (resp. closed, densely
defined) linear operators from X into X. For T ∈ C(X), we denote by ρ(T), N(T) and R(T), respectively, the
resolvent set, the null space and the range of T. The nullity of T, α(T), is defined as the dimension ofN(T)
and the deficiency of T, β(T), is defined as the codimension of R(T) in X.
The set of upper semi-Fredholm operators from X into X is defined by

Φ+(X) := {T ∈ C(X) : α(T) < ∞, R(T) is closed in X},

the set of all lower semi-Fredholm linear operators is defined by

Φ−(X) := {T ∈ C(X) : β(T) < ∞, R(T) is closed in X}.

The set of all semi-Fredholm linear operators is defined by

Φ±(X) := Φ+(X) ∪Φ−(X), and

the class Φ(X) of all Fredholm linear operators is defined by

Φ(X) := Φ+(X) ∩Φ−(X).

The set of bounded Fredholm linear operators from X into X is defined by

Φb(X) := Φ(X) ∩ L(X).

The set of bounded upper (resp. lower ) semi-Fredholm linear operators from X into X is defined by

Φb
+(X) := Φ+(X) ∩ L(X) (resp. Φb

−(X) := Φ−(X) ∩ L(X)).

The index of a semi-Fredholm linear operator T is defined by i(T) = α(T) − β(T). Clearly, i(T) is an integer
or ±∞. If T ∈ Φ(X), then i(T) < ∞. If T ∈ Φ+(X)\Φ(X) then i(T) = −∞ and if T ∈ Φ−(X)\Φ(X) then i(T) = +∞.
An operator F ∈ L(X) is called an upper semi-Fredholm perturbation, if T+F ∈ Φ+(X) whenever, T ∈ Φ+(X).
The set of upper semi-Fredholm perturbations is denoted byF+(X). If we replace Φ+(X) by Φb

+(X), we obtain
the set F b

+(X).

Theorem 1.1. Let X a Banach space.

(i) [8, Lemma 2.1] Let T ∈ C(X) and K ∈ L(X). Then

(i1) If T ∈ Φ+(X) and K ∈ F+(X), then T + K ∈ Φ+(X) and i(T + K) = i(T).

(i2) If T ∈ Φb
+(X) and K ∈ F b

+(X), then T + K ∈ Φb
+(X) and i(T + K) = i(T).

(ii) [1, Theorem 6.3.1] If the set Φb(X) is not empty, then
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(ii1) F ∈ F b
+(X) and T ∈ L(X) imply that TF ∈ F b

+(X) and FT ∈ F b
+(X).

(iii)[8, Theorem 3.9] Let T ∈ Φ+(X). Then the following statements are equivalent:

(iii1) i(T) ≤ 0.

(iii2) T can be expressed in the form T = S + K where K ∈ K (X) and S ∈ C(X) is an operator with closed range
and α(S) = 0.

Definition 1.2. Let X be a Banach space. A linear operator B from X to X is called T-compact ifD(T) ⊂ D(B) and
whenever a sequence (xn) of elements ofD(T) satisfies

‖xn‖ + ‖Txn‖ ≤ c, n = 1, 2, . . . ,

then (Bxn) has a subsequence convergent in X.

The paper is organized as follows. Section 2 contains preliminary and auxiliary properties that we will
need in order to prove the main results of the other sections. The main aim of section 3 is to characterize the
essential approximation pseudospectrum of closed, densely defined linear operators on a Banach space.
Then we give different definitions of approximation pseudospectrum and we establish relations between
approximation pseudospectrum and the union of the spectra approximation point of all perturbed operators
with perturbations that have norms strictly less than ε. Finally, we will prove the invariance of the essential
approximation pseudospectrum and establish some results of perturbation on the context of closed, densely
defined linear operators on a Banach space.

2. Preliminaries

The goal of this section consists in establishing some preliminary results which will be needed in the
sequel.

The following Lemma is developed by P. H. Wolff in [20, Lemma 2.1].

Lemma 2.1. If T ∈ C(X) and ε > 0, then Σap,ε(T) is closed.

Remark 2.2. (i) Let T ∈ C(X) and ε > 0, then the set Σap,ε(T) is obtained from the set σap,ε(T) by taking a non-strict
inequality instead of a strict inequality. This set makes the approximation pseudospectrum an open set.

(ii) It follows from the set Σap,ε(T) and the set σap,ε(T) that the boundary of Σap,ε(T), ∂Σap,ε(T) satisfies

∂Σap,ε(T) =

{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ = ε

}
,

and ∂Σap,ε(T) depends continuously on ε.

(iii) The set σap,ε(T) is an open set for all ε > 0, in contrast with the set Σap,ε(T) which is closed. For ε > 0, it can be
shown that Σap,ε(T) is a larger set and is never empty and Σap,ε(T) is a nested closed family with lim

ε→0+
Σap,ε(T) = σap(T).

(iv) σap,ε(T) and Σap,ε(T) are related as follows Σap,ε(T) = σap,ε(T) ∪
{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ = ε

}
.

Now, we present the following simple and useful result:

Proposition 2.3. Let T ∈ C(X) and ε > 0.

(i) σap,ε(T) ⊂ σε(T).
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(ii) σap(T) =
⋂
ε>0

σap,ε(T).

(iii) If ε1 < ε2, then σap(T) ⊂ σap,ε1 (T) ⊂ σap,ε2 (T).

(iv) If T ∈ L(X) and λ ∈ σap,ε(T), then |λ| < ε + ‖T‖.

(v) If α ∈ C and ε > 0, then σap,ε(T + α) = α + σap,ε(T).

(vi) If α ∈ C\{0} and ε > 0, then σap,|α|ε(αT) = ασap,ε(T).

Proof. (i) If λ < σε(T), then ‖(λ − T)−1
‖ ≤

1
ε . Moreover,

1
inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖)

= sup
x∈D(T), ‖x‖=1

‖x‖
‖(λ − T)x‖

= sup
0,x∈D(T)

‖x‖
‖(λ − T)x‖

= sup
y∈X\{0}

‖(λ − T)−1y‖
‖y‖

= ‖(λ − T)−1
‖ ≤

1
ε
,

hence, inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖) > ε. So λ < σap,ε(T).

(ii) It is clear that σap(T) ⊂ σap,ε(T), then σap(T) ⊂
⋂
ε>0

σap,ε(T). Conversely, if λ ∈
⋂
ε>0

σap,ε(T), then for all ε > 0,

we have λ ∈ σap,ε(T). There are two possible cases:

1stcase : If λ ∈ σap(T), we get the desired result.

2ndcase : If λ ∈
{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ < ε

}
, taking limits as ε→ 0+, we get for all x ∈ D(T) such that

‖x‖ = 1, inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ = 0. We infer that λ ∈ σap(T).

(iii) Let λ ∈ σap,ε1 (T), then inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ < ε1 < ε2. Hence λ ∈ σap,ε2 (T).

(iv) Let λ ∈ σap,ε(T), then inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ < ε, and also
∣∣∣∣|λ| − ‖Tx‖

∣∣∣∣ < ‖(λ − T)x‖. Hence |λ| < ε + ‖T‖.

(v) Letλ ∈ σap,ε(T+α), then inf
x∈D(T), ‖x‖=1

‖((λ−α)−T)x‖ < ε.Henceλ−α ∈ σap,ε(T).This yields toλ ∈ α+σap,ε(T).

For the second inclusion it is the same reasoning.

(vi) Let λ ∈ σap,|α|ε(αT), then

inf
x∈D(T), ‖x‖=1

‖(λ − αT)x‖ = inf
x∈D(T), ‖x‖=1

‖α(
λ
α
− T)x‖ α , 0,

= |α| inf
x∈D(T), ‖x‖=1

‖(
λ
α
− T)x‖

< |α|ε.

Hence
λ
α
∈ σap,ε(T). So σap,|α|ε(αT) ⊆ ασap,ε(T). However, the reverse inclusion is similar.

Remark 2.4. P. H. Wolff shows that for all ε > 0 that Σap,ε(T) , Σε(T), (see Example 1, [20]).

Proposition 2.5. Let T ∈ C(X) and ε > 0.

(i) Σap,ε(T) ⊂ Σε(T).

(ii)
⋂
ε>0

Σap,ε(T) = σap(T).



A. Ammar et al. / Filomat 31:11 (2017), 3599–3610 3604

(iii) If ε1 < ε2, then σap(T) ⊂ Σap,ε1 (T) ⊂ Σap,ε2 (T).

Proof. The proof of (i), (ii) and (iii) may be achieved in the same way as the proof of (i), (ii) and (iii) for
Proposition 2.3.

3. A Characterization of Approximation Pseudospectrum

In this section, we turn to the problem when the closure of σap,ε(T) is equal to Σap,ε(T) holds. Our first
result is the following.

Theorem 3.1. Let T ∈ C(X) and ε > 0. Then lim
ε→ε0

Σap,ε(T) = Σap,ε0 (T).

Proof. The approximation pseudospectrum is a family increase in function ε. Then for 0 < ε0 < ε, we have
σap(T) ⊆ Σap,ε0 (T) ⊆ Σap,ε(T). Hence

lim
ε→ε0

Σap,ε(T) =
⋂
ε>ε0

Σap,ε(T).

Proposition 2.3-(ii) justifies the equality
⋂
ε>ε0

Σap,ε(T) = Σap,ε0 (T).

We define the following hypothesis for T :

(H):
{

There is no open set in ρap(T) := C\σap(T) on which the λ 7−→ inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ is constant.
}

Theorem 3.2. Let T ∈ C(X) and ε > 0. If (H) holds, then σap,ε(T) = Σap,ε(T).

Proof. Since σap,ε(T) ⊂ Σap,ε(T) and Σap,ε(T) is closed, then σap,ε(T) ⊂ Σap,ε(T). In order to prove the inverse
inclusion, we take λ ∈ Σap,ε(T). We notice the existence of two cases:

1stcase : If λ ∈ σap,ε(T), then λ ∈ σap,ε(T).

2ndcase : If λ ∈ Σap,ε(T) \ σap,ε(T), then inf
x∈D(T), ‖x‖=1,

‖(λ − T)x‖ = ε. By using Hypothesis (H), there exists a

sequence λn ∈ ρap(T) such that λn → λ, and

inf
x∈D(T), ‖x‖=1

‖(λn − T)x‖ < inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ = ε .

We deduce thatλn ∈ σap,ε(T) and also thatλn → λ,which implies thatλ ∈ σap,ε(T), then, Σap,ε(T) ⊂ σap,ε(T).

Theorem 3.3. Let T ∈ C(X) and ε > 0. Then the following properties are equivalent:

(i) λ ∈ σap,ε(T).

(ii)There exists a bounded operator D ∈ L(X) such that ‖D‖ < ε and λ ∈ σap(T + D).

Proof. (i)⇒ (ii) Let λ ∈ σap,ε(T). There are two possible cases:
1stcase : If λ ∈ σap(T), then it is sufficient to take D = 0.

2ndcase : If λ < σap(T), then there exists x0 ∈ X such that ‖x0‖ = 1 and ‖(λ − T)x0‖ < ε. By using the Hahn
Banach Theorem, (see [11]) there exists x′ ∈ X′ (dual of X) such that ‖x′‖ = 1 and x′(x0) = ‖x0‖. Consider
the operator D defined by the formula D : X → X, x 7−→ Dx := x′(x)(λ − T)x0. Then D is a linear operator
everywhere defined on X. It is bounded, since ‖Dx‖ = ‖x′(x)(λ − T)x0‖ ≤ ‖x′‖‖x‖‖(λ − T)x0‖, for x , 0.
Therefore,

‖Dx‖
‖x‖

≤ ‖(λ − T)x0‖.
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Hence ‖D‖ < ε. We claim that inf
x∈D(T), ‖x‖=1

‖(λ − T −D)x‖ = 0. Let x0 ∈ X, then

inf
x∈D(T), ‖x‖=1

‖(λ − T −D)x‖ ≤ ‖(λ − T −D)x0‖ ≤ ‖(λ − T)x0 − x′(x0)(λ − T)x0‖ = 0.

(ii) ⇒ (i) We assume that there exists a bounded operator D ∈ L(X) such that ‖D‖ < ε and λ ∈ σap(T + D),
which means that inf

x∈D(T), ‖x‖=1
‖(λ − T − D)x‖ = 0. In order to prove that inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ < ε, we can

write,
‖(λ − T)x0‖ = ‖(λ − T −D + D)x0‖ ≤ ‖(λ − T −D)x0‖ + ‖Dx0‖.

Then, inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ < ε.

Remark 3.4. We can derive from Theorem 3.3 the following result. Let T ∈ C(X) and ε > 0. Then

σap,ε(T) =
⋃
‖D‖<ε

σap(T + D).

Theorem 3.5. Let T ∈ C(X) and ε > 0. Then

σap,ε(T) =
⋃

D∈Θε(X)

σap(T + D),

where
Θε(X) :=

{
D ∈ L(X) : ‖D‖ < ε and dim

(
R(D)

)
≤ 1

}
.

Proof. Let λ ∈ σap,ε(T). We will discuss the two following cases:

1stcase : If λ ∈ σap(T), then it is sufficient to take D = 0.

2ndcase : If λ < σap(T), then there exists x0 ∈ X such that ‖x0‖ = 1 and ‖(λ − T)x0‖ < ε. Putting ‖x0‖ =

‖(λ − T)−1(λ − T)x0‖ implies that ‖(λ − T)−1
‖ > 1

ε . Then we can find y0 ∈ X such that ‖y0‖ = 1 and
‖(λ − T)−1y0‖ > 1

ε . Hence ‖(λ − T)−1y0‖ = 1
δ , where δ < ε. By using the Hahn Banach Theorem, there exists

x′ ∈ X′ such that ‖x′‖ = 1 and

x′
(
(λ − T)−1y0

)
= ‖(λ − T)−1y0‖ =

1
δ
.

Now, we can define the rank-one operator by, D : X → X, x 7−→ Dx := δx′(x)y0. Clearly, D is a linear
operator everywhere defined on X. It is bounded, since

‖Dx‖ = ‖δx′(x)y0‖ ≤ δ‖x′‖‖y0‖‖x‖.

Then ‖D‖ ≤ δ < ε. Furthermore,

D
(
(λ − T)−1y0

)
= δx′

(
(λ − T)−1y0

)
y0 = δ

1
δ

y0 = y0.

Putting x = (λ − T)−1y0, we will discuss these two cases:

1stcase : If x = x0, we obtain

inf
x∈D(T), ‖x‖=1

‖(λ − T −D)x‖ ≤ ‖(λ − T −D)x0‖

≤ ‖(λ − T)x0 −Dx0‖ = ‖y0 − y0‖ = 0.

2ndcase : If x , x0. First, let x = 0, then (λ − T)−1y0 = 0, which is a contradiction with ‖(λ − T)−1y0‖ = 1
δ .

Second, let x , 0, then Dx = y0 = (λ − T)x. Hence, inf
x∈D(T), ‖x‖=1

‖(λ − T −D)x‖ = 0.

We deduce that λ ∈ σap(T + D) and D ∈ Θε(X). The second inclusion is clear.
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Theorem 3.6. Let T ∈ C(X) and ε > 0. Let E ∈ L(X) such that ‖E‖ < ε. Then

σap,ε−‖E‖(T) ⊆ σap,ε(T + E) ⊆ σap,ε+‖E‖(T).

Proof. Let λ ∈ σap,ε−‖E‖(T). Then by Theorem 3.3 there exists a bounded operator D ∈ L(X) with ‖D‖ < ε−‖E‖
such that

λ ∈ σap(T + D) = σap

(
(T + E) + (D − E)

)
.

The fact that ‖D − E‖ ≤ ‖D‖ + ‖E‖ < ε allows us to deduce that λ ∈ σap,ε(T + E). Using a similar reasoning to
the first inclusion, we deduce that λ ∈ σap,ε+‖E‖(T).

Theorem 3.7. Let T ∈ C(X) and V ∈ L(X) be invertible. Let B = V−1TV. Then

σap(B) = σap(T),

and for ε > 0 and k = ‖V−1
‖‖V‖, we have

σap, εk (T) ⊆ σap,ε(B) ⊆ σap,kε(T), and (4)
Σap, εk (T) ⊆ Σap,ε(B) ⊆ Σap,kε(T). (5)

Proof. we can write

‖(λ − B)x‖ = ‖V−1(λ − T)Vx‖ ≤ k‖(λ − T)x‖, (6)
‖(λ − T)x‖ = ‖V(λ − B)V−1x‖ ≤ k‖(λ − B)x‖. (7)

Let λ ∈ σap(T), which implies that inf
x∈D(T), ‖x‖=1

‖(λ − T)x‖ = 0. By using Relation (6), it follows that

inf
x∈D(B), ‖x‖=1

‖(λ − B)x‖ = 0. Hence λ ∈ σap(B). The converse is similar: it is sufficient to use Relation (7).

For the second result, If λ ∈ σap, εk (T), then using Relation (6), we obtain λ ∈ σap,ε(B). if λ ∈ σap,ε(B), then using
Relation (7), we obtain λ ∈ σap,kε(B). The Second formula in (4) holds and the proof is similar to Relation
(5).

The closure of σap,ε(T) is always contained in Σap,ε(T), but equality holds if, and only if, T does not have
constant infimum norm on any open set. The present part addresses the question on whether or not a
similar equality holds in the case of non-strict inequalities:

Σap,ε(T) =?
⋃
‖D‖≤ε

σap(T + D).

Theorem 3.8. Let T ∈ C(X) and ε > 0. We have⋃
‖D‖≤ε

σap(T + D) ⊂ Σap,ε(T).

Proof. Letλ < Σap,ε(T), then inf
x∈D(T), ‖x‖=1

‖(λ−T)x‖ > ε. In order to prove thatλ <
⋃
‖D‖≤ε

σap(T+D),which means

that, inf
x∈D(T), ‖x‖=1

‖(λ − T −D)x‖ > 0 for all D ∈ L(X) such that ‖D‖ ≤ ε, we have inf
x∈D(T), ‖x‖=1

‖(λ − T −D)x‖ ≥

inf
x∈D(T), ‖x‖=1

∣∣∣∣‖(λ − T)x‖ − ‖Dx‖
∣∣∣∣ ≥ inf

x∈D(T), ‖x‖=1

∣∣∣∣‖(λ − T)x‖ − ε‖x‖
∣∣∣∣ > 0.

We first consider the following example:
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Example 3.9. Let l1(N) =

(x j) j≥1 : x j ∈ C and
+∞∑
j=1

|x j| < ∞

 be equipped with the following norm ‖x‖ :=
∞∑
j=1

|x j|

and we define the operator T by:
T : l1(N)→ l1(N),

x 7−→ Tx,

where Tx =

(1 + 2ε)x1 −

∞∑
j=2

x j,−ε2x2, . . . ,−εnxn, . . .

 ,
x = (x1, x2, . . . , xn, . . .) ∈ l1(N) and εn,where n = 2, 3, . . . is a sequence of positive numbers monotonically decreasing
to 0. It was proved by E. Shargorodsky in [12], that inf

x∈D(T), ‖x‖=1
‖(2εI − T)x‖ = ε, and for all D ∈ L(X), ‖D‖ ≤

ε, we have 2ε ∈ ρ(T+D). It follows that 2ε ∈ Σap,ε(T) and 2ε < σap(T+D) for all ‖D‖ ≤ ε.Then 2ε <
⋃
‖D‖≤ε

σap(T+D).

Hence
⋃
‖D‖≤ε

σap(T + D)  Σap,ε(T).

Theorem 3.10. Let T ∈ C(X) and ε > 0. If (H) holds, then

Σap,ε(T) =
⋃
‖D‖≤ε

σap(T + D).

Proof. It follows from Theorem 3.8 and Theorem 3.3 that

σap,ε(T) ⊆
⋃
‖D‖≤ε

σap(T + D) ⊆ Σap,ε(T)

We assume that (H) holds, then σap,ε(T) = Σap,ε(T), hence⋃
‖D‖≤ε

σap(T + D) = Σap,ε(T).

It follows from Theorem 3.8 and Theorem 3.3 that Theorem 3.10 is an equality if, and only if, the level set{
λ ∈ C : inf

x∈D(T), ‖x‖=1
‖(λ − T)x‖ = ε

}
is a subset of

⋃
‖D‖=ε

σap(T + D).

4. Essential Approximation Pseudospectrum

In this section, we have the following useful stability result for the essential approximation pseu-
dospectrum.

Definition 4.1. Let T ∈ C(X). We define the essential approximation spectrum of the operator T by:

σeap(T) =
⋂

K∈ K (X)

σap(T + K).

The following result gives the essential approximation spectrum of the operator T in terms of upper semi-
Fredholm linear operators.

Proposition 4.2. [8, Proposition 3.1] Let T ∈ C(X). Then

λ < σeap(T) if, and only if, λ − T ∈ Φ+(X) and i(λ − T) ≤ 0.

In what follows, we will bring a new definition of the essential approximation pseudospectrum.
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Definition 4.3. Let T ∈ C(X) and ε > 0.We define the essential approximation pseudospectrum of the operator T by

σeap,ε(T) =
⋂

K∈K (X)

σap,ε(T + K).

Proposition 4.4. Let T ∈ C(X) and ε > 0. Then

(i)
⋂
ε>0

σeap,ε(T) = σeap(T).

(ii) If ε1 < ε2, then σeap(T) ⊂ σeap,ε1 (T) ⊂ σeap,ε2 (T).
(iii) σeap,ε(T + F) = σeap,ε(T) for all F ∈ K (X).

Proof. (i) σeap(T) ⊂ σeap,ε(T). Indeed, Let λ < σeap,ε(T). Then there exists K ∈ K (X), such that inf
x∈D(X), ‖x‖=1

‖(λ −

T − K)x‖ > ε > 0. Hence λ < σeap(T), so σeap(T) ⊂
⋂
ε>0 σeap,ε(T). Conversely, let λ ∈

⋂
ε>0

σeap,ε(T). Hence for

all ε > 0, we have λ ∈ σeap,ε(T). Then for every K ∈ K (X) we obtain λ ∈ σap,ε(T + K). This implies that
inf

x∈D(X), ‖x‖=1
‖(λ − T − K)x‖ < ε. Taking limits as ε→ 0+, we infer that λ ∈ σeap(T).

(ii) Let λ ∈ σeap,ε1 (T), then there exists K ∈ K (X), such that inf
x∈D(X), ‖x‖=1

‖(λ−T−K)x‖ < ε1 < ε2. So λ ∈ σeap,ε2 (T).

(iii) It follows immediately from Definition 4.3 that σeap,ε(T + F) = σeap,ε(T) for all F ∈ K (X).

In what follows, Theorem 4.5 gives a characterization of the essential approximation pseudospectrum
by means of semi-Fredholm operators.

Theorem 4.5. Let T ∈ C(X) and ε > 0. Then the following properties are equivalent:

(i) λ < σeap,ε(T).

(ii) For all D ∈ L(X) such that ‖D‖ < ε, we have λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Proof. (i) ⇒ (ii) Let λ < σeap,ε(T). It follows that there exists a compact operator K on X such that λ <
σap,ε(T + K). By using Theorem 3.3, we notice that λ < σap(T + D + K), for all D ∈ L(X) such that ‖D‖ < ε. So,

λ − T −D − K ∈ Φ+(X) and i(λ − T −D − K) ≤ 0,

for all D ∈ L(X) such that ‖D‖ < ε. Using Theorem 1.1, we get, for all D ∈ L(X) such that ‖D‖ < ε,

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

(ii)⇒ (i) We assume that for all D ∈ L(X) such that ‖D‖ < ε we have

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Based on Lemma 1.1, λ−T−D can be expressed in the form λ−T−D = S+K,where K ∈ K (X) and S ∈ C(X)
is an operator with closed range and α(S) = 0. So

λ − T −D − K = S and α(λ − T −D − K) = 0.

By using [11, Theorem 3.12] there exists a constant c > 0 such that

‖(λ − T −D − K)x‖ ≥ c‖x‖, for all x ∈ D(T).

This proves that inf
x∈D(T), ‖x‖=1

‖(λ−T−D−K)x‖ ≥ c > 0. Thus λ < σap(T+D+K), and therefore λ < σeap,ε(T).
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Remark 4.6. It follows immediately from Theorem 4.5 that λ < σeap,ε(T) if, and only if, for all D ∈ L(X) such that
‖D‖ < ε we obtain

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

This is equivalent to

σeap,ε(T) =
⋃
‖D‖<ε

σeap(T + D).

From Definition 4.3 and Proposition 4.4, we get the following corollary:

Corollary 4.7. Let T ∈ C(X) and ε > 0. Then

σeap(T) = lim
ε→0

⋂
K∈K (X)

σap,ε(T + K) =
⋂
ε>0

 ⋃
‖D‖<ε

σeap(T + D)

 .
Theorem 4.8. Let T ∈ C(X) and ε > 0. Then

σeap,ε(T) =
⋂

F∈F +(X)

σap,ε(T + F).

Proof. Let λ <
⋂

F∈F +(X)

σap,ε(T + F), then there exists F ∈ F +(X) such that λ < σap,ε(T + F). From Theorem 3.3,

we see that λ < σap(T + F + D), for all D ∈ L(X) such that ‖D‖ < ε. Therefore,

λ − T − F −D ∈ Φ+(X) and i(λ − T − F −D) ≤ 0.

Using Theorem 1.1, we conclude that for all D ∈ L(X) such that ‖D‖ < ε,

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Finally, Theorem 4.5 shows that λ < σeap,ε(T). For the second inclusion, it is clear that⋂
F∈F +(X)

σap,ε(T + F) ⊂
⋂

F∈K (X)

σap,ε(T + F) := σeap,ε(T),

becauseK (X) ⊂ F +(X).

Remark 4.9. Let T ∈ C(X) and ε > 0.

(i) Using Theorem 4.8, we infer that σeap,ε(T + F) = σeap,ε(T) for all F ∈ F +(X).

(ii) Let I(X) be a subset of L(X). IfK (X) ⊂ I(X) ⊂ F +(X), then σeap,ε(T) =
⋂

M∈I(X)

σap,ε(T + M) and σeap,ε(T + J) =

σeap,ε(T) for all J ∈ I(X).

Lemma 4.10. Let ε > 0, T and B be two elements of C(X). Assume that for a bounded operator D such that ‖D‖ < ε,
the operator B is (T + D)-compact, then σeap,ε(T) = σeap,ε(T + B).

Proof. Letλ < σeap,ε(T), then for all D ∈ L(X) such that ‖D‖ < ε,we haveλ−T−D ∈ Φ+(X) and i(λ−T−D) ≤ 0.
Since B is (T + D)-compact and applying [10, Theorem 3.3], we get

λ − T − B −D ∈ Φ+(X) and i(λ − T − B −D) ≤ 0.

Therefore, λ < σeap,ε(T + D). We conclude that σeap,ε(T + B) ⊂ σeap,ε(T). Conversely, let λ < σeap,ε(T + B). Then
for all D ∈ L(X) such that ‖D‖ < ε, we have λ − T − B − D ∈ Φ+(X) and i(λ − T − B − D) ≤ 0. On the other
hand, B is (T + D)-compact. Using [10, Theorem 2.12], we deduce that B is (T + B + D)-compact, then

λ − T + D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Therefore λ < σeap,ε(T). This proves that σeap,ε(T) ⊂ σeap,ε(T + B).
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