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Abstract. In this note, stochastic permanence for a competitive Lotka-Volterra model with Lévy noise
(which can be used to describe sudden environmental perturbations) is studied by using stochastic analytical
techniques. Moreover, some numerical simulations are provided to support the results.

1. Introduction

Recently, stochastic Lotka-Volterra models driven by white noise have been received great attention and
have been studied extensively (see e.g. [1-8]). However, in the real world population systems often suffer
sudden environmental perturbations, such as earthquakes, hurricanes, planting, harvesting, etc (see e.g.
[9-11]). These phenomena can not be described by white noise [12]. Bao et al. [13, 14] pointed out that one
may use Lévy jump processes to describe these phenomna and they studied the following n-dimensional
competitive Lotka-Volterra model with Lévy noise:

dxX;(t) = Xi(t) || ai(t) — Z b,‘j(i’)Xj(tf) dt + o;(HdW(t) + f yi(t, y)ﬁ(dt, dy) ,1<i<n, (1)

j=1 z
where X;(t7) is the left limit of X;(t), W(t) is a standard Wiener process defined on a complete probability
space (QQ, ¥, P) with a filtration {F;};»0. N is a Poisson counting measure with characteristic measure A on
a measurable subset Z of [0, +00) with A(Z) < +0c0 and N(dt,dy) = N(dt,du) — AMdu)dt. It is well known
that permanence means the long time survival in a population dynamics and thus has its theoretical and
practical significance. So, in this note we study the stochastic permanence of system (1). To the best of
authors” knowledge, this is the first attempt to investigate stochastic permanence for the general competitive
Lotka-Volterra model with Lévy noise.
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2. Main Results

For convenience, let

1<i<n | t20

A= min {inf [ai(t) -0 [ gt -+t u)))A(du)]},
B. = min {(t : inf yi(t, ‘u)}, B* = max {sup ai(t)},
e

1<i<n [0,+00)xZ. 1<i<n | >0

Pi(t) = Lyi(t, wAdu), Hi(t) = fz In(1 + yi(t, W)Ap), 1 <i<n,

Zn: XF(t)

i=1

X(t) = (Xa(#), -, Xu(8)', Xo = (X1(0), ..., Xa(0)", IX(B)] =

In this note, we always assume that W(t) and N are independent and
(A) For 1 < i,j < n, i # j ait) > 0, bi(t), bij(t) = 0, 0i(t), yi(t,u) > —1 are bounded functions and
infi5q byi(t) > 0.
(B)A>0.

Definition 2.1. (see Bao et al. [13]) System (1) is said to be stochastically permanent, if, for any € > 0, there exist
0. = 0.(€) > 0and 6* = 6*(e) > 0 such that

litmian{|X(t)| >0.}=1-¢ litmian{|X(t)| <ot=21-e ©)
—+00 —+00

Remark 2.2. The stochastic permanence definition of multi-population systems was first proposed by Li et al. [5]
and has been intensively applied (see e.g. [13, 15-17]).

Lemma 2.3. (see Bao et al. [13]) Under assumption (A), for any initial value Xy € RY, system (1) has a unique
global solution X(t) € RY fort > 0 a.s.

Lemma 2.4. (see Bao et al. [13]) Under assumption (A), for any p € [0, 1], there is a constant K such that

sup E[IX(H)F] < K. (4)
teR,

Lemma 2.5. Assume that X(t) is the solution to system (1) with initial value X, € R}, then

n n

Y oo XX, ~ Y FOX(HX(8) < 0. )

i#] i#]

Proof. We use the mathematical induction. Forn = 2,

Y 0io(HXiOXi(H) = Y FOXADX;(E) = —(1() — 02(H)* X (HXa(t) < 0. 6)
i#] i#]

Assume that for n = k, (5) is true, that is

k k

Y a®oiOXOXi() - Y FOXHX;(H) < 0. 7)

i#] i#]
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From (7) we have

k+1 k+1
Y oo (OXiXi(H) = Y FOXHX;()
i#] i#]

k k
= {Z G OX X +2 ) Oi(f)0k+1(t)Xi(t)Xku(t)}

i*] i=1

k k
- {Z FOXBX(1) + Y (030 + oiH(t))xi(t)XkH(t)} ®
i=1

i#]
k k
<2} 6i(Bor (OXi(OXkra(®) = Y (@30 + o, ()X Xk ()
i=1 i=1
k
=- Z(Ui(t) — 01 (D) Xi () X1 (1) < 0.
i=1

In conclusion, the proof is complete. [J
Theorem 2.6. Under assumptions (A) and (B), system (1) is stochastically permanent.

Proof. Let V(X) = Y., Xi. Applying Itd’s formula to V(X) leads to

AV = B(t)dt + o(HAW(E) + fz Y, WN@t, du), 9)

where

B(t) = i X;
p

From Lemma 2.3 we have P{X;(f) > 0 for t > 0} = 1. Define U(X) = y;- By Itd’s formula, we obtain

n

;o)=Y o)X, vt ) = Y yilt, )X (10)
i=1

i=1

ai(t) = ) by(HX;

=

AU = p(b)dt + o(DAW(t) + fz V(& N(dt, dp), (11)

where

B(t) = — UPB(t) + UPa™(t) + fz {7l — U+ Wyt w) Adp),

- (12)
ot) == Uo(t), y(t, 1) = vy — U
In the light of (2), we deduce that forany t >0and 1 <i <,
ait) = A+ 20+ Pi(t) - Hy(b). (13)

Consider the following auxiliary function:

G(6)=A9_%Z(B*)Z_L{(lj&)g—l—eln(l:B*)}/\(dy), 0<o<1. (14)
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Then G(0) = 0 and

G’(@):A—(B*)ZG—L{(ljB*)Q—l}ln(l:B*)/\(dy), 0<o<1.

According to (15) and (8), we obtain

G'(0)=A>0.

Thus, there exist 6 > 0 and k > 0 such that

0 . 1\ 1
A0=Z(B) _fz{(u&) _1_91n(1+3*

Applying It&'s formula to [e¥(1 + U)?] yields

)} Ady) > k> 0.

d[e"(1 + U)°] =L [e¥(1 + U)°] dt + e¥0(1 + L) a(HAW(t)

+ f [ekf (1+U+yEp) -+ LI)Q] N(dt, dy),
Z

where

L[+ 1)%] =ke" (1 + U)? + (1 + )PP + 20ek(1 + 1) 2 [o(h)]

+ f [ekf (1+u+ y’(Zp))G — M1+ U)? - o1 + U)Q-ly”@ﬁ)] A(dy).
Z

Substituting inequality (13) into (19) gives

u G,‘(i’)Xi
i=1

L[+ W)7] <ke(1 + )? + LM U2(1 + L)

Ui oi(H)X;

i=1

2

+0e(1 + u)u + oMU + u)?

+fekt
z

— ABU( + L)’ - 0L + 1)U Y g%
i=1

0
) ~ (1 +W)° | A(dp)

(1 + 1
V+ Y yilt, )X

= 0 U1 + U)*TU Y PHX; + 0 U1 + U)°U Y Hi(h)X;

i=1 i=1

+0M (1 + U)PTIURY X0 Y by(t)X; = e [ounu’ + Gy,

=1 j=1

6w
uﬁ

0< UZZX Zb,](t)X ZZb,j( )(Z,f X)Z < 2 supblj(t)

i=1 j=1 1t>0

where lim;;_ 40 = (0. Since

u Z yilt, wXiA(dp)

3744

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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oue) =k 6(6

0 L U;yi(t,y)X,-/\(dy)+ fz 5

s
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Z (t)X

=1

+6

u

1

n

i=1

oi(H)X;

2

V@

A(dp)

Ly, u)Xi]°

_ fz AMdy) — A0 — guzn" o2(H)X; — euZn“ PB)X; + ng Hi(hX

6(6 +1) (XL, 0i(HXi)*

0 (X o7 (DX (X1, Xi)

=k - A0 — Ald —
fz @+ == " xp 2 CLXP
Y X )9 s o [ ZEIQ v X
+yi(t, W) Xi @)+ L Y Xi ().

’ fz (2;11<1

On the basis of Lemma 2.5, we get

n

i=1

n

i=1

In a view of (22), (23), Jensen’s inequality, e*

n . ’2
O(Uf’)sk—Ae—f Adp) + M)
z

),

=k- A0+ —

9 *2 1
<k A0+ = () +fz{(1+B*

n

g

Z?:l Xz’

2
6(9+1)[Zai(t)x,«<t>] - [Z FOXi()
i=1

=L

Z?:l Xi

(Z? 11+ yilt, W)X
62 ( i=1 Oz(t)X

2

Zle

)

0

2
=6? (2 ai<t)xi(t)] +0 [2 GO OXOX0) - )
i#]

400 M
n=0 I

ZX(t

n

i#]

n

i=1

2
of(t)x,-(t)x,-(t)] <02 [Z oi(t)Xi(t)] .

and (17), we obtain

0 n .
1 i

—1—6m(

+00 Xl n
) fZ; [ (Z R ))Xi)] Aak)

)} Ady) < 0.

On the basis of (18), (20) and (24), there exists K > 0 such that

t
E[e"(1 + )] - [1 + U(X0)]° < f Kebsds = KM - 1).
0

From (25), we have

lim sup E[U’] < %

t—>+o00

In the light of s t)Ie <

limsup [E [
t—+00

o |

0
2K
<n2%.

<n?U° and (26), we get
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(22)

(23)

(24)

(25)

(26)

(27)
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Based on Chebyshev’s inequality, for any € > 0, there exists 0, = g (%)% > 0 such that

h?lESPP {IX(t) < 6.} = ligfolipP{lxlw > (%} < (6.)° lifr_l)fgp]E [ﬁ] <e. (28)
Therefore,

litr_r)1+i_}.3fP{|X(t)| >0.}=>1-e. (29)

The second part of (3) follows from combining Lemma 2.4 with Chebyshev’s inequality. That is, system (1)
is stochastically permanent. [

Remark 2.7. For n =1, system (1) becomes

dX(t) = X(t) [(a(t) — bOX()) dt + o(DAW(H) + fz (¢, N, dy)] . (30)

From Theorem 2.6, system (30) is stochastically permanent, if

inf [a(t) - f (/(t, ) = In(1+ (¢, u)))A(du)] >0, (31)
z z

Thus, Theorem 2.6 includes Theorem 1 in [18] as a special case.

3. An Example

By the method in [19], for A(Z) = 1.0 and step size At = 0.1 we numerically simulate the solutions of the
following system to support our results:

X1 (t) =X1(t7) [0.81 — 0.51X; (+7) — 0.39Xx(£7)] dt + X1(£7) {o.mwa) + f yi(t, WN(@t, dy)},
Z.

dXo(t) =Xo(£7) [0.79 — 041X, (£7) — 0.49X,(+7)] dt + Xa(t) {o.mwa) + f ya(t, )Nt dy)}, (32)
V4

X1(0) =1.8, X»(0) = 2.2.

=
1)

B
S}

X,0)
X, (1)

X0

—_— ()
sart(Z+Xx3(1)4

e R ()+X3(D)

o B N W N 0 o N © ©
O kB N W & O O N ® ©

.
20 40 60 80 100 20 40 60 80 100
Time Time

(@) y1(t, 1) = 048, a(t, 1) = 0.92. (®) y1(t, 1) = 1.2, ya(t, 1) = 0.51.

o
o
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—_— (1) —_— (1)
4 sartZ+x3()|{ sart()+Xx3(v)
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(© 1l ) = 0.25, ya(t, ) = 02 (d) y1(t, ) = 23, yat,p) = 25

Figure 1: Stochastic permanence of system (32).

For system (32), we introduce some mathematical notations as follows (as in [18]):

bi(t) = ai(t) — 3o7(t) — fz (it 1) = In(1 + yi(t, W) A@p), i=1,2,

(33)
A(f) = b1 ()b (t) — b1a(H)ba1(£), A1(t) = bi(t)bpa(t) — ba(D)b12(E), Az(t) = ba(t)b11(t) — bi(E)b (B).
(I) For y1(t, u) = 0.48, y»(t, u) = 0.92, we have (Figure 1(a)):
bi(t) = 0.71704, by(t) = 0.51513, A(t) = 0.09, A1(t) = 0.15045, A,(t) = —0.03142. (34)

By Theorem 2.6, system (32) is stochastically permanent. From Theorem 4(i) in [18], Xi(t) is persistent
in mean while X;(#) is extinctive a.s.
(IT) For y1(t, u) = 1.2, yo(t, u) = 0.51, we have (Figure 1(b)):

bi(t) = 0.39346, by(t) = 0.68491, A(f) = 0.09, A;(t) = —0.07432, Ao(t) = 0.18799. (35)

In view of Theorem 2.6, system (32) is stochastically permanent. Based on Theorem 4(ii) in [18], X;(¢) is
extinctive while X;(f) is persistent in mean a.s.
(III) For y1(t, u) = 0.25, ya(t, ) = 0.2, we have (Figure 1(c)):

bi(t) = 0.77814, by(t) = 0.76512, A(t) = 0.09, A(f) = 0.08289, Ay(t) = 0.07117. (36)

According to Theorem 2.6, system (32) is stochastically permanent. By Theorem 4(iii) in [18], both X;(t)
and X»(t) are persistent in mean a.s.
(IV) For y1(t, u) = 2.3, y2(t, u) = 2.5, we have (Figure 1(d)):

bu(t) = —0.30108, by(t) = —0.46444. (37)

On the basis of Theorem 4.6 in [13], both X;(f) and X,(t) are extinctive a.s. Hence system (32) is not
stochastically permanent. In other words, if (8) is false, then system (1) may be not stochastically permanent.
All mentioned above can be confirmed by Figure 1.

Remark 3.1. (see Liu et al. [18]) Consider the autonomous case of system (1). For n = 2 and A(t) > 0,
(i) if A1(t) > 0, Ax(t) < 0, then X;(t) is persistent in mean while X5(t) is extinctive a.s.

(ii) if A1(t) < 0, Ax(t) > 0, then Xy (t) is extinctive while X,(t) is persistent in mean a.s.

(iii) if Ai(t) > 0, then Xi(t) is persistent in mean a.s., 1 <i < 2.
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4. Conclusions and Future Directions

In this note, sufficient conditions for stochastic permanence of a competitive Lotka-Volterra model with
Lévy noise are established.

Some interesting topics deserve further investigation. To begin with, it is interesting to study “stochastic
persistence in probability” (see e.g. [20, 21]) of system (1). The motivation is that multi-population systems
may remain stochastically permanent, although some species are extinctive (see Figure 1(a) and Figure
1(b)).

Next, we could investigate more realistic and complex systems in lieu of system (1), for instance, hybrid
population systems with Lévy noise. The motivation is that parameters in population systems may suffer
abrupt changes (see e.g. [1, 22]). One can use a continuous-time Markov chain with a finite state space to
describe these abrupt changes (see e.g. [9, 23]).

Motivated by the works in [6, 11, 21, 24-26], we may also study the optimization problem of harvesting
for stochastic delay population systems with Lévy noise. We leave these investigations for future work.
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