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Abstract. The concept of a left n-inverse of a bounded linear operator on a complex Banach space was
introduced recently. Previously, there have been results on products and tensor products of left n-inverses,
and the representation of left n-inverses as the sum of left inverses and nilpotent operators was being
discussed. In this paper, we give a spectral characterization of the left n-inverses of a finite (square) matrix.
We also show that a left n-inverse of a matrix T is the sum of the inverse of T and two nilpotent matrices.

1. Introduction

Let βn(y, x) be defined using binomial formula

βn(y, x) = (yx − 1)n =

n∑
k=0

(−1)n−k
(
n
k

)
ykxk.

Let B(X) be the algebra of all bounded linear operators on a Banach space X. Let S,T ∈ B(X). We define the
functional calculus βn(S,T) by

βn(S,T) = (yx − 1)n
|y=S,x=T =

n∑
k=0

(−1)n−k
(
n
k

)
SkTk,

where S is always on the left side of T. If ST = TS, then βn(S,T) = (ST − I)n where I is the identity operator
on X.

Recall that S is a left inverse of T (or T is a right inverse of S) if ST = I, that is, β1(S,T) = ST − I = 0. As in
Sid Ahmed [19] and Duggal and Müller [11], S is a left n-inverse of T (or T is a right n-inverse of S) if

βn(S,T) =

n∑
k=0

(−1)n−k
(
n
k

)
SkTk = 0. (1)

Since βn(y, x) divides βm(y, x) for m ≥ n, if S is a left n-inverse of T, then S is a left m-inverse of T for m ≥ n.
We say that S is a strict left n-inverse of T if S is a left n-inverse of T but not a left (n − 1)-inverse of T. It

is also clear that S is a left n-inverse of T on a complex Hilbert space if and only if T∗ is a left n-inverse of S∗.
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Similarly we say S is an n-inverse of T if S is both a left n-inverse and a right n-inverse of T. We say T is left
n-invertible if T has a strict left n-inverse and say T is n-invertible if T has an strict n-inverse.

The concept of left n-invertible operators is motivated by the n-isometries studied earlier in [1], [2], and
[18] and more recently in [5], [7], [8], [9], [12], [13], and [20], on Hilbert spaces and [3], [4], [6], [10], [14], and
[16] on Banach spaces. An operator T on a Hilbert space H is an n-isometry if βn(T∗,T) = 0, that is, T∗ is a
left n-inverse of T.

Some basic properties of left n-inverses were observed by Sid Ahmed [19]. Results on products and
tensor products of left n-invertible operators were obtained by Duggal and Müller [11]. Further structures
of left n-invertible operators were discussed by the first named author [15], [17]. Applications to elementary
operators of length one or generalized derivations on B(X) were given in [11] and [15]. These papers focused
on left n-invertible operators on infinite dimensional Banach spaces.

In this paper we study the left n-inverses of a finite square matrix. It is clear that a left n-invertible
operator is invertible. We are able to describe the set of all left n-inverses (for all n) of a given invertible
matrix by using its Jordan structure. But the set of all left n-inverses for a fixed n seems difficult to
characterize. Most results obtained here probably do not hold for left n-invertible operators on infinite
dimensional Banach spaces. However, such a study does offer insights into the infinite dimensional case,
especially for algebraic operators which are left n-invertible. For simplicity, in this paper we will emphasize
the finite dimensional complex Hilbert space CN and all operators on CN are represented as matrices with
respect to the standard bases.

In Section 1, for a matrix T, let S be a left n-inverse of T, we prove a lemma about orthogonality of the
generalized eigenspaces of S and T. This leads to the spectral compatibility condition between S and T,
which essentially reduces the question of finding left n-inverses of a general matrix to a matrix with only
one eigenvalue.

In Section 2, we investigate the order of an n-inverse (the possible values of n). Using the construction
of n-inverses of T as the sum of the inverse of T and nilpotent matrices in [15], we describe the possible
values of n by finding suitable nilpotent matrices. For example, we show that the maximal possible n is
2N − 1, where T is an N ×N matrix.

In Section 3, we discuss the relation between left n-inverses of T and right n-inverses of T. In particular,
an example shows that a left n-inverse of T is not necessarily a right n-inverse of T for the same n, but a left
n-inverse of T is always a right (2N−1)-inverse of T.We also show that a left n-inverse of T can be written as
the sum of the inverse of T and two nilpotent matrices. Finding a left n-inverse of T is a nonlinear problem,
so we describe briefly a linearization algorithm for finding a left n-inverse of T.

2. Characterization of Left n-inverses

The following simple example shows that the left 2-inverse of a matrix is not unique. Let

S =

[
1 x
0 1

]
,T =

[
1 1
0 1

]
.

Then a direct calculation gives

S2T2
− 2ST + I = 0.

That is, S is a left 2-inverse of T for any x.
In this section we show that an n-inverse in CN must take a certain form. For example, given T, an

n-inverse S of T (n > 1), like the inverse of T, must not only have a set of reciprocal eigenvalues of T but
must also have its general eigenspaces matching with those of T. Let σ(T) denote the set of eigenvalues of
T.

We first need a couple of lemmas to prove the spectral condition theorem.
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Lemma 2.1. For any two complex numbers λ and µ, the following holds:

βn(S,T) =
∑

n1+n2+n3=n

(
n

n1,n2,n3

)
(S − µI)n1 Tn1µn2 (T − λI)n2 (λµ − 1)n3 .

Proof. Using the multinomial formula,

βn(S,T) = (yx − 1)n
|y=S,x=T

= (
[
y − µ

]
x + µ [x − λ] +

[
λµ − 1

]
)n
|y=S,x=T

=
∑

n1+n2+n3=n

(
n

n1,n2,n3

)
(y − µ)n1 xn1µn2 (x − λ)n2 (λµ − 1)n3 |y=S,x=T

=
∑

n1+n2+n3=n

(
n

n1,n2,n3

)
(S − µI)n1 Tn1µn2 (T − λI)n2 (λµ − 1)n3 .

A more rigorous proof can be given by using induction. See the proofs of formulas in Lemma 1 and Lemma
12 in [15].

Remark 2.2. When µ = 0 or λµ − 1 = 0 in the above formula, µn2 = 1 if n2 = 0 and (λµ − 1)n3 = 1 if n3 = 0.

Lemma 2.3. Let S be a left n-inverse of T. If λ ∈ σ(T) and µ ∈ σ(S∗) such that λµ , 1, then ker(T − λI)k
⊥

ker(S − µI)∗l for all k, l ≥ 1.

Proof. We prove the lemma by induction. We first deal with the base case (k = l = 1). Let v1, v2 be such that
(T − λI)v1 = (S − µI)∗v2 = 0. Then by Lemma 2.1,

0 =
〈
βn(S,T)v1, v2

〉
=

〈 ∑
n1+n2+n3=n

(
n

n1,n2,n3

)
(λµ − 1)n3 Tn1µn2 (T − λI)n2 v1, (S − µI)∗n1 v2

〉
= (λµ − 1)n

〈v1, v2〉 ,

since (T − λI)n2 v1 = (S − µI)∗n1 v2 = 0 for all n1,n2 , 0. Thus if λµ , 1, then 〈v1, v2〉 = 0.
We now fix l = 1 and use induction on k. Assume ker(T − λI)k

⊥ ker(S − µI)∗. Let v1 ∈ ker(T − λI)k+1,
v2 ∈ ker(S − µI)∗. We will show that 〈v1, v2〉 = 0 and hence ker(T − λI)k

⊥ ker(S − µI)∗ for all k ≥ 1. Note that

0 =
〈
βn(S,T)v1, v2

〉
=

〈 ∑
n1+n2+n3=n

(
n

n1,n2,n3

)
(λµ − 1)n3 Tn1µn2 (T − λI)n2 v1, (S − µI)∗n1 v2

〉
=

〈 ∑
n2+n3=n

(
n

0,n2,n3

)
(λµ − 1)n3µn2 (T − λI)n2 v1, v2

〉
= (λµ − 1)n

〈v1, v2〉 ,

since if n1 ≥ 1, (S−µI)∗n1 v2 = 0. Moreover, if n2 ≥ k+1, (T−λI)n2 v1 = 0; and if 1 ≤ n2 ≤ k, (T−λI)k(T−λI)n2 v1 =
(T−λI)k+n2 v1 = 0, so (T−λI)n2 v1 ∈ ker(T−λI)k, thus (T−λI)n2 v1 ⊥ v2 and 〈(T − λI)n2 v1, v2〉 = 0 by the inductive
hypothesis. Thus the only term left is when n1 = n2 = 0; n3 = n.

By symmetry, we get

ker(T − λI) ⊥ ker(S − µI)∗l for l ≥ 1. (2)

By above argument, we can assume that ker(T − λI)k
⊥ ker(S − µI)∗ for all k ≥ 1. We will show that

ker(T − λI)k
⊥ ker(S − µI)∗l for any k, l ≥ 1. The base case l = 1 is by assumption. Assume for fixed l,

ker(T − λI)k
⊥ ker(S − µI)∗l for all k ≥ 1. (3)
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We now show that ker(T − λI)k
⊥ ker(S− µI)∗l+1 for all k ≥ 1 as well. We do this by using induction on k. For

k = 1, this is just (2). Now assume

ker(T − λI)m
⊥ ker(S − µI)∗l+1, (4)

we will show

ker(T − λI)m+1
⊥ ker(S − µI)∗l+1.

Let v1 ∈ ker(T − λI)m+1 and v2 ∈ ker(S − µI)∗l+1. Then

0 =
〈
βn(S,T)v1, v2

〉
=

〈 ∑
n1+n2+n3=n

(
n

n1,n2,n3

)
(λµ − 1)n3 Tn1µn2 (T − λI)n2 v1, (S − µI)∗n1 v2

〉
. (5)

Now, if n1 ≥ 1 and n2 ≥ 0, (S − µI)∗n1 v2 ∈ ker(S − µI)∗l and (T − λI)n2 v1 ∈ ker(T − λI)m+1. Thus by (3), these
terms in (5) are zero. If n1 = 0 and n2 > 0, (S − µI)∗n1 v2 ∈ ker(S − µI)∗l+1 and (T − λI)n2 v1 ∈ ker(T − λI)m.
Then by the inductive hypothesis (4), these terms in (5) are also zero. The only term left in (5) is when
n1 = n2 = 0; n3 = n. Thus,

0 =
〈
βn(S,T)v1, v2

〉
= (λµ − 1)n

〈v1, v2〉 .

By assumption, λµ , 1, thus 〈v1, v2〉 = 0, as desired.

Let MN(C) be the set of all N ×N complex matrices. Let S,T ∈MN(C).

Corollary 2.4. Let S be a left n-inverse of T. If λ ∈ σ(T) with (algebraic) multiplicity p, then 1
λ ∈ σ(S) with

(algebraic) multiplicity p.

Proof. Let S be a left n-inverse of T.We show that the eigenvalues of S and T are reciprocal to each other and
they must have same multiplicities. Let pT(λ) =

∏m
i=1(λ − λi)pi be the characteristic polynomial of T. Then

CN = ker(T − λ1I)p1 ⊕ · · · ⊕ ker(T − λmI)pm ,

where ⊕ denote the direct sum of subspaces. Now let µ ∈ σ(S). If 1/µ < σ(T), then by Lemma 2.3,

ker(S − µI)∗ ⊥ ker(T − λ1I)p1 ⊕ · · · ⊕ ker(T − λmI)pm .

This is a contradiction. Thus, 1/µ ∈ σ(T), say 1/µ = λ1. Let q1 be the algebraic multiplicity of the eigenvalue
u of S. Again by Lemma 2.3,

ker(S − µI)∗q1 ⊥ ker(T − λ2I)p2 ⊕ · · · ⊕ ker(T − λmI)pm .

Therefore q1 ≤ N − (p2 + · · · + pm) = p1. Similarly, since T is a right n-inverse of S, we have p1 ≤ q1. Hence
p1 = q1.

Corollary 2.5. If S is an n-inverse of T, then Det(S) = 1
Det(T) .

This is a direct consequence of Corollary 2.4 since the determinant of a matrix is the product of its
eigenvalues (counting multiplicities). The following lemma provides another analogue between an n-
inverse of T and the inverse of T.

Lemma 2.6. Let S,T,P ∈ MN(C). Assume P is invertible. Then S is a strict left n-inverse of T if and only if PSP−1

is a strict left n-inverse of PTP−1.
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Proof. It suffices to notice that

βn(PSP−1,PTP−1) =

n∑
k=0

(−1)n−k
(
n
k

)
(PSP−1)k(PTP−1)k

=

n∑
k=0

(−1)n−k
(
n
k

)
PSkTkP−1 = Pβn(S,T)P−1 = 0.

The proof is complete.

Now we are ready to prove the following spectral characterization of left n-inverses.

Theorem 2.7. Given T ∈MN(C), S is a left n-inverse of T for some n if and only if there exists an invertible matrix
P such that

PTP−1 =


MT(λ1) 0 0 0

0 MT(λ2)
. . .

...
...

. . .
. . . 0

0 · · · 0 MT(λm)

 , (6)

and PSP−1 =


MS( 1

λ1
) 0 0 0

0 MS( 1
λ2

)
. . .

...
...

. . .
. . . 0

0 · · · 0 MT( 1
λm

)

 , (7)

where MT(λi) and MS( 1
λi

) are matrices of the same size and have eigenvalues λi and 1
λi

, respectively.

Proof. Let P be the invertible matrix such that PTP−1 = J, where J is in a block diagonal form as in
(6). For example, J could be the canonical Jordan form of T. By Lemma 2.6, βn(S,T) = 0 if and only if
βn(PSP−1,PTP−1) = 0. By Corollary 2.4, σ(PTP−1) = {λi, 1 ≤ i ≤ m}with the the multiplicity ofλi being pi, and
σ(PSP−1) =

{
µi = 1/λi, 1 ≤ i ≤ m

}
with the the multiplicity of µi being pi. By Lemma 2.3, ker(PSP−1

− µiI)∗l ⊥
ker(PTP−1

− λ jI)k for i , j and all k, l ≥ 1, thus PSP−1 must be in the same block-diagonal form as in (7).
For the proof of the other direction, see Remark 3.5 after Proposition 3.4.

Corollary 2.8. Let S,T ∈MN(C). If T has N distinct nonzero eigenvalues and S is a left n-inverse of T, then S = T−1.
Conversely, if the only left n-inverse of T is T−1, then T has N distinct nonzero eigenvalues.

The first part of this corollary follows from the fact that T is similar to a diagonal matrix with distinct
diagonals. For the second part, see the remark after Proposition 3.8. Theorem 2.7 reduces the question of
finding left n-inverses of a general matrix to a matrix with only one eigenvalue. The following observation
further reduces this eigenvalue to 1.

Lemma 2.9. Let λ be a nonzero complex number. Then S is a strict left n-inverse of λT if and only if λS is a strict
left n-inverse of T.

Proof. It is enough to notice that

βn(S, λT) =

n∑
k=0

(−1)n−k
(
n
k

)
Sk(λT)k

=

n∑
k=0

(−1)n−k
(
n
k

)
λkSkTk = βn(λS,T).

The proof is complete.
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Let us apply previous results to find all left n-inverses of a 2 × 2 matrix.

Example 2.10. Find all left n-inverses of a 2 × 2 matrix A. If A has two distinct eigenvalues, then by Corollary 2.8,
the only left n-inverse of A is A−1. If A has one eigenvalue, by Theorem 2.7 and Lemma 2.9, we may assume A is A1
or A2 where

A1 =

[
1 1
0 1

]
and A2 =

[
1 0
0 1

]
.

Let B be a left n-inverse of A1 or A2. Write

B =

[
a b
c d

]
.

By Theorem 2.7, B has eigenvalue 1. Therefore

(a − λ)(d − λ) − bc = (1 − λ)2

implies that a + d = 2 and ad − bc = 1. So B must be of the form

B =

[
a b
c 2 − a

]
and bc = a(2 − a) − 1. There are two cases. In the case bc = 0, we have a = 1. Thus

B =

[
1 b
0 1

]
or

[
1 0
c 1

]
(8)

In the case bc , 0, we solve b in terms of a and c to get

B =

[
a a(2−a)−1

c
c 2 − a

]
(9)

Note that when a = 1, B in (9) reduces to a matrix in (8). So all left n-inverses of A1 are

strict left 2-inverses:
[
1 b
0 1

]
, strict left 3-inverses:

{[
a a(2−a)−1

c
c 2 − a

]}
where both b and c are nonzero. Interestingly, these are all just strict left 2-inverses of A2. Furthermore, by a direct
verification, these are strict 2-inverses and strict 3-inverses of A1.

3. On the Order n of Strict n-inverses

We have focused on characterizing all n-inverses for all n ≥ 1 in the last section. Now we ask, what
more can we say about n? Specifically, we ask: given an n > 1, is there always a strict n-inverse? Moreover,
if we are given a strict k-inverse S of T, can we tell what range k must fall within? It turns out that there
is an upper-bound for strict n-inverses, and for certain numbers in this range we can always find a strict
inverse of that order.

The following result from Theorem 2 [15] is useful for studying these questions.

Lemma 3.1. [15] Assume S,Q ∈ B(X) are commuting and Q is a nilpotent operator of order l.
(a) If S is a left m-inverse of T, then S + Q is a left n-inverse of T where n = m + l − 1. Furthermore S + Q is a strict
left n-inverse of T if and only if Ql−1βm−1(S,T) , 0.
(b) If S is a right m-inverse of T, then S + Q is a right n-inverse of T where n = m + l − 1. Furthermore S + Q is a
strict right n-inverse of T if and only if βm−1(T,S)Ql−1 , 0.
(c) If S is an m-inverse of T, then S + Q is an n-inverse of T where n = m + l − 1. Furthermore S + Q is a strict
n-inverse of T if and only if either βm−1(T,S)Ql−1 , 0 or Ql−1βm−1(S,T) , 0.
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The following corollary of the above lemma is also needed.

Lemma 3.2. Let Q be a nilpotent operator of order l and T be an invertible operator. If TQ = QT, then T−1 + Q is a
strict l-inverse of T.

Proof. Let S = T−1. By assumption, SQ = QS. Note that S is a 1-inverse of T. By Lemma 3.1, T−1 + Q is an
l-inverse of T. Note that Ql−1β0(S,T) = Ql−1 , 0, so T−1 + Q is a strict l-inverse of T.

We also need the following lemma.

Lemma 3.3. Let T ∈MN(C) with only one eigenvalue λ , 0. Then T = λI + Q for some nilpotent matrix Q of order
n that is equal to the degree of the minimal polynomial of T. Furthermore 1

λ I is a strict n-inverse of T.

Proof. The first part is clear. By Lemma 3.1 (c), λI + Q is a strict n-inverse of 1
λ I. In other words, 1

λ I is a strict
n-inverse of λI + Q.

The following proposition reveals the relations between the order n of a strict left n-inverse of T and the
minimal and characteristic polynomials of T.

Proposition 3.4. Let T ∈ MN(C). Let p(λ) =
∏m

i=1(λ − λi)pi and q(λ) =
∏m

i=1(λ − λi)qi be the minimal polynomial
and characteristic polynomial of T. If T has a strict left (or right) k-inverse, then k ≤ max{pi + qi − 1, 1 ≤ i ≤ m}.

Proof. Suppose S is a left k-inverse of T. We will prove the proposition by assuming m = 2, since the proof
of the general case is similar. Then by Theorem 2.7, there exists an invertible matrix P such that

PTP−1 =

[
MT(λ1) 0

0 MT(λ2)

]
, PSP−1 =

[
MS( 1

λ1
) 0

0 MS( 1
λ2

)

]
,

where MT(λi) (resp., MS( 1
λi

) ) is a block of the size qi with λi (resp., 1
λi

) as its only eigenvalue. Since

βk(PSP−1,PTP−1) = 0 if and only if βk

(
MS

( 1
λi

)
,MT(λi)

)
= 0 for i = 1, 2,

we need only to look at the individual block MT(λi) and MS( 1
λi

). Now, by Lemma 3.3 and the assumption
on T,

MT(λi) = λiIqi + Pi,MS

( 1
λi

)
=

1
λi

Iqi + Qi,

where Pi is a nilpotent matrix of order pi and Qi is a nilpotent matrix of order less than or equal to qi.
By Lemma 3.3, 1

λi
Iqi is a strict left pi-inverse of MT(λi). Next, by Lemma 3.1, MS( 1

λi
) = 1

λi
I + Qi is a left

(pi + qi − 1)-inverse of MT(λi) (not necessarily strict). Thus, by Lemma 2.6, S is a strict left k-inverse of T
where k ≤ max{pi + qi − 1, 1 ≤ i ≤ m}.

Remark 3.5. Proof of other direction in Theorem 2.7. Since pi + qi − 1 ≤ 2N − 1, it follows from the proof of above
proposition that PSP−1 as in (7) is a (2N − 1)-inverse of PTP−1.

Now that we know there is an upper bound for the order n of strict n-inverses of T, can we always
find a k-inverse of T for some k less than this upper-bound? It turns out that there are orders that we
are guaranteed to find strict inverses for. For example, this upper-bound is always attainable. We first
study this question assuming T has only one eigenvalue, the general case can be dealt with by using block
diagonal form of T as in Theorem 2.7. Let JN(λ) denote a single Jordan block of size N ×N with all λ on its
diagonal and all 1 on its superdiagonal. A Toeplitz matrix T is of the form T = [ai− j]N

i, j=1. It is easy to verify
that SJN(λ) = JN(λ)S if and only if S is an upper triangular Toeplitz matrix. This S is nilpotent if and only if
its diagonal is zero. The following lemma tells us the order of S. Let {e1, ..., eN} be the standard bases of CN.
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Lemma 3.6. Let Q ∈ MN(C) be an upper triangular Toeplitz matrix with zeros on the main diagonal . Then Q is
nilpotent of order dN

j e, where the jth superdiagonal is the first nonzero one, and dN
j e is the smallest integer not less

than N
j (d∗e is the ceiling function).

Proof. Let 1 ≤ j ≤ N − 1. Note that

Q(e1) = · · · = Q(e j) = 0,
Q(e j+1) ∈ Span{e1}, · · · ,Q(eN) ∈ Span{e1, ..., eN− j}.

Thus,

Qk(eN) ∈ Span{e1, ..., eN− jk},

and

Qk = 0 if N − jk ≤ 0.

The proof is complete.

This lemma allows us to construct nilpotent matrices which commute with Jordan blocks, which upon
combing with Lemma 3.2 yields the following result. We first need the following observation, which is
useful for studying n-inverses of block diagonal matrices.

Lemma 3.7. Let

S =

[
S1 0
0 S2

]
,T =

[
T1 0
0 T2

]
.

If S1 is a strict k-inverse of T1 and S2 is a strict l-inverse of T2, then S is a strict n-inverse of T where n = max{k, l}.
In particular if S2 = T−1

2 , then S is a strict k-inverse of T.

Proof. The result clearly follows from definitions and the fact that

βn(S,T) =

[
βn(S1,T1) 0

0 βn(S2,T2)

]
.

The proof is complete.

Proposition 3.8. Let T ∈ MN(C) with only one eigenvalue λ , 0. Let B = ⊕m
i=1 Jni (λ) be the Jordan canonical form

of T. Let

H =
⋃m

i=1Hi where Hi =

{⌈
ni

j

⌉
for 1 ≤ j ≤ ni − 1

}
.

Then there is always a strict k-inverse of T for each k ∈ H.

Proof. We will prove the result for m = 1. The general case follows from Lemma 3.7. By Theorem 2.7, we
can assume T = Jn1 (λ). By Lemma 3.6, for each k ∈ H1, there exists a nilpotent matrix Q of order k such that
QT = TQ. Thus, by Lemma 3.2, T−1 + Q is a strict k-inverse of T.

The above lemma could be improved in the case m > 1 since we could use more general nilpotent
matrices than just nilpotent matrices of block diagonal forms. Note that if n1 > 1, then

⌈
n1

n1−1

⌉
= 2. For an

invertible matrix T, T will have a strict 2-inverse as long as T has an eigenvalue with algebraic multiplicity
bigger than or equal to 2.

The above result gives small values of k such that T has a strict k-inverse; the next result gives large
values of k such that T has a strict k-inverse. In particular, T always has a k-inverse for the upperbound
identified in Proposition 3.4.
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Lemma 3.9. Let T ∈ MN(C) and λ , 0. If T = λI + Q for some nilpotent matrix Q of order n, then T has a strict
k-inverse for each k ∈ {n,n + 1, · · · ,n + N − 1} .

Proof. By Lemma 2.9, we may assume λ = 1. Let k be such that n ≤ k ≤ n + N− 1. Since Q is of order n, there
is a vector u such that Qn−1(u) , 0. Let W be an arbitrary N ×N nilpotent matrix of order l = k− n + 1. Then
there exists a vector v such that Wl−1(v) , 0. Let P be any invertible matrix that sends v to Qn−1(u). Now let
U = PWP−1. It is clear that the order of U is also l. Furthermore

Ul−1Qn−1(u) = PWl−1P−1
[
Qn−1(u)

]
= PWl−1(v) , 0. (10)

By Lemma 3.3, I is a strict n-inverse of T. By Lemma 3.1 with S = I, I+U is a k-inverse of T where n+ l−1 = k.
We claim in fact I + U is a strict k-inverse of T. A direct computation shows that

βn−1(I,T) = βn−1(I, I + Q) =

n−1∑
i=0

(−1)n−1−i
(
n − 1

i

)
Ii(I + Q)i

= (I [I + Q] − I)n−1 = Qn−1.

Hence

Ul−1βn−1(I,T) = Ul−1Qn−1,

and by (10)

Ul−1βn−1(I,T)(u) = Ul−1Qn−1(u) , 0.

By Lemma 3.1, the claim is proved.

Summarizing previous results we have the following theorem.

Theorem 3.10. Let T ∈ MN(C). Let p(λ) =
∏m

i=1(λ − λi)pi and q(λ) =
∏m

i=1(λ − λi)qi be the minimal polynomial
and characteristic polynomial of T. Also let K =

⋃m
i=1(Ki ∪Hi), where

Ki =
{
pi, ..., pi + qi − 1

}
and Hi =

{⌈
pi

j

⌉
for 1 ≤ j ≤ pi − 1

}
.

Then there is always a strict k-inverse of T for each k ∈ K.

Proof. We first assume T has only one eigenvalue λ1. Then for each k ∈ K1, by Lemma 3.9, T has a strict
k-inverse. For each k ∈ H1, by Proposition 3.8, T has a strict k-inverse since p1 is just the largest ni in
Proposition 3.8. The case m > 1 follows from Theorem 2.7 and Lemma 3.7.

Corollary 3.11. Let T be a diagonalizable matrix. Let q(λ) =
∏m

i=1(λ − λi)qi be the characteristic polynomial of T.
Then T has a strict k-inverse if and only if k ∈ {1, 2, . . . ,max{qi, 1 ≤ i ≤ m}}.

The proof follows directly from Proposition 3.4 and Theorem 3.10 since if T is a diagonalizable matrix,
then pi = 1. Examples of diagonalizable matrices include normal matrices. We illustrate the above theorem
by an example.

Example 3.12. Consider the following 10 × 10 matrix

T =

[
λ1I3 0

0 J7(λ2)

]
where J7(λ2) is one Jordan block of size 7. So p1 = 1, q1 = 3, p2 = 7, q2 = 7. It follows that

1 = p1 ≤ k ≤ p1 + q1 − 1 = 3,
7 = p2 ≤ k ≤ p2 + q2 − 1 = 13.

Thus, according to Theorem 3.10, we will be able to find a 1-inverse of T (always), 2-inverse, 3-inverse, 4-inverse
(4 =

⌈
7
2

⌉
), 7-inverse,· · · , 13-inverse. By Proposition 3.4, the maximal order is 13, so we are missing only 5 and 6. By

ad hoc methods, we can find 5-inverses or 6-inverses of T.
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4. Some Remarks and Questions

We first remark that, although we have assumed the space our matrices act on is a finite dimensional
complex Hilbert space, our results can be extended to a finite dimensional complex vector space. Let V
be a finite dimensional complex vector space and L(V) be the algebra of linear transformations on V. Let
S,T ∈ L(V), and let SM,TM be the matrix representations of S and T with respect to a (fixed) bases of V. Then
S is a left n-inverse of T if and only if SM is a left n-inverse of TM.

In this section we make several remarks and raise some questions about left n-inverses of T versus right
n-inverses of T. We then give an abstract structure theorem of left n-inverses of T, which follows directly
from the concrete structure theorem of left n-inverses of T as in Theorem 2.7. Finally we state a linearization
algorithm to find left n-inverses of T.

On a finite dimensional vector space, if S is a left inverse of T, then in fact S is an inverse of T. Thus we
ask the following question.

Problem 4.1. If S is a left n-inverse of T on a finite dimensional vector space, is S automatically a right n-inverse of
T?

By Example 2.10, the answer is yes for 2 × 2 matrices. The answer is no beyond 2 × 2 matrices by the
following example constructed by Stepan Paul. Let

S =

1 1 0
0 1 0
0 0 1

 ,T =

1 0 0
0 1 0
1 0 1

 ,
then

S2T2
− 2ST + I = 0,

but

T2S2
− 2TS + I =

 0 0 0
0 0 0
0 2 0

 , 0.

Thus S is a strict left 2-inverse, but S is not a right 2-inverse of T. It turn out that S is a strict right 3-inverse
of T. The key here is that

ST =

 1 1 0
0 1 0
1 0 1

 , TS =

 1 1 0
0 1 0
1 1 1

 .
The answer to Problem 4.1 is of course yes if ST = TS. The following observations made in Proposition

8 and Corollary 11 of [15] are relevant here.

Proposition 4.2. [15] If S is an n-inverse of T and ST = TS, then T is invertible and S = T−1 + Q where Qn = 0
and QT = TQ.

It turns out that the condition ST = TS is not needed when n = 2.

Corollary 4.3. [15] If T ∈ B(X) has a 2-inverse S, then S = T−1 + Q where Q2 = 0 and QT−1 = T−1Q.

By Proposition 3.4, we know that any strict left n-inverse must be a strict right m-inverse for some m.
Thus, it brings up the question: Is there a relationship between the n and m? Specifically, how large can the
gap |n −m| be? More generally, what are possible values of k such that there exist S and T such that S is a
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strict left m-inverse of T, and S is a strict right m + k-inverse of T? Collectively, given an invertible T,we can
study the sets

K = {k : T has a strict k-inverse} ,
Kl = {k : T has a strict left k-inverse} ,
Kr =

{
k : T has a strict right k-inverse

}
. (11)

Are these three sets the same? The following is another example where a strict left n-inverse of T is not
a strict right n-inverse.

Example 4.4. Here S is a strict right 4-inverse of T, but S is a strict left 7-inverse of T.

S =



1 0 1 0 0 0
0 1 0 0 0 1

5
0 1

3 1 0 0 0
0 0 0 1 −

1
4 0

0 0 0 0 1 −
2
5

0 0 0 0 0 1


and T =



1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1


.

A reasonable condition to impose on S and T in Problem 4.1 is that they are both upper triangular. The
answer is still no as the following example shows.

Example 4.5. Here both S and T are upper triangular. Then S is a strict right 3-inverse of T, but S is a strict left
4-inverse of T.

S =


1 1 0 0
0 1 0 0
0 0 1 −

1
3

0 0 0 1

 and T =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .
Lemma 3.1 provides a method for finding a possible strict left n-inverse of T by using the sum of a

known strict left l-inverse of T and a nilpotent operator commuting with this left l-inverse. The simplest
known l-inverse of T is T−1. This is essentially the construction in Proposition 3.8 and Lemma 3.9. Lemma
3.1 also suggests an underlying structure of the n-inverses. The following question seems natural. Let S
be a left n-inverse of T. Does there exist a nilpotent matrix Q such that S = T−1 + Q (here Q and T do not
necessarily commute)? The following simple example shows that the answer is no.

Example 4.6. Here S is a 3-inverse of T, but S , T−1 + Q for any nilpotent matrix Q. Let

S =

[
1 0
1 1

]
, T =

[
1 1
0 1

]
.

Then S is a 3-inverse of T. But

S − T−1 =

[
1 0
1 1

]
−

[
1 −1
0 1

]
=

[
0 1
1 0

]
,

so S − T−1 is in fact invertible.

We consider that S might in fact be a finite sum such as S = T−1 + Q1 + . . .+ Qt with each Qi commuting
with the previous one. Indeed it turns out that t = 2 is enough. The following result derived easily from
Theorem 2.7 seems interesting.
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Theorem 4.7. Let T ∈ MN(C) be an invertible matrix. Then S is a left (or right) n-inverse for some n if and only if
S = T−1 + Q1 + Q2 for some nilpotent matrices Q1 and Q2 such that Q1 commutes with T−1 and Q2 commutes with
T−1 + Q1.

Proof. If S = T−1 + Q1 + Q2, by using Lemma 3.1 twice, S is a left (or right) n-inverse for some n. We will
prove the other direction by considering the case in which T has two distinct eigenvalues; the general case
is similar. By Theorem 2.7, there exists an invertible matrix P such that

PTP−1 =

[
MT(λ1) 0

0 MT(λ2)

]
, PSP−1 =

[
MS( 1

λ1
) 0

0 MS( 1
λ2

)

]
.

Therefore

PSP−1 =

[
MS( 1

λ1
) 0

0 MS( 1
λ2

)

]
=

[ 1
λ1

I1 + Q21 0
0 1

λ2
I2 + Q22

]
,

(
PTP−1

)−1
= PT−1P−1 =

[
MT(λ1) 0

0 MT(λ2)

]−1

=

[ 1
λ1

I1 −Q11 0
0 1

λ2
I2 −Q12

]
,

where I1 and I2 are identity matrices and Q11,Q12,Q21 and Q22 are nilpotent matrices. Let

Q1 =

[
Q11 0

0 Q12

]
,Q2 =

[
Q21 0

0 Q22

]
.

Then

PSP−1 = PT−1P−1 + Q1 + Q2, (12)

where Q1 commutes with PT−1P−1, and Q2 commutes with PT−1P−1 + Q1 since

PT−1P−1 + Q1 =

[ 1
λ1

I1 0
0 1

λ2
I2

]
.

Rewrite equation (12) as

S = T−1 + P−1Q1P + P−1Q2P.

It is clear that P−1Q1P and P−1Q2P are nilpotent matrices with the desired commuting property.

It follows from the above theorem that the following three sets B, Bl and Br are the same for an invertible
matrix T, even though we do no know if the three sets K, Kl and Kr in (11) are the same.

B = {S : S is an k-inverse of T for some k} ,
Bl = {S : S is a left k-inverse of T for some k} ,
Br =

{
S : S is a right k-inverse of T for some k

}
.

By definition (1), finding left n-inverses of T is a nonlinear problem. Theorem 4.7 reduces this problem
to finding nilpotent matrices. We briefly describe a linearization algorithm to find left n-inverses of T.

Given T, let p(λ) =
∏m

i=1(λ − λi)pi be its characteristic polynomial. By Theorem 2.7, we can assume T is
in its Jordan canonical form. Let S be a left n-inverse of T. Then S is similar to its Jordan canonical form.
That is, S = PDP−1 for some Jordan canonical form D. By Theorem 2.7, we require that the characteristic
polynomial of D is q(λ) =

∏m
i=1(λ − 1

λi
)pi . Thus βn(S,T) = 0 if and only if
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0 =

n∑
k=0

(−1)n−k
(
n
k

)
SkTk =

n∑
k=0

(−1)n−k
(
n
k

)
(P−1DP)kTk

=

n∑
k=0

(−1)n−k
(
n
k

)
P−1DkPTk = P−1

n∑
k=0

(−1)n−k
(
n
k

)
DkPTk.

Equivalently

n∑
k=0

(−1)n−k
(
n
k

)
DkPTk = 0,

which is a linear equation in P. Therefore by choosing a D (there are only finite many choices of D), we can
use the above linear equation to find an invertible P. Then S = PDP−1 is a left n-inverse of T.
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