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Abstract. In this paper, an explicit characterization of the separation properties for T0, T1, PreT2 (pre-
Hausdorff) and T2 (Hausdorff) is given in the topological category of proximity spaces. Moreover, specific
relationships that arise among the various Ti, i = 0, 1, 2 and PreT2 structures are examined in this category.
Finally, we investigate the relationships among generalized separation properties for Ti, i = 0, 1, 2 and PreT2

(in our sense), separation properties at a point p and separation properties for Ti, i = 0, 1, 2 in the usual
sense in this category.

1. Introduction

The notion of proximity on a set X was introduced by Efremovich [17]. But the germ of the theory of
proximity spaces, which have today become the basic concepts of the theory, was emerged by Frigyes Riesz
[30] at the mathematical congress in Roma in 1908. This theory was axiomatized by Efremovich [17], [18]
in 1934, but not published until 1951. He characterized the proximity relation “A is close to B” as a binary
relation on subsets of a set X. In the interim, in 1941, a study was made by Wallace [35], [36] regarding
“separation of sets”. This study can be considered as the primitive version of the same concept. Similar but
weaker axioms than Efremovich’s were used.

Efremovich [18] defined the closure of a subset A of X to be the collection of all points of X “close” A.
Thereby he showed that a topology (completely regular) can be introduced in a proximity space. He also
showed that every completely regular space X can be turned into a proximity space by using Urysohn’s
function. Efremovich later used proximity neighborhoods to obtain an equivalent set of axioms for a
proximity space.

Much of the early work in proximity spaces was done by Smirnov [33] and [34]. He showed which
topological spaces admit a proximity relation compatible with the given topology [34]. Smirnov was also
the first to discover relationship between proximities and uniformities.

All our preliminary information on proximity spaces as well as additional information can be found in
[28].

Various generalizations of the usual separation properties of topology and for an arbitrary topological
category over sets separation properties at a point p are given in [2]. Baran [2] defined separation properties
first at a point p, i.e., locally (see [3], [5], [10], [14], [23] and [24]), then they are generalized to point free
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definitions by using the generic element, [22] p. 39, method of topos theory. These generalizations are, for
example, two notions of T0 denoted by T0 and T′0, each equivalent to the classical T0 notion for topological
spaces, and two notions of PreT2 denoted by PreT2 and PreT′2, each equivalent to the classical PreT2 notion
(for each distinct pair x and y in X, if the set {x, y} is not indiscrete, then there exist disjoint neighborhoods
of x and y) for topological spaces.

The main goal of this paper is

1. to give the characterization of the separation properties for T0, T1, PreT2 and T2 in the topological
category of proximity spaces,

2. to examine how these generalizations are related, and
3. to show that the relationships among generalized separation properties for Ti, i = 0, 1, 2 and PreT2 (in

our sense), separation properties at a point p and separation properties for Ti, i = 0, 1, 2 in the usual
sense in this category.

2. Preliminaries

The following are some basic definitions and notations which we will use throughout the paper.
Let E andB be any categories. The functorU : E −→ B is said to be topological or that E is a topological

category overB, ifU is concrete (i.e., faithful and amnestic), has small fibers, and for which everyU-source
has an initial lift or, equivalently, for which eachU-sink has a final lift [1].

Note that a topological functorU : E −→ B is said to be normalized, if constant objects, i.e., subterminals,
have a unique structure [1, 5, 13, 27, 29].

Recall in [1] or [29], that an object X ∈ E (where X ∈ E stands for X ∈ Ob(E)), a topological category,
is discrete iff every map U(X) → U(Y) lifts to a map X → Y for each object Y ∈ E and an object X ∈ E is
indiscrete iff every mapU(Y)→U(X) lifts to a map Y→ X for each object Y ∈ E.

Let E be a topological category and X ∈ E. A is called a subspace of X if the inclusion map i : A→ X is
an initial lift (i.e., an embedding) and we denote it by A ⊂ X.

Definition 2.1. [28] An Efremovich proximity (EF-proximity) space is a pair (X, δ), where X is a set and δ is a binary
relation on the power set of X such that

(P1) A δ B iff B δ A;
(P2) A δ (B ∪ C) iff A δ B or A δ C;
(P3) A δ B implies A,B , ∅;
(P4) A ∩ B , ∅ implies A δ B;
(P5) A 6δ B implies there is an E ⊆ X such that A 6δ E and (X − E) 6δ B;

where A 6δ B means it is not true that A δ B.

A function f : (X, δ) → (Y, δ′) between two proximity spaces is called a proximity mapping (or a p-map)
iff f (A) δ′ f (B) whenever A δ B. It can easily be shown that f is a p-map iff, for subsets C and D of Y,
f−1(C) 6δ f−1(D) whenever C 6δ ′D.

We denote the category of proximity spaces and proximity mappings by Prox. Hunsaker and Sharma
[21] showed that the functorU : Prox −→ Set is topological.

Definition 2.2. [31] Let X be a nonempty set and P(X) be the set of all subsets of X. A proximity-base on X is a
binary relation B on P(X) satisfying the axioms (B1) through (B5) given below:

(B1) (∅,X) < B;
(B2) A ∩ B , ∅ implies (A,B) ∈ B;
(B3) (A,B) ∈ B iff (B,A) ∈ B;
(B4) If (A,B) ∈ B and A ⊆ A∗, B ⊆ B∗ then (A∗,B∗) ∈ B;
(B5) If (A,B) < B then there exists a set E ⊆ X such that (A,E) < B and (X − E,B) < B.
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2.3 Let B be a proximity-base on a set X and let a binary relation δ on P(X) be defined as follows: (A,B) ∈ δ if,
given any finite covers {Ai : 1 ≤ i ≤ n} and {B j : 1 ≤ j ≤ m} of A and B respectively, then there exists a pair (i, j) such
that (Ai,B j) ∈ B. δ is a proximity on X finer than the relation B [21] or [31].

2.4 Let X be a non-empty set, for each i ∈ I, (Xi, δi) be a proximity space and fi : X → (Xi, δi) be a source in
Prox. Define a binary relation B on P(X) as follows: for A,B ∈ P(X), A B B iff fi(A) δi fi(B), for all i ∈ I. B is a
proximity-base on X (Theorem 3.8, [31]). The initial proximity structure δ on X generated by the proximity baseB is
given by for A,B ∈ P(X), A δ B iff for any finite covers {Ai : 1 ≤ i ≤ n} and {B j : 1 ≤ j ≤ m} of A and B respectively,
then there exists a pair (i, j) such that (Ai,B j) ∈ B [31].

2.5 Let (X, δ) be a proximity space, Y a non-empty set and f a function from a proximity space (X, δ) onto a set Y.
The quotient proximity δ∗ on Y is defined as follows for every A,B ⊂ Y: A δ∗ B iff, for each binary rational s in [0, 1],
there is some Cs ⊂ Y such that C0 = A, C1 = B and s < t implies f−1(Cs) δ f−1(Ct) [20] or [38] p. 276.

2.6 We write ∆ for the diagonal in X2, where X ∈ Prox. For X ∈ Prox we define the wedge X2
∨∆ X2, as the final

structure, with respect to the map X2∐X2
−→ X2

∨∆ X2, that is the identification of the two copies of X2 along the
diagonal ∆. An epi sink {i1, i2 : (X2, δ) −→ (X2

∨∆ X2, δ′)}, where i1, i2 are the canonical injections, in Prox is a final
lift if and only if the following statement holds. For each pair A,B in the different component of X2

∨∆ X2, A δ′ B
iff there exist sets C,D and U in X2 such that C δ U and U δ D with i−1

k (A) = C and i−1
j (B) = D for k, j = 1, 2 and

k , j. If A and B are in the same component of wedge, then A δ′ B iff there exist sets C,D in X2 such that C δ D
and i−1

k (A) = C and i−1
k (B) = D for some k = 1, 2. Specially, if ik(E) = A and ik(F) = B, then (ik(E), ik(F)) ∈ δ′ iff

(i−1
k (ik(E)), i−1

k (ik(F))) = (E,F) ∈ δ. This is a special case of 2.5.
2.7 Let X be a non-empty set. The discrete proximity structure δ on X is defined as follows for A,B ⊂ X: A δ B iff

A ∩ B , ∅ [28] p. 9.
2.8 Let X be a non-empty set. The indiscrete proximity structure δ on X is defined as follows for A,B ⊂ X: A δ B

iff A , ∅ and B , ∅ [19] p. 5.

3. T0, T1, PreT2 and T2 Proximity Spaces

Let B be a nonempty set, B2 = B × B be cartesian product of B with itself and B2
∨∆ B2 be two distinct

copies of B2 identified along the diagonal, i.e., the result of pushing out ∆ along itself. A point (x, y) in
B2
∨∆ B2 will be denoted by (x, y)1((x, y)2) if (x, y) is in the first (resp. second) component of B2

∨∆ B2. Clearly
(x, y)1 = (x, y)2 iff x = y [2].

The principal axis map A : B2
∨∆ B2

→ B3 is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y). The
skewed axis map S : B2

∨∆ B2
→ B3 is given by S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map,

∇ : B2
∨∆ B2

→ B2 is given by ∇(x, y)i = (x, y) for i = 1, 2. Note that π1S = π11 = π1A, π2S = π21 = π2A,
π3A = π12, and π3S = π22, where πk : B3

→ B the k-th projection k = 1, 2, 3 and πi j = πi +π j : B2
∨∆ B2

→ B,
for i, j ∈ {1, 2} [2].

Definition 3.1. (cf. [2] and [13]) LetU : E → Set be a topological functor, X an object in E withU(X) = B.

1. X is T0 iff the initial lift of theU−source {A : B2
∨∆ B2

→U(X3) = B3 and ∇ : B2
∨∆ B2

→UD(B2) = B2
}

is discrete, whereD is the discrete functor which is a left adjoint toU [2].
2. X is T′0 iff the initial lift of theU−source {id : B2

∨∆ B2
→U(B2

∨∆ B2)
′

= B2
∨∆ B2 and ∇ : B2

∨∆ B2
→

UD(B2) = B2
} is discrete, where (B2

∨∆B2)
′

is the final lift of theU−sink {i1, i2 :U(X2) = B2
→ B2

∨∆B2
},

i1 and i2 are the canonical injections, andD(B2) is the discrete structure on B2 [2], [6].
3. X is T1 iff the initial lift of theU−source {S : B2

∨∆ B2
→U(X3) = B3 and ∇ : B2

∨∆ B2
→UD(B2) = B2

}

is discrete [2].
4. X is PreT2 iff the initial lift of theU-sources {A : B2

∨∆B2
→U(X3) = B3

} and {S : B2
∨∆B2

→U(X3) = B3
}

agree.
5. X is PreT′2 iff the initial lift of theU-source {S : B2

∨∆ B2
→U(X3) = B3

} and the final lift of theU-sink
{i1, i2 :U(X2) = B2

→ B2
∨∆ B2

} agree.
6. X is T2 iff X is T0 and PreT2.
7. X is T′2 iff X is T′0 and PreT′2.
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Remark 3.2. 1. Note that for the category Top of topological spaces, T0, T′0 or T1 or PreT2, PreT′2 or T2, T′2
reduce to usual T0 or T1 or PreT2 (for each distinct pair x and y in X, if the set {x, y} is not indiscrete, then
there exist disjoint neighborhoods of x and y) or T2 separation axioms, respectively [2, 26, 37].

2. For an arbitrary topological category, we have T0 implies T′0 ([6], Theorem 3.2) but the reverse implication is
generally not true (see [6] or 3.3 and 3.4, below).

3. LetU : E → Set be a topological functor, X an object in E and p ∈ U(X) be a retract of X, i.e., the initial lift
h : 1 → X of the U-source p : 1 → U(X) is a retract, where 1 is the terminal object in Set. Then if X is T0

(resp. T1), then X is T0 at p (resp. T1 at p) but the reverse implication is not true, in general ([5], Theorem 2.6).
4. If U : E → Set be a normalized topological functor, then T0 (resp. T1) implies T0 at p (resp. T1 at p) ([5],

Corollary 2.9).

Theorem 3.3. An Efremovich proximity space (X, δ) is T0 if and only if, for each distinct pair x and y in X,
({x}, {y}) < δ.

Proof. Suppose that (X, δ) is T0, i.e., 2.4, 2.7 and Definition 3.1, for any sets U,V on X2
∨∆ X2, π11U δ π11V,

π21U δ π21V, π12U δ π12V and ∇U δ2
d ∇V iff U ∩ V , ∅ (δ2

d is the discrete proximity structure on X2).
We shall show that the condition holds. Suppose for some x, y ∈ X, ({x}, {y}) ∈ δ with x , y. Then,

by 2.4, 2.7 and Definition 3.1, for (U,V) ∈ δ′ (δ′ is an Efremovich proximity structure on X2
∨∆ X2) with

U = {(x, y)1} and V = {(x, y)2}, π11U δ π11V = π1A{(x, y)1} δ π1A{(x, y)2} = π1{(x, y, x)} δ π1{(x, x, y)} = {x} δ {x},
i.e., ({x}, {x}) ∈ δ, π21U δ π21V = π2A{(x, y)1} δ π2A{(x, y)2} = π2{(x, y, x)} δ π2{(x, x, y)} = {y} δ {x}, i.e.,
({y}, {x}) ∈ δ, π12U δ π12V = π3A{(x, y)1} δ π3A{(x, y)2} = π3{(x, y, x)} δ π3{(x, x, y)} = {x} δ {y}, i.e., ({x}, {y}) ∈ δ,
where πi : X3

→ X, i = 1, 2, 3, are the projection maps, and ∇{(x, y)1} δ2
d ∇{(x, y)2} = {(x, y)} δ2

d {(x, y)}, i.e.,
({(x, y)}, {(x, y)}) ∈ δ2

d, (δ2
d is the discrete proximity structure on X2). But U ∩V = ∅. This is a contradiction to

the fact that (X, δ) is T0. Hence if ({x}, {y}) ∈ δ, then x = y.
Conversely, suppose that for each x , y, ({x}, {y}) < δ. We need to show that (X, δ) is T0, i.e., by 2.4, 2.7

and Definition 3.1, we must show that the proximity structure δ′ on X2
∨∆ X2 induced by A : X2

∨∆ X2
→

U((X3, δ3)) = X3 and ∇ : X2
∨∆ X2

→U((X2, δ2
d)) = X2 is discrete, where δ3 and δ2

d are the product proximity
structure on X3 and the discrete proximity structure on X2, respectively. Let (U,V) be any set in δ′, i.e.,
πiA(U) δ πiA(V) (i = 1, 2, 3) and ∇U δ2

d ∇V.
Since δ2

d is the discrete proximity structure and ∇U δ2
d ∇V, then ∇U ∩∇V , ∅. It follows that there exists

(x, y) ∈ ∇U ∩ ∇V. Hence, there exist t ∈ U and z ∈ V such that ∇t = (x, y) = ∇z. If x = y, then t = (x, y)i = z,
(i = 1, 2) and (x, y)i ∈ U ∩ V.

If x , y, then t = (x, y)i, z = (x, y) j (i, j = 1, 2). We need to show that U ∩ V , ∅, i.e., U and V are in the
first or in the second or in both component of X2

∨∆ X2.
If U subset of the first component of X2

∨∆ X2 and V subset of the second component of X2
∨∆ X2, then

{(x, y)1} ⊆ U and {(x, y)2} ⊆ V. It follows that π3A{(x, y)1} δ π3A{(x, y)2} = π3{(x, y, x)} δ π3{(x, x, y)} = {x} δ {y},
i.e., ({x}, {y}) ∈ δ. Since ({x}, {y}) < δ (by assumption), ({(x, y)1}, {(x, y)2}) < δ′ by the condition (P2) of 2.1.

The case U subset of the second component of X2
∨∆ X2 and V subset of the first component of X2

∨∆ X2

can be handled similarly. Hence U and V can not be in different component of X2
∨∆ X2.

If U and V are in both component of X2
∨∆ X2, then U ⊇ {(x, y)1, (x, y)2} and V ⊇ {(x, y)1, (x, y)2}. Hence

U ∩ V , ∅.
If U subset of the first component of X2

∨∆ X2 and V subset of both component of X2
∨∆ X2, then

U ⊇ {(x, y)1} and V ⊇ {(x, y)1, (x, y)2}. Hence U ∩ V , ∅.
If U subset of both component of X2

∨∆ X2 and V subset of the second component of X2
∨∆ X2, then

U ⊇ {(x, y)1, (x, y)2} and V ⊇ {(x, y)2}. Hence U ∩ V , ∅.
If U and V are in the first component of X2

∨∆ X2, then U ⊇ {(x, y)1} and V ⊇ {(x, y)1}. Hence U ∩ V , ∅.
Similarly if U and V are in the second component of X2

∨∆ X2, then U ∩ V , ∅.
If ({(x, y)i}, {(x, y)i}) ∈ δ′, (i = 1, 2), then π1A{(x, y)1} δ π1A{(x, y)1} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ,

π2A{(x, y)1} δ π2A{(x, y)1} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ, π3A{(x, y)1} δ π3A{(x, y)1} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ
and π1A{(x, y)2} δ π1A{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ, π2A{(x, y)2} δ π2A{(x, y)2} = {x} δ {x}, i.e.,
({x}, {x}) ∈ δ, π3A{(x, y)2} δ π3A{(x, y)2} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ.
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We must have (U,V) ⊇ ({(x, y)i}, {(x, y)i}), (i = 1, 2), i.e., U ∩ V , ∅ and consequently, by 2.4, 2.7 and
Definition 3.1, (X, δ) is T0.

Theorem 3.4. An Efremovich proximity space is T′0.

Proof. Let (X, δ) be any Efremovich proximity space. By 2.4, 2.6, 2.7 and Definition 3.1, we will show that for
any (ik(E), ik(F)) ∈ δ′ (δ′ is an Efremovich proximity structure on X2

∨∆ X2), if ik(E,F) = (ik(E), ik(F)) ∈ δ′ (k =
1, 2) for some (E,F) ∈ δ2 (E,F ⊂ X2 and δ2 is the product proximity structure on X2) and (∇(ik(E)),∇(ik(F))) ∈ δ2

d
(δ2

d is the discrete proximity structure on X2), then we will show that (ik(E), ik(F)) ⊇ ({(x, y)k}, {(x, y)k}),
(k = 1, 2), i.e., ik(E) ∩ ik(F) , ∅.

Since δ2
d is the discrete proximity structure and ∇(ik(E)) δ2

d ∇(ik(F)), then ∇(ik(E))∩∇(ik(F)) , ∅. It follows
that there exists (x, y) ∈ ∇(ik(E))∩∇(ik(F)). Hence, there exist t ∈ ik(E) and z ∈ ik(F) such that ∇t = (x, y) = ∇z.
If x = y, then t = (x, y)k = z, (k = 1, 2).

If x , y, then t = (x, y)k, z = (x, y)n (k,n = 1, 2). We need to show that ik(E) ∩ ik(F) , ∅, i.e., ik(E) and ik(F)
are in the first or in the second or in both component of X2

∨∆ X2.
If ik(E) subset of the first component of X2

∨∆ X2 and ik(F) subset of the second component of X2
∨∆ X2,

then {(x, y)1} ⊆ ik(E) and {(x, y)2} ⊆ ik(F). But, if (ik(E), ik(F)) ⊇ ({(x, y)1}, {(x, y)2}) ∈ δ′ for some (E,F) ∈ δ2 and
k = 1 (resp. k = 2), then ({(x, y)1}, {(x, y)2}) ∈ (i1(E), i1(F)) which shows that (x, y)2 (resp. (x, y)1) must be in
the first (resp. second) component of X2

∨∆ X2, a contradiction since x , y.
Similarly, if ik(E) subset of the second component of X2

∨∆ X2 and ik(F) subset of the first component
of X2

∨∆ X2, then {(x, y)2} ⊆ ik(E) and {(x, y)1} ⊆ ik(F). But, if (ik(E), ik(F)) ⊇ ({(x, y)2}, {(x, y)1}) ∈ δ′ for some
(E,F) ∈ δ2 and k = 1 (resp. k = 2), then ({(x, y)2}, {(x, y)1}) ∈ (i1(E), i1(F)) which shows that (x, y)2 (resp. (x, y)1)
must be in the first (resp. second) component of X2

∨∆ X2, a contradiction since x , y. Hence ik(E) and ik(F)
can not be in different component of X2

∨∆ X2.
If ik(E) and ik(F) are in both component of X2

∨∆ X2, then ik(E) ⊇ {(x, y)1, (x, y)2} and ik(F) ⊇ {(x, y)1, (x, y)2}.
Hence ik(E) ∩ ik(F) , ∅.

If ik(E) subset of the first component of X2
∨∆ X2 and ik(F) subset of both component of X2

∨∆ X2, then
ik(E) ⊇ {(x, y)1} and ik(F) ⊇ {(x, y)1, (x, y)2}. Hence ik(E) ∩ ik(F) , ∅.

If ik(E) subset of both component of X2
∨∆ X2 and ik(F) subset of the second component of X2

∨∆ X2, then
ik(E) ⊇ {(x, y)1, (x, y)2} and ik(F) ⊇ {(x, y)2}. Hence ik(E) ∩ ik(F) , ∅.

If ik(E) and ik(F) are in the first component of X2
∨∆ X2, then ik(E) ⊇ {(x, y)1} and ik(F) ⊇ {(x, y)1}. Hence

ik(E) ∩ ik(F) , ∅. Similarly if ik(E) and ik(F) are in the second component of X2
∨∆ X2, then ik(E) ∩ ik(F) , ∅.

We must have (ik(E), ik(F)) ⊇ ({(x, y)i}, {(x, y)i}), (i = 1, 2), i.e., ik(E) ∩ ik(F) , ∅ and consequently, by 2.4,
2.6, 2.7 and Definition 3.1, (X, δ) is T′0.

Theorem 3.5. An Efremovich proximity space (X, δ) is T1 if and only if, for each distinct pair x and y in X,
({x}, {y}) < δ.

Proof. Suppose that (X, δ) is T1, i.e., 2.4, 2.7 and Definition 3.1, for any sets U,V on X2
∨∆ X2, π11U δ π11V,

π21U δ π21V, π22U δ π22V and ∇U δ2
d ∇V iff U ∩ V , ∅ (δ2

d is the discrete proximity structure on X2).
We shall show that the condition holds. Suppose for some x, y ∈ X, ({x}, {y}) ∈ δ with x , y. Then,

by 2.4, 2.7 and Definition 3.1, for (U,V) ∈ δ′ (δ′ is an Efremovich proximity structure on X2
∨∆ X2) with

U = {(x, y)1} and V = {(x, y)2}, π11U δ π11V = π1S{(x, y)1} δ π1S{(x, y)2} = π1{(x, y, y)} δ π1{(x, x, y)} = {x} δ {x},
i.e., ({x}, {x}) ∈ δ, π21U δ π21V = π2S{(x, y)1} δ π2S{(x, y)2} = π2{(x, y, y)} δ π2{(x, x, y)} = {y} δ {x}, i.e.,
({y}, {x}) ∈ δ, π22U δ π22V = π3S{(x, y)1} δ π3S{(x, y)2} = π3{(x, y, y)} δ π3{(x, x, y)} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ,
where πi : X3

→ X, i = 1, 2, 3, are the projection maps, and ∇{(x, y)1} δ2
d ∇{(x, y)2} = {(x, y)} δ2

d {(x, y)}, i.e.,
({(x, y)}, {(x, y)}) ∈ δ2

d, (δ2
d is the discrete proximity structure on X2). But U ∩V = ∅. This is a contradiction to

the fact that (X, δ) is T1. Hence if ({x}, {y}) ∈ δ, then x = y.
Conversely, suppose that for each x , y, ({x}, {y}) < δ. We need to show that (X, δ) is T1, i.e., by 2.4, 2.7

and Definition 3.1, we must show that the proximity structure δ′ on X2
∨∆ X2 induced by S : X2

∨∆ X2
→

U((X3, δ3)) = X3 and ∇ : X2
∨∆ X2

→U((X2, δ2
d)) = X2 is discrete, where δ3 and δ2

d are the product proximity
structure on X3 and the discrete proximity structure on X2, respectively. Let (U,V) be any set in δ′, i.e.,
πiS(U) δ πiS(V) (i = 1, 2, 3) and ∇U δ2

d ∇V.
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Since δ2
d is the discrete proximity structure and ∇U δ2

d ∇V, then ∇U ∩∇V , ∅. It follows that there exists
(x, y) ∈ ∇U ∩ ∇V. Hence, there exist t ∈ U and z ∈ V such that ∇t = (x, y) = ∇z. If x = y, then t = (x, y)i = z,
(i = 1, 2) and (x, y)i ∈ U ∩ V.

If x , y, then t = (x, y)i, z = (x, y) j (i, j = 1, 2). We need to show that U ∩ V , ∅, i.e., U and V are in the
first or in the second or in both component of X2

∨∆ X2.
If U subset of the first component of X2

∨∆ X2 and V subset of the second component of X2
∨∆ X2, then

{(x, y)1} ∈ U and {(x, y)2} ∈ V. It follows that π2S{(x, y)1} δ π2S{(x, y)2} = π2{(x, y, y)} δ π2{(x, x, y)} = {y} δ {x},
i.e., ({y}, {x}) ∈ δ. Since ({x}, {y}) < δ (by assumption), ({(x, y)1}, {(x, y)2}) < δ′ by the condition (P2) of 2.1.

The case U subset of the second component of X2
∨∆ X2 and V subset of the first component of X2

∨∆ X2

can be handled similarly. Hence U and V can not be in different component of X2
∨∆ X2.

If U and V are in both component of X2
∨∆ X2, then U ⊇ {(x, y)1, (x, y)2} and V ⊇ {(x, y)1, (x, y)2}. Hence

U ∩ V , ∅.
If U subset of the first component of X2

∨∆ X2 and V subset of both component of X2
∨∆ X2, then

U ⊇ {(x, y)1} and V ⊇ {(x, y)1, (x, y)2}. Hence U ∩ V , ∅.
If U subset of both component of X2

∨∆ X2 and V subset of the second component of X2
∨∆ X2, then

U ⊇ {(x, y)1, (x, y)2} and V ⊇ {(x, y)2}. Hence U ∩ V , ∅.
If U and V are in the first component of X2

∨∆ X2, then U ⊇ {(x, y)1} and V ⊇ {(x, y)1}. Hence U ∩ V , ∅.
Similarly if U and V are in the second component of X2

∨∆ X2, then U ∩ V , ∅.
If ({(x, y)i}, {(x, y)i}) ∈ δ′, (i = 1, 2), then π1S{(x, y)1} δ π1S{(x, y)1} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ,

π2S{(x, y)1} δ π2S{(x, y)1} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ, π3S{(x, y)1} δ π3S{(x, y)1} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ
andπ1S{(x, y)2} δ π1S{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ, π2S{(x, y)2} δ π2S{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ,
π3S{(x, y)2} δ π3S{(x, y)2} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ.

We must have (U,V) ⊇ ({(x, y)i}, {(x, y)i}), (i = 1, 2), i.e., U ∩ V , ∅ and consequently, by 2.4, 2.7 and
Definition 3.1, (X, δ) is T1.

Remark 3.6. Let (X, δ) be an Efremovich proximity space, it follows there are Theorems 3.3, 3.5 that (X, δ) is T0 if
and only if (X, δ) is T1 if and only if, for each distinct pair x and y in X, ({x}, {y}) < δ.

Theorem 3.7. An Efremovich proximity space is PreT2.

Proof. Let (X, δ) be any Efremovich proximity space. We will show that (X, δ) is PreT2, i.e., by 2.4 and
Definition 3.1, for any pair U and V in the wedge, π1A(U) δ π1A(V), π2A(U) δ π2A(V) and π3A(U) δ π3A(V)
iff π1S(U) δ π1S(V), π2S(U) δ π2S(V) and π3S(U) δ π3S(V), respectively.

We consider various possibilities for U and V; namely U ⊇ {(x, y)1}, {(x, y)2} or {(x, x)} and V ⊇ {(z,w)1},
{(z,w)2} or {(z, z)} for some x, y, z,w ∈ X. By the condition (P2) of 2.1 it is sufficient to take ”equality” instead
of ”superset” for the possibilities above.

If U = {(x, y)1} and V = {(z,w)1}, then π1A(U) δ π1A(V) = {x} δ {z} = π1S(U) δ π1S(V), π2A(U) δ π2A(V) =
{y} δ {w} = π2S(U) δ π2S(V), and π3A(U) δ π3A(V) = {x} δ {z} iff π3S(U) δ π3S(V) = {y} δ {w}.

If U = {(x, y)1} and V = {(z,w)2}, then π1A(U) δ π1A(V) = {x} δ {z} = π1S(U) δ π1S(V), π2A(U) δ π2A(V) =
{y} δ {z} = π2S(U) δ π2S(V). Note that π3A(U) δ π3A(V) = {x} δ {w} iff π3S(U) δ π3S(V) = {y} δ {w}, (since δ is
an Efremovich proximity structure).

If U = {(x, y)1} and V = {(z, z)}, then π1A(U) δ π1A(V) = {x} δ {z} = π1S(U) δ π1S(V), π2A(U) δ π2A(V) =
{y} δ {z} = π2S(U) δ π2S(V), clearly, π3A(U) δ π3A(V) = {x} δ {z} iff π3S(U) δ π3S(V) = {y} δ {z}.

Similarly, if U = {(x, y)2} or {(x, x)} and V = {(z,w)1}, {(z,w)2} or {(z, z)}, then we have π1A(U) δ π1A(V),
π2A(U) δπ2A(V) andπ3A(U) δπ3A(V) iffπ1S(U) δπ1S(V),π2S(U) δπ2S(V) andπ3S(U) δπ3S(V), respectively.

Hence (X, δ) is PreT2.

Theorem 3.8. An Efremovich proximity space (X, δ) is PreT′2 if and only if, for each distinct pair x and y in X,
({x}, {y}) < δ.

Proof. Suppose (X, δ) is PreT′2, i.e., by 2.4, 2.6 and Definition 3.1, for any sets U,V on X2
∨∆ X2, (a)π11U δ π11V,

π21U δ π21V and π22U δ π22V iff (b) there exists a pair (a, b), (c, d) ∈ X2 such that {(a, b)} δ2
{(c, d)} and

ik{(a, b)} = U and ik{(c, d)} = V for some k = 1 or 2, where δ2 is the product proximity structure on X2.
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For each pair U,V in the different component of X2
∨∆ X2, U δ′ V iff there exist sets C,D and A in

X2 such that C δ2 A and A δ2 D with i−1
k (U) = C and i−1

j (V) = D for k, j = 1, 2 and k , j. If U and V
are in the same component of wedge, then U δ′ V iff there exist sets C,D in X2 such that C δ2 D and
i−1
k (U) = C and i−1

k (V) = D for some k = 1, 2. Specially, if ik(E) = U and ik(F) = V, then (ik(E), ik(F)) ∈ δ′ iff
(i−1

k (ik(E)), i−1
k (ik(F))) = (E,F) ∈ δ2. This is a special case of 2.5. We shall show that the condition holds.

Suppose for some x, y ∈ X, ({x}, {y}) ∈ δ with x , y. Then, for (U,V) ∈ δ′ (δ′ is an Efremovich proxim-
ity structure on X2

∨∆ X2) with U ⊇ {(x, y)1} and V ⊇ {(x, y)2}, π11U δ π11V ⊇ π1S{(x, y)1} δ π1S{(x, y)2} =
π1{(x, y, y)} δ π1{(x, x, y)} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ, π21U δ π21V ⊇ π2S{(x, y)1} δ π2S{(x, y)2} =
π2{(x, y, y)} δ π2{(x, x, y)} = {y} δ {x}, i.e., ({y}, {x}) ∈ δ, π22U δ π22V ⊇ π3S{(x, y)1} δ π3S{(x, y)2} =
π3{(x, y, y)} δ π3{(x, x, y)} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ, where πi : X3

→ X, (i = 1, 2, 3), are the projec-
tion maps.

There exist sets E,F and A in X2 such that E δ2 A and A δ2 F with i−1
k (U) = E and i−1

j (V) = F for k, j = 1, 2
and k , j. ik(i−1

k (U)) = ik(E) ⊆ U and i j(i−1
j (V)) = i j(F) ⊆ V.

If ik(E) subset of the first component of X2
∨∆ X2 and ik(F) subset of the second component of X2

∨∆ X2,
then {(x, y)1} ⊆ ik(E) and {(x, y)2} ⊆ ik(F). But, if (ik(E), ik(F)) ⊇ ({(x, y)1}, {(x, y)2}) ∈ δ′ for some (E,F) ∈ δ2 and
k = 1 (resp. k = 2), then ({(x, y)1}, {(x, y)2}) ⊇ (i1(E), i1(F)) which shows that (x, y)2 (resp. (x, y)1) must be in
the first (resp. second) component of X2

∨∆ X2, a contradiction since x , y.
Similarly, if ik(E) subset of the second component of X2

∨∆ X2 and ik(F) subset of the first component
of X2

∨∆ X2, then {(x, y)2} ⊆ ik(E) and {(x, y)1} ⊆ ik(F). But, if (ik(E), ik(F)) ⊇ ({(x, y)2}, {(x, y)1}) ∈ δ′ for some
(E,F) ∈ δ2 and k = 1 (resp. k = 2), then ({(x, y)2}, {(x, y)1}) ∈ (i1(E), i1(F)) which shows that (x, y)2 (resp. (x, y)1)
must be in the first (resp. second) component of X2

∨∆ X2, a contradiction since x , y. Hence ik(E) and ik(F)
can not be in different component of X2

∨∆ X2.
Conversely, suppose that for each x , y, ({x}, {y}) < δ. We need to show that (X, δ) is PreT′2, i.e., by 2.4,

2.6 and 3.1, (a) and (b) above are equivalent. We first show that (a) implies (b). Let (U,V) be any set in δ′,
i.e., πiS(U) δ πiS(V) (i = 1, 2, 3).

If ik(E) ⊆ U subset of the first component of X2
∨∆ X2 and ik(F) ⊆ V subset of the second compo-

nent of X2
∨∆ X2, then {(x, y)1} ⊇ ik(E) and {(x, y)2} ⊇ ik(F). It follows that π2S{(x, y)1} δ π2S{(x, y)2} =

π2{(x, y, y)} δ π2{(x, x, y)} = {y} δ {x}, i.e., ({y}, {x}) ∈ δ. Since ({x}, {y}) < δ (by assumption), ({(x, y)1}, {(x, y)2}) <
δ′ by the condition (P2) of 2.1.

The case ik(E) ⊆ U subset of the second component of X2
∨∆X2 and ik(F) ⊆ V subset of the first component

of X2
∨∆ X2 can be handled similarly. Hence ik(E) and ik(F) can not be in different component of X2

∨∆ X2.
If ik(E) ⊆ U and ik(F) ⊆ V are in both component of X2

∨∆ X2, then U ⊇ ik(E) ⊇ {(x, y)1, (x, y)2} and
V ⊇ ik(F) ⊇ {(x, y)1, (x, y)2}.

If ik(E) ⊆ U subset of the first component of X2
∨∆ X2 and ik(F) ⊆ V subset of both component of X2

∨∆ X2,
then U ⊇ ik(E) ⊇ {(x, y)1} and V ⊇ ik(F) ⊇ {(x, y)1, (x, y)2}.

If ik(E) ⊆ U subset of both component of X2
∨∆ X2 and ik(F) ⊆ V subset of the second component of

X2
∨∆ X2, then U ⊇ ik(E) ⊇ {(x, y)1, (x, y)2} and V ⊇ ik(F) ⊇ {(x, y)2}.
If ik(E) ⊆ U and ik(F) ⊆ V are in the first component of X2

∨∆ X2, then U ⊇ ik(E) ⊇ {(x, y)1} and
V ⊇ ik(F) ⊇ {(x, y)1}. Similarly if ik(E) ⊆ U and ik(F) ⊆ V are in the second component of X2

∨∆ X2, then
U ⊇ ik(E) ⊇ {(x, y)2} and V ⊇ ik(F) ⊇ {(x, y)2}.

If ({(x, y)i}, {(x, y)i}) ∈ δ′, (i = 1, 2), then π1S{(x, y)1} δ π1S{(x, y)1} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ,
π2S{(x, y)1} δ π2S{(x, y)1} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ, π3S{(x, y)1} δ π3S{(x, y)1} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ
andπ1S{(x, y)2} δ π1S{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ, π2S{(x, y)2} δ π2S{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ,
π3S{(x, y)2} δ π3S{(x, y)2} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ.

It follows that (ik(E), ik(F)) ⊇ ({(x, y)i}, {(x, y)i}), (i = 1, 2), i.e., ik(E) ⊆ U and ik(F) ⊆ V are in the first or in
the second or in both component of X2

∨∆ X2. So there exists a pair (a, b), (c, d) ∈ X2 such that {(a, b)} δ2
{(c, d)}

and ik{(a, b)} = U and ik{(c, d)} = V for some k = 1 or 2. This shows that (a) implies (b).
We now show that (b) implies (a). Suppose (b) holds. We need to show that for any sets U,V on

X2
∨∆ X2, π11U δ π11V, π21U δ π21V and π22U δ π22V. There exists a pair (a, b), (c, d) ∈ X2 such that

{(a, b)} δ2
{(c, d)} and ik{(a, b)} = U and ik{(c, d)} = V for some k = 1 or 2. By using the similar argument as

above, we must have (ik{(a, b)}, ik{(c, d)}) ⊇ ({(x, y)i}, {(x, y)i}), (i = 1, 2). For i = 1 if ({(x, y)1}, {(x, y)1}) ∈ δ′,
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then π1S{(x, y)1} δ π1S{(x, y)1} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ, π2S{(x, y)1} δ π2S{(x, y)1} = {y} δ {y}, i.e.,
({y}, {y}) ∈ δ, π3S{(x, y)1} δ π3S{(x, y)1} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ. For i = 2 if ({(x, y)2}, {(x, y)2}) ∈ δ′, then
π1S{(x, y)2} δ π1S{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ, π2S{(x, y)2} δ π2S{(x, y)2} = {x} δ {x}, i.e., ({x}, {x}) ∈ δ,
π3S{(x, y)2} δ π3S{(x, y)2} = {y} δ {y}, i.e., ({y}, {y}) ∈ δ. Hence πiS(U) δ πiS(V) (i = 1, 2, 3). This shows that (b)
implies (a).

Hence (X, δ) is PreT′2.

Remark 3.9. If an Efremovich proximity space (X, δ) is PreT′2, then it is PreT2. However, the converse is not true
generally. For example, let X = {1, 2} and δ = {(X,X), ({1}, {1}), ({2}, {2}), (X, {1}), ({1},X), (X, {2}), ({2},X), ({1}, {2}),
({2}, {1})}. Then (X, δ) is PreT2, but it is not PreT′2 since ({1}, {2}) ∈ δ but 1 , 2.

Theorem 3.10. An Efremovich proximity space (X, δ) is T2 iff, for each distinct pair x and y in X, ({x}, {y}) < δ.

Proof. It follows from Definition 3.1 and Theorems 3.3, 3.7.

Theorem 3.11. An Efremovich proximity space (X, δ) is T′2 iff, for each distinct pair x and y in X, ({x}, {y}) < δ.

Proof. It follows from Definition 3.1 and Theorems 3.4, 3.8.

4. T0 and T1 Proximity Spaces at a Point p and Relationships

Let B be set and p ∈ B. Let B∨p B be the wedge at p ([2] p. 334), i.e., two disjoint copies of B identified at
p, or in other words, the pushout of p : 1→ B along itself (where 1 is the terminal object in Set, the category
of sets). More precisely, if i1 and i2 : B → B ∨p B denote the inclusion of B as the first and second factor,
respectively, then i1p = i2p is the pushout diagram. A point x in B ∨p B will be denoted by x1(x2) if x is in
the first (resp. second) component of B ∨p B. Note that p1 = p2.

The principal p-axis map, Ap : B ∨p B→ B2 is defined by Ap(x1) = (x, p) and Ap(x2) = (p, x). The skewed
p-axis map, Sp : B∨p B→ B2 is defined by Sp(x1) = (x, x) and Sp(x2) = (p, x). The fold map at p, 5p : B∨p B→ B
is given by 5p(xi) = x for i = 1, 2 [2, 4].

Note that the maps Ap, Sp and 5p are the unique maps arising from the above pushout diagram for
which Api1 = (id, f ), Spi1 = (id, id) : B→ B2, Api2 = Spi2 = ( f , id) : B→ B2, and 5pi j = id, j = 1, 2, respectively,
where, id : B→ B is the identity map and f : B→ B is the constant map at p [2].

Remark 4.1. We define p1, p2 by 1 + p, p + 1 : B ∨p B → B, respectively where 1 : B → B is the identity map,
f : B → B is constant map at p (i.e., having value p). Note that π1Ap = p1 = π1Sp, π2Ap = p2, π2Sp = ∇p, where
πi : B2

→ B is the i-th projection, i = 1, 2. When showing Ap and Sp are initial it is sufficient to show that (p1 and
p2) and (p1 and ∇p) are initial lifts, respectively [2, 4].

Definition 4.2. [2] LetU : E −→ Set be a topological functor, X an object in E, and p be a point inU(X) = B.

1. X is T0 at p iff the initial lift of theU-source {Ap : B ∨p B→U(X2) = B2 and ∇p : B ∨p B→UD(B) = B} is
discrete, whereD is the discrete functor which is a left adjoint toU.

2. X is T′0 at p iff the initial lift of theU -source {id : B∨pB→U(X∨pX) = B∨pB and∇p : B∨pB→UD(B) = B}
is discrete, where X ∨p X is the wedge in E i.e., the final lift of theU-sink {i1, i2 : U(X) = B→ B ∨p B} where
i1, i2 denote the canonical injections.

3. X is T1 at p iff the initial lift of theU-source {Sp : B ∨p B→U(X2) = B2 and ∇p : B ∨p B→UD(B) = B} is
discrete.

Remark 4.3. Note that for the category Top of topological spaces, T0 at p, T′0 at p, or T1 at p reduce to usual T0 at
p or T1 at p, respectively, where a topological space X is called T0 at p (resp. T1 at p) if for each x , p, there exists a
neighborhood of x not containing p or (resp. and) there exists a neighborhood of p not containing x [7].

Theorem 4.4. Let (X, δ) be an Efremovich proximity space and p ∈ X. (X, δ) is T1 at p iff, for each x , p, ({x}, {p}) < δ
[25].
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Theorem 4.5. Let (X, δ) be an Efremovich proximity space and p ∈ X. (X, δ) is T0 at p iff, for each x , p, ({x}, {p}) < δ
[25].

Remark 4.6. Let (X, δ) be an Efremovich proximity space and p ∈ X. It follows from 4.4, 4.5 that (X, δ) is T0 at p if
and only if (X, δ) is T1 at p if and only if, for each x , p, ({x}, {p}) < δ [25].

Theorem 4.7. An Efremovich proximity space is T′0 at p [25].

Remark 4.8. If an Efremovich proximity space (X, δ) is T0 at p ∈ X or T1 at p ∈ X, then it is T′0 at p. However, the
converse is not true generally. For example, let X = {a, b} and δ = {(X,X), ({a}, {a}), ({b}, {b}), (X, {a}), ({a},X), (X, {b}),
({b},X), ({a}, {b}), ({b}, {a})}. Then (X, δ) is T′0 at p = a but it is not T0 at p = a or T1 at p since ({a}, {b}) ∈ δ but a , b
[25].

Definition 4.9. [28, 32] An Efremovich proximity space (X, δ) is said to be a

• T0-space if x , y for x, y ∈ X implies that x 6δ y.

• T1-space if x , y for x, y ∈ X implies that x 6δ y.

• T2-space (Hausdorff) if x δ y for x, y ∈ X implies that x = y.

We give explicit relationships among the generalized separation properties T0 and T1, the separation
properties at a point p and separation properties Ti, i = 0, 1, 2 in Definition 4.9 in the topological category of
proximity spaces.

Remark 4.10. Let (X, δ) be an Efremovich proximity space.

(i) By Theorems 3.3, 3.5, 3.8, 3.10, 3.11, and Definition 4.9, (X, δ) is T0 if and only if (X, δ) is T0 if and only if
(X, δ) is T1 if and only if (X, δ) is T1 if and only if (X, δ) is PreT′2 if and only if (X, δ) is T2 if and only if (X, δ)
is T′2 if and only if (X, δ) is T2 if and only if, for each distinct pair x and y in X, ({x}, {y}) < δ.

(ii) By Theorems 3.3, 3.4, 3.5, 3.7, 3.8, 3.10, 3.11, and Definition 4.9, (X, δ) is T′0 or PreT2 if (X, δ) is T0 or T0

or T1 or T1 or PreT′2 or T2 or T′2 or T2. But the converse implication is not true, in general. For example,
let X = {x, y} and δ = {(X,X), ({x}, {x}), ({y}, {y}), (X, {x}), ({x},X), (X, {y}), ({y},X), ({x}, {y}), ({y}, {x})}. Then
(X, δ) is T′0 and PreT2 but it is not T0 or T0 or T1 or T1 or PreT′2 or T2 or T′2 or T2, since ({x}, {y}) ∈ δ but x , y.

(iii) By Theorems 3.4, 3.7 and 4.7, (X, δ) is PreT2 if and only if (X, δ) is T′0 if and only if (X, δ) is T′0 at p for all
points p in X.

We can infer the following result.

Remark 4.11. Let (X, δ) be an Efremovich proximity space. By Theorems 3.3, 3.5, 3.8, 3.10, 3.11, 4.4, 4.5, Definition
4.9, and Remark 4.10 then the following are equivalent:

(i) (X, δ) is T0.
(ii) (X, δ) is T0.

(iii) (X, δ) is T1.
(iv) (X, δ) is T1.
(v) (X, δ) is PreT′2.

(vi) (X, δ) is T2.
(vii) (X, δ) is T′2.

(viii) (X, δ) is T2.
(ix) For any distinct pair of points x and y in X, ({x}, {y}) < δ.
(x) (X, δ) is T1 at p for all points p in X.

(xi) (X, δ) is T0 at p for all points p in X.
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