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Abstract. In this paper by using the scalariation method we introduced the concept of relaxed K-preinvex
set-valued maps and obtain some equivalence results of them in terms of normal subdifferential. Also,
we consider generalized Minty variational-like inequalities and show that the set of solutions is equal to
scalarized set-valued optimization problems’s solutions under generalized relaxed convexity assumptions.

1. Introduction

Variational inequalities are identified either in the form presented by Stampacchia [18] or in the form
by Minty [11]. The concept of vector variational inequality, which was first introduced by Giannessi
[8] for differentiable functions in finite dimensional spaces, has many applications in problems such that
economics, finance, optimization and operational research. In recent years, various kinds of variational
inequalities and optimization problems have been studied in a general setting by many authors; see, e.g.
[1–3, 16, 17, 19]. By using the Clarke’s generalized directional derivative, Santos et al. [19] considered
scalarized variational-like inequalities and showed that the set of their solution is equal to weak efficient
solution set. Afterward, Alshahrani et al. [2] extended results in [19] and obtained some existence results
for solutions of nonsmooth variational-like inequalities under densely pseudomonotonicity. Very recently,
Oveisiha and Zafarani [16] extended results in [2] to set-valued optimization problems and prove some
characterization of the solution sets of pseudoinvex extremum problems.
In this paper, we introduce a relaxed K-preinvex set-valued map which extends and unifies the concepts of
(strong) K-preinvexity for set-valued maps and (strong) preinvexity for vector-valued functions as well as
classical strong convexity for real-valued functions in the literature. Because there are many examples of
set-valued optimization problems that their solutions are not a solution of standard Minty variational-like
inequality (e.g. Example 4.3), by a modification, we obtain generalized Minty variational-like inequality,
that its solution set is larger than the solution set of Minty variational-like inequality. The paper is organized
as follows: Section 1 prepares the notions and preliminary results used in the sequel. In section 2, some
properties of relaxed K-preinvex maps in terms of normal subdifferential are established. Section 3 is
devoted to obtain an equivalence relation between set-valued optimization problems and a generalization
concept of Minty variational inequalities. Finally, in section 4, some conclusions are presented, which
summarize this work.
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2. Preliminaries

Let X be a Banach space and X∗ be its topological dual space. The norm in X and X∗ will be denoted by
||.||. We denote by 〈., .〉, [x, y] and ]x, y[ the dual pair between X and X∗, the line segment for x, y ∈ X, and
the interior of [x, y], respectively. Also, suppose that BX and SX to be the closed unit ball and unit sphere
of X, respectively. Now, we recall some concepts of subdifferentials and coderivatives that we need in next
sections.

Definition 2.1. [13] Let X be a Banach space, Ω be a nonempty subset of X, x ∈ Ω and ε ≥ 0. The set of ε-normals
to Ω at x is

N̂ε(x; Ω) := {x∗ ∈ X∗| lim sup
u

Ω
−→x

〈x∗,u − x〉
||u − x||

≤ ε}.

If ε = 0, the above set is denoted by N̂(x; Ω) and called regular normal cone to Ω at x. Let x̄ ∈ Ω, the basic normal
cone to Ω at x̄ is

N(x̄; Ω) := Limsupx→x̄,ε↓0N̂ε(x; Ω).

Definition 2.2. [13] Let X be a Banach space and ϕ : X→ R̄ be finite at x̄ ∈ X. The basic (limiting, Mordukhovich)
subdifferential due to [13] of ϕ at x̄ is defined by

∂ϕ(x̄) := {x∗ ∈ X∗|(x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)}.

Mean-value Theorems are important and useful tools in nonsmooth analysis. We here present a mean value
theorem for limiting subdifferential.

Theorem 2.3. [13] Let X be an Asplund space (i.e., every continuous convex function defined on X is Fréchet
differentiable on a dense set of points) and ϕ be Lipschitz continuous on an open set containing [a, b] in X. Then one
has

〈x∗, b − a〉 ≥ ϕ(b) − ϕ(a), for some x∗ ∈ ∂ϕ(c); c ∈ [a, b[.

Given a set-valued mapping F : X⇒ Y between Banach spaces with the range space Y partially ordered by
a nonempty, closed and convex cone K. Denoting the ordering relation on Y by “≤”, we have

y1 ≤ y2 if and only if y2 − y1 ∈ K.

Now, we present some definitions and results about coderivatives and subdifferentials of set-valued map-
pings.

Definition 2.4. [13] Let F : X ⇒ Y be a set-valued mapping between Banach spaces and (x̄, ȳ) ∈ grF. Then, the
normal coderivative of F at (x̄, ȳ) is the set-valued mapping D∗NF(x̄, ȳ) : Y∗ ⇒ X∗ given by

D∗NF(x̄, ȳ)(y∗) := {x∗ ∈ X∗|(x∗,−y∗) ∈ N((x̄, ȳ); grF)}.

Definition 2.5. [4] Let F : X ⇒ Y be a set-valued mapping. Then, the epigraphical multifunction EF : X ⇒ Y is
defined by

EF(x) := {y ∈ Y|y ∈ F(x) + K}.

The normal subdifferentials of F at the point (x̄, ȳ) ∈ epiF in the direction y∗ ∈ Y∗ is defined by ∂F(x̄, ȳ)(y∗) :=
D∗NEF(x̄, ȳ)(y∗).

Definition 2.6. [13] Let F : Ω ⊂ X⇒ Y with domF , ∅.

(i) F is said to be Lipschitz around x̄ ∈ domF iff there are a neighborhood U of x̄ and ` ≥ 0 such that

F(x) ⊂ F(u) + `||x − u||BY, for all x,u ∈ Ω ∩U.
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(ii) F is said to be epi-Lipschitz around x̄ ∈ domF iff EF is Lipschitz around this point.

Let K be a closed, convex and pointed cone in Y and denote the positive polar cone of K by

K+ := {y∗ ∈ Y∗|〈y∗, k〉 ≥ 0, ∀k ∈ K}.

The next object is the marginal function associated with a set-valued mapping. Given F : X ⇒ Y and
y∗ ∈ Y∗. We associate to F and y∗ a marginal function fy∗ : X→ R ∪ {±∞}

fy∗ (x) := inf{y∗(y)|y ∈ F(x)},

and the minimum set
My∗ (x) := {y ∈ F(x)| fy∗ (x) = y∗(y)}.

Throughout this paper, we suppose that grF is closed, and for all x ∈ domF and y∗ ∈ K+, My∗ (x) is nonempty.

Lemma 2.7. [15] Suppose that F : Ω ⊂ X ⇒ Y is a set-valued map and x̄ ∈ domF. If F is epi-Lipschitz around x̄
and y∗ ∈ K+, then the scalar-function fy∗ is locally Lipschitz at x̄.

The next theorem gives some relations between normal subdifferential and normal coderivative of F and
limiting subdifferential of its marginal functions. (see also Theorem 3.4 and Corollary 3.5 in [15])

Theorem 2.8. [15] Let X,Y be Asplund spaces, F : X⇒ Y and y∗ ∈ K+. Suppose that x̄ ∈ domF and ȳ ∈My∗ (x̄).

(i) If F is Lipschitz around x̄, then ∂ fy∗ (x̄) ⊆ D∗NF(x̄, ȳ)(y∗).

(ii) If F is epi-Lipschitz around x̄, then ∂ fy∗ (x̄) ⊆ ∂F(x̄, ȳ)(y∗).

Definition 2.9. [21] Let η : X×X→ X. A subset Ω of X is said to be invex with respect to η if for any x, y ∈ Ω and
λ ∈ [0, 1], y + λη(x, y) ∈ Ω.

The following conditions are useful in the sequel.
Condition A.[10] A mapping F : Ω ⊂ X ⇒ Y from an invex set Ω with respect to η to an ordered Banach
space is said to enjoy Condition A if

F(x1) ⊂ F(x2 + η(x1, x2)) + K, for all x1, x2 ∈ Ω.

Condition C.[12] Let η:X × X→ X. Then for any x, y ∈ X, λ ∈ [0, 1]

η(y, y + λη(x, y)) = −λη(x, y); η(x, y + λη(x, y)) = (1 − λ)η(x, y).

Remark 2.10. By some computation, we can see that if Condition C holds, then for any x1, x2 ∈ X and λ1, λ2 ∈ [0, 1]

η(x1 + λ1η(x2, x1), x1 + λ2η(x2, x1)) = (λ1 − λ2)η(x2, x1).

Let Ω be a convex subset of a vector space X. Then a mapping F : Ω ⇒ Ω is called a KKM mapping iff
for each nonempty finite subset A of Ω, conv(A) ⊆ F(A), where conv(A) denotes the convex hull of A, and
F(A) =

⋃
{F(x)|x ∈ A}.

Lemma 2.11. (see e.g. [7]) Let Ω be a nonempty and convex subset of a Hausdorff topological vector space X.
Suppose that Γ, Γ̂ : Ω⇒ Ω are two set-valued mappings such that the following conditions are satisfied:
(A1) Γ̂(x) ⊆ Γ(x), ∀x ∈ Ω,
(A2) Γ̂ is a KKM map,
(A3) Γ is closed-valued,
(A4) there is a nonempty compact convex set B ⊆ Ω, such that clΩ(

⋂
x∈B

Γ(x)) is compact.

Then,
⋂
x∈Ω

Γ(x) , ∅.
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3. Relaxed K-Preinvex Set-Valued Maps

In this section, we study the concept of relaxed K-preinvex maps and obtain some equivalence results
about them.

Definition 3.1. Let Ω ⊂ X be an invex set with respect to η and F : Ω ⊂ X⇒ Y.

(i) F is said to be relaxed K-preinvex with respect to η on Ω, if there exists a constant α and e ∈ intK such that for
any x1, x2 ∈ Ω and λ ∈ [0, 1] , one has

λF(x1) + (1 − λ)F(x2) − αλ(1 − λ) ‖ η(x1, x2) ‖2 e ⊂ F(x2 + λη(x1, x2)) + K,

(ii) F is said to be relaxed K-invex with respect to η on Ω, if there exists a constant α such that for any y∗ ∈
K+
∩ SY∗ , xi ∈ Ω, yi ∈My∗ (xi), (i = 1, 2) and ξ ∈ ∂F(x1, y1)(y∗), one has

〈ξ, η(x2, x1)〉 ≤ y∗(y2) − y∗(y1) − α ‖ η(x2, x1) ‖2,

(iii) F is said to be weakly relaxed K-invex with respect to η on Ω, if there exists a constant α such that for any
y∗ ∈ K+

∩ SY∗ , xi ∈ Ω, yi ∈My∗ (xi), (i = 1, 2) there exists ξ ∈ ∂F(x1, y1)(y∗), such that

〈ξ, η(x2, x1)〉 ≤ y∗(y2) − y∗(y1) − α ‖ η(x2, x1) ‖2,

(iv) The set-valued map ∂F : X×Y×Y∗ ⇒ X∗ is said to be invariant relaxed K-monotone on Ω with respect to η, if
there exists a constant α such that for any y∗ ∈ K+

∩ SY∗ , xi ∈ Ω, yi ∈My∗ (xi) and ξi ∈ ∂F(xi, yi)(y∗), (i = 1, 2),
one has

〈ξ1, η(x2, x1)〉 + 〈ξ2, η(x1, x2)〉 ≤ −α(‖ η(x2, x1) ‖2 + ‖ η(x1, x2) ‖2).

Remark 3.2. (i) If α = 0, then the above definition reduces to Definition 3.1 in [15], of K-preinvexity, K-invexity,
weak K-invexity and invariant K-monotonicity, respectively, for set-valued maps.

(ii) If F = f : X → R is a real-valued function, then we get definition of relaxed preinveity, relaxed invexity,
weak relaxed invexity and invariant relaxed monotonicity, respectively, for real-valued functions, that has been
studied in [9, 20], when α ≥ 0.

Lemma 3.3. Let F : X ⇒ Y be relaxed K-preinvex with respect to η. Then, for every y∗ ∈ K+
∩ SY∗ , fy∗ is relaxed

preinvex.

Proof. The proof deduces easily from Definition 3.1.

Lemma 3.4. Let F : X ⇒ Y be relaxed K-invex with respect to η and constant α. Then ∂F is invariant relaxed
K-monotone with the same constant.

Proof. By using the Definition 3.1, we can obtain the proof.

Theorem 3.5. Suppose that X,Y are Asplund spaces and F : X ⇒ Y is a locally epi-Lipschitz map satisfying
Condition A. If η satisfies Condition C and ∂F is invariant relaxed K-monotone with respect to η, then F is relaxed
K-invex.

Proof. Let ∂F be invariant relaxed K-monotone with respect to η and x1, x2 ∈ X. Let z = x2 + 1
2η(x1, x2) and

fix y∗ ∈ K+
∩ SY∗ be arbitrary. By Lemma 2.7, fy∗ is locally Lipschitz. Now, Theorem 2.3 implies that there

exist λ1, λ2 such that 0 < λ2 ≤
1
2 < λ1 ≤ 1, ξ1 ∈ ∂ fy∗ (u1) and ξ2 ∈ ∂ fy∗ (u2) such that

fy∗ (x2 + η(x1, x2)) − fy∗ (z) ≥
1
2
〈ξ1, η(x1, x2)〉, (1)
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and
fy∗ (z) − fy∗ (x2) ≥

1
2
〈ξ2, η(x1, x2)〉

where u1 = x2 + λ1η(x1, x2) and u2 = x2 + λ2η(x1, x2). By using Corollary 2.8, ξi ∈ ∂ fy∗ (ui) ⊆ ∂F(ui, zi)(y∗) that
zi ∈My∗ (ui), (i = 1, 2). Since ∂F is invariant relaxed K-monotone, we obtain

〈ξ1, η(x2,u1)〉 + 〈w, η(u1, x2)〉 ≤ −α(‖ η(x2,u1) ‖2 + ‖ η(u1, x2) ‖2) (2)

for any y2 ∈My∗ (x2) and w ∈ ∂F(x2, y2)(y∗). Now, Condition C implies that

η(u1, x2) = λ1η(x1, x2), η(x2,u1) = −λ1η(x1, x2)

If we replace these reletions in inequality (2), we get

〈ξ1, η(x1, x2)〉 ≥ 〈w, η(x1, x2)〉 + 2αλ1 ‖ η(x1, x2) ‖2 .

Now, by (1), we have

fy∗ (x2 + η(x1, x2)) − fy∗ (z) ≥
1
2
〈w, η(x1, x2)〉 + αλ1 ‖ η(x1, x2) ‖2 .

In a similar way, we can obtain

fy∗ (z) − fy∗ (x2) ≥
1
2
〈w, η(x1, x2)〉 + αλ2 ‖ η(x1, x2) ‖2 .

By adding the latter two relations, we have

fy∗ (x2 + η(x1, x2)) − fy∗ (x2) ≥ 〈w, η(x1, x2)〉 + α(λ1 + λ2) ‖ η(x1, x2) ‖2 .

Since F satisfies Condition A, we deduce that fy∗ also satisfies Condition A for real single-valued functions.
Hence

fy∗ (x1) − fy∗ (x2) ≥ 〈w, η(x1, x2)〉 +
α
2
‖ η(x1, x2) ‖2,

for any yi ∈My∗ (xi), (i = 1, 2) and w ∈ ∂F(x2, y2)(y∗). Therefore,

y∗(y1) − y∗(y2) ≥ 〈w, η(x1, x2)〉 +
α
2
‖ η(x1, x2) ‖2,

which implies that F is relaxed K-invex.

Theorem 3.6. Suppose that F : X⇒ Y is a locally epi-Lipschitz set-valued map that satisfies Condition A, η satisfies
Condition C and EF is closed convex-valued. If F is relaxed K-invex with respect to η, then F is relaxed K-preinvex.

Proof. Suppose that F is relaxed K-invex with constant α0. By Corollary 2.8, we can easily see that fy∗

is relaxed invex for all y∗ ∈ K+
∩ SY∗ with the same constant. In a similar way of lemma 3.2 in [9], we

deduce that fy∗ is relaxed preinvex with constant α0. Now, we suppose to the contrary that F is not relaxed
K-preinvex. Hence, for any α ∈ R and e ∈ intK there exist x1, x2 ∈ Ω, y1 ∈ F(x1), y2 ∈ F(x2) and λ ∈ [0, 1] such
that

λy1 + (1 − λ)y2 − αλ(1 − λ)e ‖ η(x1, x2) ‖2< F(x2 + λη(x1, x2)) + K. (3)

By applying the separating theorem for separating the nonempty disjoint convex sets: {λy1 + (1 − λ)y2 −

α0λ(1 − λ)e ‖ η(x1, x2) ‖2} (which is compact) and F(x2 + λη(x1, x2)) + K (which is closed), we deduce the
existence of a functional ỹ∗ ∈ Y∗ \ {0} such that

ỹ∗(λy1 + (1 − λ)y2 − α0λ(1 − λ)e ‖ η(x1, x2) ‖2) < inf ỹ∗(F(x2 + λη(x1, x2)) + K)
= inf ỹ∗(F(x2 + λη(x1, x2))) + inf ỹ∗(K),
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then it can be easily see that ỹ∗ ∈ K+
\ {0} and therefore inf ỹ∗(K) = 0. Moreover, without loss of generality,

we can suppose that ỹ∗(e) = 1. Hence

λỹ∗(y1) + (1 − λ)ỹ∗(y2) − α0λ(1 − λ) ‖ η(x1, x2) ‖2) < fỹ∗ (x2 + λη(x1, x2)). (4)

Since fỹ∗ is relaxed preinvex with constant α0, one has

fỹ∗ (x2 + λη(x1, x2)) ≤ λ fỹ∗ (x1) + (1 − λ) fỹ∗ (x2) − α0λ(1 − λ) ‖ η(x1, x2) ‖2 .

Because y1 ∈ F(x1) and y2 ∈ F(x2), by using the definition of marginal functions, we deduce that

fỹ∗ (x2 + λη(x1, x2)) ≤ λỹ∗(y1) + (1 − λ)ỹ∗(y2) − α0λ(1 − λ) ‖ η(x1, x2) ‖2),

which is a contradiction with (4).

Theorem 3.7. Suppose that X,Y are Asplund space and F : X ⇒ Y is a locally epi-Lipschitz map. If F is relaxed
K-preinvex with respect to η, then F is weakly relaxed K-invex.

Proof. By Lemmas 2.7 and 3.3 for any y∗ ∈ K+
∩ SY∗ , fy∗ is a locally Lipschitz relaxed preinvex function.

Now, we suppose that x1, x2 ∈ Ω and y∗ ∈ K+
∩ SY∗ are fixed. By relaxed preinvexity of fy∗ , we have

fy∗ (x1 + λη(x2, x1)) ≤ λ fy∗ (x2) + (1 − λ) fy∗ (x1) − αλ(1 − λ) ‖ η(x2, x1) ‖2 .

Hence,

fy∗ (x1 + λη(x2, x1)) − fy∗ (x1)
λ

≤ fy∗ (x2) − fy∗ (x1) − α(1 − λ) ‖ η(x2, x1) ‖2, (5)

for any λ ∈ (0, 1). Since fy∗ is Lipschitz around x1, there exists a θ ∈ (0, 1) suth that fy∗ is Lipschitz on
an open set containing [x1, x1 + λη(x2, x1)] for any λ ∈ [0, θ). Thus by using Theorem 2.3, there exists a
cλ ∈ [x1, x1 + λη(x2, x1)) and a x∗λ ∈ ∂ fy∗ (cλ) such that

fy∗ (x1 + λη(x2, x1)) − fy∗ (x1) ≥ λ〈x∗λ, λη(x2, x1)〉.

Now, by using (5), we can obtain

fy∗ (x2) − fy∗ (x1) − α(1 − λ) ‖ η(x2, x1) ‖2≥ 〈x∗λ, η(x2, x1)〉.

Since ∂ fy∗ is locally bounded (Corollary 1.81 in [13]), there exists a neighborhood of x1 and a constant ` > 0
such that for each z in this neighborhood and ξ ∈ ∂ f(y∗)(z), we have ||ξ|| ≤ `. Since, cλ → x1 when λ → 0,
for λ be sufficiently small ||x∗λ|| ≤ `, therefore, without loss of generality we may assume that x∗λ → x∗ in
weak∗-topology. Since the set-valued mapping ∂ f (.) has closed graph, we have x∗ ∈ ∂ fy∗ (x1) and

fy∗ (x2) − fy∗ (x1) − α ‖ η(x2, x1) ‖2≥ 〈x∗, η(x2, x1)〉.

Hence, fy∗ is weakly relaxed invex for some x∗ ∈ ∂ fy∗ (x1). Now, by using Corollary 2.8, F is weakly relaxed
K-invex.

4. (GMVLI) and Set-Valued Optimization Problems

In this section, we obtain relations between generalized Minty variational-like inequalities and scalarized
optimization problems. Suppose that F : X ⇒ Y is a set-valued map between Banach spaces. We consider
the following set-valued optimization problem

min F(x), s.t. x ∈ Ω ⊂ X. (6)

By using the scalarization method, we consider the concept of scalarized solution of problem (6).
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Definition 4.1. (i) [6] A point x̄ is said to be a weakly efficient solution of problem (6) iff there exists ȳ ∈ F(x̄)
such that

(F(Ω) − ȳ) ∩ −intK = ∅.

(ii) x̄ is said to be a scalaraized solution of problem (6) (x̄ is a solution of (SOP)) iff, for any y∗ ∈ K+
\{0}, there exists

ȳ ∈ F(x̄) such that
y∗(ȳ) ≤ y∗(y) for all y ∈ F(Ω).

Generalized Minty variational-like inequality (GMVLI) consists of finding a vector x̄ and α ∈ R such that,
for any x ∈ Ω and y∗ ∈ K+

∩ SY∗ , there exist y ∈My∗ (x) and x∗ ∈ ∂F(x, y)(y∗) such that

〈x∗, η(x̄, x)〉 + α ‖ η(x̄, x) ‖2≤ 0

Remark 4.2. (i) If α = 0, then it reduces to Minty variational-like inequality (MVLI) that has been studied in
[2, 16, 19].

(ii) Notice that, if x̄ is a solution of (GMVLI) with constant α, then x̄ is also a solution for all parameters α′ ≤ α.

The role of term α||η(x̄, x)||2 in (GMVLI) is similar to a kind of perturbation in Minty variational inequalities.
Because α is choosed in R, the solution set of generalized Minty variational-like inequalities is larger than
the solution set of Minty variational-like inequalities.

Example 4.3. Let X = Y = R, Ω = [−1, 1],K = [0,+∞[ and F : Ω ⊂ X ⇒ Y such that F(x) = [−x2 + x, 2] for
x ≥ 0 and F(x) = [x2, 2] for x < 0. Let η : X × X→ X be defined as

η(x, y) =

{
x − y if x > 0, y > 0 or x < 0, y < 0,
1 − y otherwise.

Then, the normal subdifferential of F is
∂F(x,−x2 + x)(1) = −2x + 1 if x > 0,
∂F(0, 0)(1) = [0, 1] if x = 0,
∂F(x, x2)(1) = 2x if x < 0.

Then, by some computation we can see that x = 0 is a solution of (SOP) and (GMVLI) with constant α = −2, but is
not a solution for positive constants.

Lemma 4.4. [16] Every solution of (SOP) is a weakly efficient solution of problem (6).

Theorem 4.5. Let F : Ω ⊆ X⇒ Y be weakly relaxed K-invex with respect to η. If x̄ is a solution of (SOP), then it is
a solution of (GMVLI).

Proof. Suppose that x̄ is a solution of (SOP), but not a solution of (GMVLI). Then, for any α ∈ R there exists
x ∈ Ω and y∗ ∈ K+

∩ SY∗ such that for all y ∈My∗ (x) and x∗ ∈ ∂F(x, y)(y∗), we have

〈x∗, η(x̄, x)〉 + α ‖ η(x̄, x) ‖2> 0 (7)

Since F is weakly relaxed K-invex, then there exists a constant α ∈ R such that for any y∗ ∈ K+
∩ SY∗ , x ∈

Ω, ȳ ∈My∗ (x̄) and y ∈My∗ (x) there exists x∗ ∈ ∂F(x, y)(y∗), one has

〈x∗, η(x̄, x)〉 + α ‖ η(x̄, x) ‖2≤ y∗(ȳ) − y∗(y). (8)

By using (7) and (8), we get
y∗(ȳ) − y∗(y) > 0,

which is a contradiction with x̄ is a solution of (SOP). Hence, x̄ is a solution of (GMVLI).



M. Oveisiha, M. Aghabagloo / Filomat 31:12 (2017), 3953–3963 3960

Theorem 4.6. Let F : Ω ⊆ X ⇒ Y be a epi-Lipschitz set-valued map between Asplund spaces and relaxed K-invex
with respect to η and constant α > 0. Suppose that η satisfies Condition C and F satisfies Condition A. If x̄ is a
solution of (GMVLI), then it is a solution of (SOP) and hence, a weakly efficient solution of problem (6).

Proof. Suppose that x̄ is a solution of (GMVLI), but not a solution of (SOP). Then there exist y∗ ∈ K+
∩ SY∗

such that for any ȳ ∈ F(x̄), there exist x ∈ Ω and y ∈ F(x) such that

y∗(y) < y∗(ȳ).

Hence, we have

fy∗ (x) < fy∗ (x̄). (9)

Let x(t) = x̄ + tη(x, x̄) for t ∈ [0, 1]. Since Ω is invex then x(t) ∈ Ω. By lemma 2.7, fy∗ is a real-valued locally
Lipschitz function. Choose t′ ∈ (0, 1) arbitrary. Now, by using Theorem 2.3, there exists t1 ∈ (0, t′] and
ξ ∈ ∂ fy∗ (x̄ + t1η(x, x̄)), such that

t′〈ξ, η(x, x̄)〉 ≤ fy∗ (x̄ + t′η(x, x̄)) − fy∗ (x̄). (10)

Because F is relaxed K-invex, by Theorem 2.8, we have fy∗ is relaxed invex for any y∗ ∈ K+
∩ SY∗ . Now, By a

similar way of lemma 3.2 in [9], relaxed invexity of fy∗ implies that fy∗ is relaxed preinvex. Hence, we obtain

fy∗ (x̄ + t′η(x, x̄)) − fy∗ (x̄) ≤ t′( fy∗ (x) − fy∗ (x̄) − α(1 − t′) ‖ η(x, x̄) ‖2).

From relation (9), we deduce that

fy∗ (x̄ + t′η(x, x̄)) − fy∗ (x̄) < −αt′(1 − t′) ‖ η(x, x̄) ‖2 .

Now, by using (10), we have

〈ξ, η(x, x̄)〉 < −α(1 − t′) ‖ η(x, x̄) ‖2 . (11)

Because t1 ∈ (0, 1), we can choose t∗ ∈ (0, 1) such that t∗ < t1 and to be sufficiently small. Now, by using
Condition C, we can obtain

η(x(t∗), x(t1)) = (t∗ − t1)η(x, x̄), η(x(t1), x(t∗)) = (t1 − t∗)η(x, x̄). (12)

From relations (11) and (12), we have

〈ξ, η(x(t∗), x(t1))〉 > α(t1 − t∗)(1 − t′) ‖ η(x, x̄) ‖2 . (13)

Since fy∗ is relaxed preinvex, then similar to the Theorem 3.2 in [9], we can deduce that ∂ fy∗ is invariant
relaxed monotone. Therefore

〈ξ, η(x(t∗), x(t1))〉 + 〈ζ, η(x(t1), x(t∗))〉 ≤ −α(‖ x(t∗), x(t1) ‖2 + ‖ x(t1), x(t∗) ‖2),

that ζ ∈ ∂ fy∗ (x(t∗)). If we use relations in (12), we obtain

〈ξ, η(x(t∗), x(t1))〉 + 〈ζ, η(x(t1), x(t∗))〉 ≤ −2α(t1 − t∗)2
‖ η(x, x̄) ‖2 . (14)

Now, by relations (12), (13) and (14), we deduce that

(t1 − t∗))〈ζ, η(x, x̄)〉 = 〈ζ, η(x(t1), x(t∗))〉

< −α(t1 − t∗) ‖ η(x, x̄) ‖2 (2(t1 − t∗) + (1 − t′)).
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Since η(x̄, x(t∗)) = −t∗η(x, x̄), we obtain

〈ζ, η(x̄, x(t∗))〉 >
α
t∗

[2(t1 − t∗) + (1 − t′)] ‖ η(x̄, x(t∗)) ‖2 .

Hence, we get
〈ζ, η(x̄, x(t∗))〉 + α′ ‖ η(x̄, x(t∗)) ‖2> 0,

where α′ = − αt∗ [2(t1 − t∗) + (1 − t′)] < 0. Notice that if t∗ → 0+ then α′ → −∞. Hence, we can suppose that
α′ ≤ c, where c is a constant in R such that x̄ is a solution of (GMVLI) with it. By using Theorem 2.8 we
have ζ ∈ ∂ fy∗ (x(t∗)) ⊆ ∂F(x(t∗), y(t∗)), where y(t∗) ∈ My∗ (x(t∗)). Therefore x̄ is not a solution of (GMVLI) with
constant α′. Now, by Remark 4.2 (ii), this contradicts with x̄ is a solution of (GMVLI) with constant c.

Remark 4.7. Theorems 4.5 and 4.6 generalize Theorem 3.1 in [1], Theorem 3.1 in [5] and Theorem 2 in [14] to
set-valued maps.

Example 4.8. Let X = Y = R, Ω = [−1, 1],K = [0,+∞[ and F : Ω ⊂ X⇒ Y such that F(x) = [x2, 3] for x ≥ 0 and
F(x) = [x2

− 2x, 3] for x < 0. Let η : X × X→ X be defined as

η(x, y) =

{
x − y if x ≥ 0, y ≥ 0 or x ≤ 0, y ≤ 0,
−y otherwise.

Then, the normal subdifferential of F is
∂F(x, x2)(1) = 2x if x > 0,
∂F(0, 0)(1) = [−2, 0] if x = 0,
∂F(x, x2

− 2x)(1) = 2x − 2 if x < 0.

Then, η satisfies Condition C, F satisfies Condition A and is relaxed K-invex with constant α = 1. Hence, by some
computation we can see that all assumptions of Theorem 4.5 are fulfilled and x = 0 is a solution of (GMVLI) and
therefore is a solution of (SOP).

Here, we obtain an existence theorem for the solution of (GMVLI) and therefore a weak efficient solution
of problem (6). For normal subdifferential, we need the following condition to get an existence result for
them.
Condition D: Let F : X⇒ Y and y∗ ∈ K∗ ∩ SY∗ . Then, for any x̄ ∈ domF and ȳ1, ȳ2 ∈My∗ (x̄), we have

∂F(x̄, ȳ1)(y∗) = ∂F(x̄, ȳ2)(y∗).

Theorem 4.9. Let F : X⇒ Y be relaxed K-invex with constant α and satisfy Condition D. Assume that the following
conditions are satisfied:

1. η is affine and continuous in the first argument and skew.
2. There are a nonempty compact set M ⊂ X and a nonempty compact convex set B ⊂ X such that for each

x′ ∈ X\M, there exists x ∈ B and y∗ ∈ K+
∩ SY∗ such that for any y ∈ My∗ (x) and x∗ ∈ ∂F(x, y)(y∗), we have

〈x∗, η(x′, x)〉 + 2α||η(x′, x)||2 > 0.

Then, (GMVLI) has a solution. Also, the set of (GMVLI) solutions is compact.

Proof. Define two set-valued mappings Γ, Γ̂ : X⇒ X by

Γ(x) := {x′ ∈ X : ∀y∗ ∈ K+
∩ SY∗ ,∃y ∈My∗ (x) and x∗ ∈ ∂F(x, y)(y∗); 〈x∗, η(x′, x)〉 + 2α||η(x′, x)||2 ≤ 0},

Γ̂(x) := {x′ ∈ X : ∀y∗ ∈ K+
∩ SY∗ ,∃y′ ∈My∗ (x′) and x∗ ∈ ∂F(x′, y′)(y∗); 〈x∗, η(x, x′)〉 ≥ 0},

for each x ∈ X. Γ(x) and Γ̂(x) are nonempty because they contain x. The proof is divided in the following
steps.
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(i) Γ̂ is a KKM mapping on X. Suppose that Γ̂ is not a KKM mapping. Then, there exist {x1, x2, . . . , xm} and

λi ≥ 0, i = 1, . . . ,m with
m∑

i=1

λi = 1 such that x0 =

m∑
i=1

λixi <
m⋃

i=1

Γ̂(xi). Hence, it follows that x0 < Γ̂(xi) for all

i = 1, . . . ,m, i.e.

∃y∗ ∈ K+
∩ SY∗ ;∀y0 ∈My∗ (x0), x∗ ∈ ∂F(x0, y0)(y∗) : 〈x∗, η(xi, x0)〉 < 0; (15)

for each i = 1, . . . ,m. Therefore, for any y0 ∈My∗ (x0) and x∗ ∈ ∂F(x0, y0)(y∗), one has

0 = 〈x∗, η(x0, x0)〉 =

m∑
i=1

λi〈x∗, η(xi, x0)〉 < 0,

which yields a contradiction. Hence, Γ̂ is a KKM mapping.
(ii) Because relaxed K-invexity of F implies invariant relaxed K-monotonicity of ∂F (Lemma 3.4), hence we
obtain Γ̂(x) ⊆ Γ(x) and therefore, Γ is also a KKM mapping.
(iii) Γ is closed valued: Let {xn} be a sequence in Γ(x) which converges to a x0. Therefore, for any y∗ ∈ K+

∩SY∗ ,
there exist y ∈My∗ (x) and x∗n ∈ ∂F(x, y)(y∗) such that

〈x∗n, η(xn, x)〉 + 2α||η(xn, x)||2 ≤ 0.

Since F satisfies Condition D and is epi-Lipschitz, x∗n has a convergent subsequence x∗m, that its limit
x∗0 should be in ∂F(x, y)(y∗) for a y ∈ My∗ (x). Since η is continuous in the first argument, {η(xn, x)} is a
convergent sequence. Hence, we obtain

〈x∗0, η(x0, x)〉 + 2α||η(x0, x)||2 ≤ 0.

Thus, x0 ∈ Γ(x), this means that Γ is closed valued.
(iv) From condition 2, there exists a nonempty compact convex set B, such that cl(

⋂
x∈B

Γ(x)) is compact.

(v) Thus, all of the conditions of Lemma 2.11 are fulfilled by mapping Γ. Therefore,⋂
x∈X

Γ(x) , ∅.

Hence, there exists x̄ such that for any x ∈ X and y∗ ∈ K+
∩ SY∗ there exist y ∈ My∗ (x) and x∗ ∈ ∂F(x, y)(y∗)

such that
〈x∗, η(x̄, x)〉 + 2α||η(x̄, x)||2 ≤ 0.

Thus, (GMVLI) has a solution. From (iii), Γ is closed valued and therefore, the set of solutions of (GMVLI),
i.e.
⋂

x

Γ(x) is closed. Now, from (2), the set of solutions must be contained in the compact set M, hence it is

compact.

5. Conclusions

In this work, some new notions of relaxed preinvexity based on normal subdifferential for set-valued
maps has been presented, which extends strong convexity concept for real-valued and vector-valued
functions. Also, we have considered a generalization of Minty variational inequalities that the set of its
solution is larger than Minty variational inequalities and investigated the relations between their solutions
and set-valued optimization problem’s solutions under generalized convexity. An existence result for them
is also given.
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