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Abstract. In this paper, a boundary version of the uniqueness (or, rigidity) part of the Schwarz lemma
should be investigated. Also, new results related to inner functions, inner capacities, and bilogaritmic
concave majorants are obtained.

1. Introduction

The classical Schwarz lemma gives information about the behavior of a holomorphic function on the
unit disc D = {z : |z| < 1} at the origin, subject only to the relatively mild hypotheses that the function maps
the unit disc to the disc and the origin to the origin. In its most basic form, the familiar Schwarz lemma
says this:

Let f be a holomorphic function in the unit disc D, f (0) = 0 and
∣∣∣ f (z)

∣∣∣ < 1 for |z| < 1. Then, for any point
z in the disc D, we have

∣∣∣ f (z)
∣∣∣ ≤ |z| and

∣∣∣ f ′(0)
∣∣∣ ≤ 1. Equality in these inequalities (in the first one, for z , 0)

occurs only if f (z) = λz, |λ| = 1 ([4], p.329). For historical background about the Schwarz lemma and its
applications on the boundary of the unit disc, we refer to (see [16]). Also, the similar to considered problem
is studied in ([15]).

In recent years, a boundary version of Schwarz lemma was investigated in Daniel M. Burns and Steven
G. Krantz ([1]), Dov Chelts ([2]), M. Mateljević ([9], [10], [11], [12] and [13]) and a few other authors’ papers.
They studied the uniqueness(or, rigidity) part of the Schwarz lemma. Also, the similar to considered
problem is studied in ([15]).

The uniqueness part of the boundary Schwarz lemma was established in 1994 by Daniel M. Burns and
Steven G. Krantz ([1]).

Theorem 1.1. Let f : D→ D be a holomorphic function from the unit disc to itself such that

f (z) = z + O
(
(z − 1)4

)
(1.1)

as z→ 1. Then f (z) = z on the disc.
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The theorem presented in ([1]) has no such hypothesis. The exponent 4 is sharp: simple geometric
arguments show that the function

f (z) = z +
1

10
(z − 1)3

satisfies the conditions of the theorem with 4 replaced by 3. Note also that it follows from the proof that
O

(
(z − 1)4

)
can be replaced by o

(
(z − 1)3

)
.

The Burns-Krantz Theorem was improved in 1995 by Thomas L. Kriete and Barbara D. MacCluer ([7]),
who replaced f with its real part and considered the radial limit in o

(
(z − 1)3

)
instead of the unrestricted

limit. Here is a more precise statement of their result.

Theorem 1.2. Let f : D→ D be a holomorphic function with radial limit f (1) = 1 and angular derivative f ′(1) = 1.
If

lim
r→1−

inf
Re

(
f (r) − r

)
(1 − r)3 = 0,

then f (z) = z.

In 2001, Dov Chelst ([2]), in turn, established the following conditions on the local behavior of f near a
finite set of boundary points which ensure that f is a finite Blaschke product.

Theorem 1.3. Let f : D→ D be a holomorphic function from the unit disc to itself. In addition, let φ : D→ D be a
finite Blaschke product which equals τ ∈ ∂D on a finite set A f ⊂ ∂D. If (i) for a given γ0 ∈ A f ,

f (z) = φ(z) + O
(
(z − 1)4

)
, as z→ γ0,

and (ii) for all γ ∈ A f −
{
γ0

}
,

f (z) = φ(z) + O
(
(z − 1)kγ

)
, f or some kγ ≥ 2 as z→ γ,

then f (z) = φ(z) on the disc.

In 2015, Miodrag Mateljević improved Theorem 1.3 and obtained the following theorem ([12]).

Theorem 1.4. Let f : D → D be a holomorphic function. Let B be an inner function which equals 1 precisely on a
set A ⊂ ∂D. Suppose the following condition are satisfied (a) for all a ∈ A

f (eit) = B(eit) + o
(
(eit
− a)2

)
, eit
∈ ∂D, eit

→ a,

(b) there is a a0 ∈ A, such that

f (eit) = B(eit) + o
(
(eit
− a0)3

)
, eit
∈ ∂D, eit

→ a0.

Then f ≡ B on all of D.

LetM be a class of functions µ : (0,+∞)→ (0,+∞) for each of which logµ(x) is concave with respect to
log x. For each function µ ∈M the limit

µ0 = lim
x→0

logµ(x)
log x

,

exists, and −∞ < µ0 ≤ +∞. Here, the function µ ∈ M is called bilogaritmic concave majorant and µ0 is
called the order of µ ([5]). For example, the power function µ(x)=xa, a ∈ R, belongsMwith µ0=a.

We use the following assertions for the proofs of our theorems:
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Lemma 1.5 (Hopf’s lemma on the disc). Let u be a nonconstant real-valued harmonic function in D, Let γ ∈ ∂D
be such that: (i) u is continuous at γ; (ii) u(γ) ≥ u(z) for all z ∈ ∂D. Then the outher normal derivative ∂u

∂υ of u at γ,
if it exists, satisfies the strict inequality

∂u
∂υ

(γ) > 0

([3],p.34).

Remark 1.6. Let f : D → D be a holomorphic function and have a continuous limit at some γ ∈ ∂D, and let
f (γ) = 1. Then f is not o(z − γ) ([2]).

2. Main Results

In this paper, the more general majorants will be taken instead of power majorants in conditions (i), (ii)
and (1.1). Also, new results related to inner functions, inner capacities, and bilogaritmic concave majorants
are obtained. This type of results were first announced ([14]). Let d (z,G) be a distance from G to the point
z and U(z, r) be an open disc with centre z and radius r, respectively. Let M be the class of sets with zero
inner capacities ([8], p.13-14).

Theorem 2.1. Let µ ∈ M, µ0 > 3 and f be a holomorphic function in the unit disc that is continuous on D ∩U(
1, η0

)
for some η0 > 0 and

∣∣∣ f (z) − α
∣∣∣ < α for |z| < 1, where α is a positive real number. Suppose the condition

f (z) = α (1 + z) + O
(
µ(|z − 1|)

)
, z ∈ ∂D, z→ 1. (1.2)

Then f (z) = α (1 + z) .

Proof. Consider the function

h(z) =
f (z) − α
α

.

Therefore, we obtain

h(z) =
f (z) − α
α

=
α (1 + z) + O

(
µ(|z − 1|)

)
− α

α

and

h(z) = z + O
(
µ(|z − 1|)

)
So, there is a number b1 > 0 such that

|h(z) − z| ≤ b1µ(|z − 1|), ∀z ∈ ∂D ∩U
(
1, η0

)
.

We will write s and b2 as follows;

s = sup
|z−1|=η0

z∈D

|h(z) − z|

and

b2 = max
{

s
µ(η0 )

, b1

}
.
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Obviously,

|h(z) − z| ≤ b2µ(|z − 1|)

inequality is satisfied at every boundary point of the set of D ∩ U
(
1, η0

)
. Thus, it is seen that the same

inequality from Theorem3 of ([5]) is satisfied at the set of D ∩U
(
1, η0

)
. That is,

|h(z) − z| ≤ b2µ(|z − 1|), ∀z ∈ D ∩U
(
1, η0

)
. (1.3)

From the hypothesis µ0 > 3 follows that there is a some positive constant ε > 0 such that

logµ(x)
log x

≥ 3 + ε, ∀x ∈ (0, 1)

and

logµ(x) ≤ (3 + ε) log x, ∀x ∈ (0, 1).

That is to say,

µ(x) ≤ x3+ε, ∀x ∈ (0, 1). (1.4)

From (1.3) and (1.4) we obtain

|h(z) − z| ≤ c2 |z − 1|3+ε . (1.5)

Consider the harmonic function k defined as

k(z) = Re
(

1 + h(z)
1 − h(z)

)
− Re

(1 + z
1 − z

)
.

The function

1 + h(z)
1 − h(z)

maps the disc D to the right half plane and hence the first term of k(z) is nonnegative, the second term is
zero on ∂D\ {1}. That is,

Re
(1 + z

1 − z

)
= 0.

Therefore, the boundary values of k(z) function is not negative at its every point except for point 1 in the
unit disc. In other words,

lim inf
z→ς,z∈D

k(z) ≥ 0, ∀ς ∈ ∂D\ {1} .

Let us now examine our function at point 1. Let ω(z) = h(z) − z.
From the definition of k(z), we take

k(z) = Re
(

2ω(z)
(1 − h(z)) (1 − z)

)
.

According to Remark 1.6, the denominator of the last fraction can decrease no more quickly than O
(
|z − 1|2

)
at the point 1. From (1.5), the numerator approaches zero as O

(
|z − 1|3+ε

)
. Thus, k(z) is O

(
|z − 1|1+ε

)
in some

neighborhood of 1. We obtain from the maximum principle ([6], p.48) either k(z) > 0, ∀z ∈ D or k ≡ 0. If k
is not a constant, it takes minimum at the point z = 1, and it is O

(
|z − 1|1+ε

)
there, as well. This contradicts

with Hopf’s lemma statement. Consequently, k ≡ 0. This h(z) = z and f (z) = α (1 + z) .
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Theorem 2.2. Let µ ∈ M be a bilogaritmic concave majorant, P ∈ M, µ0 > 3; f be a holomorphic function in the
unit disc and

∣∣∣ f (z) − α
∣∣∣ < α for |z| < 1, where α is a positive real number, which satisfies the following condition

lim sup
z→ς, z∈D

∣∣∣ f (z) − α (1 + z)
∣∣∣ = O

(
µ(|ς − 1|)

)
, ∀ς ∈ (∂D\P) ∩U

(
1, η0

)
, (1.6)

for some η0 > 0. Then f (z) = α (1 + z) .

Proof. Let

ω(z) =
f (z) − α
α

.

So, we have

ω(z) − z =
f (z) − α
α

− z =
f (z) − α − αz

α
=

f (z) − α(1 + z)
α

= O
(
µ(|ς − 1|

)
and

lim sup
z→ς, z∈D

|ω(z) − z| = O
(
µ(|ς − 1|)

)
. (1.7)

From (1.7), there exists c1 > 0 that the inequality

lim sup
z→ς, z∈D

|ω(z) − z| ≤ c1µ(|ς − 1| , ∀ς ∈ (∂D\P) ∩U
(
1, η0

)
satisfied as the proof of Theorem 2.1. Let us make a marking as follow:

a1 = sup
|z−1|=η0

z∈D

|ω(z) − z|

and

a2 = max
{

a1

µ(η0 )
, c1

}
.

The inequality

lim sup
z→ς, z∈D

|ω(z) − z| ≤ a2µ(|ς − 1|

is satisfied in every z boundary point of D∩U
(
1, η0

)
. So, from Theorem 2.1, same inequality is also obtained

in D ∩U
(
1, η0

)
. Then, we take that f (z) = α (1 + z) similar to the proof of Theorem 2.1.

In the following theorem, we shall show that certain conditions on the growth of the boundary function
(which is defined out of a set of zero inner capacity) in a neighborhood of a given point yields the uniqueness.

Theorem 2.3. Let φ be an inner function which equal τ ∈ ∂D on a finite set A f ⊂ ∂D. Let f be a holomorphic
function in the unit disc and

∣∣∣ f (z) − α
∣∣∣ < α for |z| < 1, where α is a positive real number. Assume that P ∈ M,

µ1, µ2
∈ M, µ1

0 > 3, µ2
0 > 2, where µ1

0 and µ2
0 are the orders of µ1 and µ2, respectively. Suppose the following

conditions are satisfied (i) for a given γ0 ∈ A f

lim sup
z→ς, z∈D

∣∣∣∣ f (z) − α
(
1 + φ(z)

)∣∣∣∣ = O
(
µ1(

∣∣∣ς − γ0

∣∣∣)) , ς ∈ (∂D\P) , ς→ γ0, (1.8)

(ii) for all ∀γ ∈ A f −
{
γ0

}
lim sup
z→ς, z∈D

∣∣∣∣ f (z) − α
(
1 + φ(z)

)∣∣∣∣ = O
(
µ2(

∣∣∣ς − γ∣∣∣)) , ς ∈ (∂D\P) , ς→ γ. (1.9)

Then f (z) = α
(
1 + φ(z)

)
.
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Proof. Let

Φ(z) =
f (z) − α
α

.

From (1.8) and (1.9), we obtain for a given γ0 ∈ A f

lim sup
z→ς, z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ = lim sup

z→ς, z∈D

∣∣∣∣∣ f (z) − α
α

− φ(z)
∣∣∣∣∣

= lim sup
z→ς, z∈D

∣∣∣∣∣ f (z) − α(1 + φ(z))
α

∣∣∣∣∣
= O

(
µ1(

∣∣∣ς − γ0

∣∣∣)) , ς ∈ (∂D\P) , ς→ γ0,

lim sup
z→ς, z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ = O

(
µ1(

∣∣∣ς − γ0

∣∣∣)) , ς ∈ (∂D\P) , ς→ γ0, (1.10)

and for all ∀γ ∈ A f −
{
γ0

}
lim sup
z→ς, z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ = lim sup

z→ς, z∈D

∣∣∣∣∣ f (z) − α(1 + φ(z))
α

∣∣∣∣∣
= O

(
µ2(

∣∣∣ς − γ∣∣∣)) , ς ∈ (∂D\P) , ς→ γ,

lim sup
z→ς, z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ = O

(
µ2(

∣∣∣ς − γ∣∣∣)) , ς ∈ (∂D\P) , ς→ γ. (1.11)

Without loss of generality, we may assume that τ = 1 and that γ0 = 1. Due to (1.10), there exist numbers
c3 > 0, η0 ∈ (0, 1) such that

lim sup
z→ς, z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ ≤ c3µ

1(|ς − 1|), ∀ς ∈ (∂D\P) , |ς − 1| < η0 .

Let us denote p and c4 as follows;

p = sup
|z−1|=δ0

z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ ,

c4 = max
{

p
µ1 (δ0)

, c3

}
.

Clearly,

lim sup
z→ς, z∈D

∣∣∣Φ(z) − φ(z)
∣∣∣ ≤ c4µ

1(|ς − 1|)

inequality is satisfied at every boundary points of the set of D∩U
(
1, η0

)
. Therefore, it is seen that the same

inequality from Theorem 3 ([5]) is satisfied at the set of D ∩U
(
1, η0

)
. That is,∣∣∣Φ(z) − φ(z)

∣∣∣ ≤ c4µ
1(|z − 1|), ∀z ∈ D ∩U

(
1, η0

)
. (1.12)

From µ0 > 3 follows that there are some positive constants ε and σ < min
(
η0 , 1

)
such that inequality (1.4) is

satisfied. Combining (1.4) and (1.12), we obtain∣∣∣Φ(z) − φ(z)
∣∣∣ ≤ c4 (|z − 1|)3+ε , ∀z ∈ D ∩U (1, σ) . (1.13)
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From the hypothesis, µ2
0 > 2, µ2

0 ∈ M,

µ2
0 = lim

x→0

logµ2(x)
log x

> 2,

logµ2(x)
log x

≥ 2 + ε, ∀x ∈ (0, σ), σ < min
(
η0 , 1

)
,

logµ2(x) ≤ (2 + ε) log x, ∀x ∈ (0, σ)

and finally we take

µ2(x) ≤ x2+ε, ∀x ∈ (0, σ). (1.14)

Analogously, for any point γ ∈ A f − {1}, from (1.14) and (1.11) we have∣∣∣Φ(z) − φ(z)
∣∣∣ ≤ c5 (|z − 1|)2+ε , ∀z ∈ D ∩U

(
γ, σ1

)
(1.15)

with some constant c5 and σ1.
We introduce the harmonic function

Θ(z) = Re
(

1 + Φ(z)
1 −Φ(z)

)
− Re

(
1 + φ(z)
1 − φ(z)

)
.

Since an inner function φ is a holomorphic function throughout D and that
∣∣∣φ∣∣∣ = 1 on ∂D, we have that the

second term of Θ(z) is zero on ∂D−
{
A f

}
. The first term of Θ(z) is nonnegative. Consequently, when taking

limits to any boundary point in (∂D\P) −
{
A f

}
, one always obtains a nonnegative value.

Now, let’s examine behavior of the function Θ(z) at points of set A f .
Let Ψ(z) = Φ(z) − φ(z). Under the simple calculations, we obtain

Θ(z) = Re

 2Ψ(z)

(1 −Φ(z))
(
1 − φ(z)

)  .
Now, let’s take any point γ ∈ A f − {1}. According to (1.15), the numerator of the last fraction approaches

zero as O
(∣∣∣z − γ∣∣∣2+ε

)
. From Remark1, the denominator can decrease no more quickly than O

(∣∣∣z − γ∣∣∣2). Thus,

Θ(z) must have a lim inf at γ.

From (1.13), the numerator of the last fraction approaches zero as O
(∣∣∣z − γ∣∣∣3+ε

)
. According to Remark

1.6, the denominator can decrease no more quickly than O
(∣∣∣z − γ∣∣∣2). As in the proof of Theorem 2.1, we

obtain Θ(z) is O
(∣∣∣z − γ∣∣∣1+ε

)
in some neighborhood of 1. Thus, from the Phragmen-Lindelöf principle ([6],

p.232) we obtain either Θ(z) > 0, ∀z ∈ D or Θ ≡ 0. If Θ is not constant, it takes minimum at the point z = 1

and is O
(∣∣∣z − γ∣∣∣1+ε

)
there, as well. This contradicts with Hopf’s lemma statement. Consequently, Θ ≡ 0.

This Φ(z) = φ(z) and f (z) = α
(
1 + φ(z)

)
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[15] B. Nafi Örnek and T. Akyel, Representation with majorant of the Schwarz lemma at the boundary, Publ. Inst. Math., Nouv. Sér. 2015,

In press.
[16] M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis

and its Applications. Springer International Publishing, (2014), 135-230.


