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Abstract. Suppose R is an associative ring with identity 1. The purpose of this paper is to give some
necessary and sufficient conditions for the existence and the representations of the group inverse of the

block matrix
(

AX + YB A
B 0

)
and M =

(
A B
C D

)
under some conditions. Some examples are given to

illustrate our results.

1. The first section

The Drazin (group) inverse of 2×2 block matrices have numerous applications in many areas, especially
in singular differential and difference equations and finite Markov chains (see[1,4,5,7,15]). In 1979, Campbell
and Meyer proposed a problem to find a concrete expression for Drazin (group) inverse of block matrices

M =

(
A B
C D

)
, where A and D are square but need not to be the same size(see[1]). Although the problem

has not been solved completely yet, ones have got results on group inverses under some special conditions
in [2,3,6,9-11,16-18,21].

The purpose of this paper is to extend some recent results on the group inverse of block matrices, as for
basic ring and matrix type.

In [23], Li et al.investigate the group inverse of the block matrix
(

AX + YB A
B 0

)
over skew filed under

the conditions A] exists, XA = AX, and r(A) = r(AX). This generalizes Theorem 1.1 of [8]. In this paper,
the sufficient and necessary condition for the existence of the group inverse of the above partitioned matrix
over any ring is characterized.

In [13], Bu et al.investigated the group inverse of the block matrix
(

A B
C D

)
over skew filed under

the conditions A is invertible and (D − CA−1B)] exists. In [19], Deng et al.studied the group inverse of the

block matrix
(

A B
C D

)
over complex Banach spaces under the conditions A and S = D − CA]B are group

invertible, AπB = 0 and SπC = 0. In this paper, we will investigate the group inverse of the above block
matrix over rings under weaker conditions. We should pointed that the methods of solving problems are
quite different from those of [13, 14, 19, 20].
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Let R, K be an associative ring with identity 1 and skew field, respectively. Rm×n be the set of all m × n
matrices over R. We denote Rm×1 and R1×n by Rm and R(n), respectively. For A ∈ Rn×n, if there exists a matrix
X ∈ Rn×n such that AXA = A, XAX = X and AX = XA, then X is called the group inverse of A and can
be denoted by A]. For A ∈ Rn×m, if X satisfies only AXA = A, then A is called regular and X is called a
{1}-inverse or regular inverse of A. In this case, denote the set of all {1}-inverse of A by A{1}. Let A(1) be any
{1}-inverse of A, denote I − A(1)A and I − AA(1) by Aπl and Aπr respectively. If A ∈ Km×n, r(A) denotes the
rank of A. If A is group invertible, we denote I − AA] by Aπ, where I is an identity matrix of order n.

In this paper, for A ∈ Rm×n, we also denote by R(A) = {Ax|x ∈ Rn
} and Rr(A) = {xA|x ∈ R(m)

} the range
and the row range of A, respectively.

2. Some Lemmas

In the next section we will use the following results.

Lemma 2.1. [22] Let A ∈ Rn×n, the followings are equivalent:
(i) A] exists;
(ii) A = A2X and A = YA2 for some X,Y ∈ Rn×n. In this case, A] = YAX = AX2 = Y2A;
(iii) R(A) = R(A2),Rr(A) = Rr(A2).

Lemma 2.2. Let A,X ∈ Rn×n. If AX = XA, A] exists, then A]X = XA].

Proof. The proof of this Lemma is similar to that of Lemma 3.1 in [24], so we omit it here.

Lemma 2.3. Let A,X ∈ Rn×n. If AX = XA, A] exists, R(A) ⊂ R(AX) and Rr(A) ⊂ Rr(XA), then (XAA])] exists
and the following equalities hold.

(i) XA2(XAA])] = A2;
(ii) (XAA])]A2X = A2;
(iii) (XAA])]AA] = (XAA])];
(iv) AA](XAA])] = (XAA])].

Proof. Since R(A) ⊂ R(AX), there exists a matrix Y over R such that A = AXY. Using Lemma 2, we have
XAA] = XA]A = XA]AXY = XAA]XAA]Y, i.e., R(XAA]) ⊂ R[(XAA])2], so R(XAA]) = R[(XAA])2].

Similarly, using Rr(A) ⊂ Rr(XA) we also get Rr(XAA]) = Rr[(XAA])2] . By Lemma 1, (XAA])] exists.
(i) Notice that Rr(A) ⊂ Rr(XA), then there exists a matrix Z ∈ Rn×n such that A = ZXA. Hence

XA2(XAA])] = A4X[A]]2(XAA])] = ZXA4X[A]]2(XAA])]

= ZA2[(XAA])]2(XAA])] = ZA2(XAA])

= ZXA2 = ZXAA = A2

(ii) Similarly, using R(A) ⊂ R(AX) we can obtain that (XAA])]A2X = A2.
(iii) By (i), we have

(XAA])]AA] = (XAA])][A]]2A2 = (XAA])][A]]2XA2(XAA])]

= (XAA])]XAA](XAA])] = (XAA])]

(iv) Similarly, from (ii), we can prove (iv).

Lemma 2.4. Let A ∈ Rm×n,B ∈ Rn×m,R(BAB) = R(B) and Rr(BAB) = Rr(B), then (AB)] and (BA)] exist and the
following equalities hold.

(i) (AB)] = A[(BA)]]2B;
(ii) (BA)] = B[(AB)]]2A;
(iii) (AB)]A = A(BA)];
(iv) (BA)]B = B(AB)].

Proof. The proof of this Lemma is similar to those of Lemma 2.2 and 2.3 in [12].
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3. Main Results

We begin with the following theorem.

Theorem 3.1. Let M =

(
AX + YB A

B 0

)
, where A,B,X,Y ∈ Rn×n, A] exists, XA = AX, R(A) ⊂ R(AX) and

Rr(A) ⊂ Rr(XA), then we have

(i) M] exists if and only if R(B) = R(BSB), Rr(B) = Rr(BSB), where S = AπY − (XAA])];

(ii) If M] exists, then M] =

(
M1 M2
M3 M4

)
, where

M1 = (SB)]Aπ + (SB)πA](XAA])] − (SB)πZB(SB)]Aπ,

M2 = −(SB)](XAA])] + (SB)πA][(XAA])]]2 + (SB)πZB(SB)][(XAA])]]2,

M3 = −B(SB)]A](XAA])] + B[(SB)]]2Aπ + B(SB)]ZB(SB)]Aπ,

M4 = −B(SB)]A][(XAA])]]2
− B[(SB)]]2(XAA])] − B(SB)]ZB(SB)](XAA])],

Z = A][(XAA])]]2 + A](XAA])]Y.

Proof. (i) The “only if” part.
Note that

M =

(
YB A
B 0

) (
I 0
X I

)
, (1)

Using Lemma 3, we know that (XAA])] exists, and

M2 =

(
YBSB XA2 + YBA
BSB BA

) (
I 0

A]YB I

) (
I 0

A](XAA])]B I

) (
I 0
X I

)
, (2)

M2 =

(
I Y
0 I

) (
XAYB + AB XA2

BYB BA

) (
I 0
X I

)
. (3)

By Lemma 1, there exist matrices X and Y over R such that M = M2X and YM2 = M.
Let

X =

(
I 0
−X I

) (
I 0

−A](XAA])]B I

) (
I 0

−A]YB I

) (
X1 X2
X3 X4

) (
I 0
X I

)
, (4)

Y =

(
Y1 Y2
Y3 Y4

) (
I −Y
0 I

)
. (5)

From Eqs. (1), (2), (4) and M = M2X, we can obtain following equations

YBSBX1 + (XA2 + YBA)X3 = YB, (6)

YBSBX2 + (XA2 + YBA)X4 = A, (7)

BSBX1 + BAX3 = B, (8)

BSBX2 + BAX4 = 0. (9)

It follows, from Eqs. (1), (3), (5) and YM2 = M, that we have

Y1(XAYB + AB) + Y2BYB = YB, (10)
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Y1XA2 + Y2BA = A, (11)

Y3(XAYB + AB) + Y4BYB = B, (12)

Y3XA2 + Y4BA = 0. (13)

Instead of (8), we have
YBSBX1 + YBAX3 = YB.

Substituting it into (6), we have XA2X3 = 0, so (XAA])]A2XX3 = 0. By Lemma 3 (ii), it follows by
A2X3 = 0, so AX3 = 0.

Substituting AX3 = 0 into (8), we get BSBX1 = B, i.e., R(BSB) = R(B).
From (13), by Lemma 3 (i), we can get

−Y4BAA]YB = Y3XA2A]YB = Y3XAYB, (14)

and

−Y4BAA](XAA])]B = Y3XA2A](XAA])]B = Y3AB. (15)

Substitute (14) into (12), we have

−Y4BAA]YB + Y3AB + Y4BYB = B. (16)

Substitute (15) into (16), by Lemma 3 (iv), we have

−Y4BAA]YB − Y4BAA](XAA])]B + Y4BYB = B,

that is Y4BSB = B, which implies Rr(B) = Rr(BSB). This completes proof of “only if” part.
In what follows, we give the proof of “if” part.
It follows from Lemma 2.4 that R(BSB) = R(B) and Rr(BSB) = Rr(B) imply (SB)] and (BS)] exist. Let

X1 = (SB)], X2 = −(SB)](XAA])], X3 = 0, X4 = A](XAA])]

and
Y1 = (SB)πA](XAA])], Y2 = (SB)]S, Y3 = −B(SB)]A](XAA])], Y4 = (BS)].

We can easily obtain that R(BSB) = R(B) implies BSB(SB)] = B.
We claim that X1, X2, X3 and X4 satisfy the Eqs. (6)-(9). Next, we verify the claim by computation

separately.

(1) YBSBX1 + (XA2 + YBA)X3 = YBSB(SB)] = YB;

(2) YBSBX2 + (XA2 + YBA)X4
= −YBSB(SB)]AA](XAA])] + (XA2 + YBA)A](XAA])]

= −YBAA](XAA])] + XA(XAA])] + YBAA](XAA])] = A;

(3) BSBX1 + BAX3 = BSB(SB)] = B;

(4) BSBX2 + BAX4
= −BSB(SB)]AA](XAA])] + BAA](XAA])]

= −BAA](XAA])] + BAA](XAA])] = 0.

From S = AπY − (XAA])], we have SB − YB = −AA]YB − AA](XAA])]B. By Lemma 2.4, we know B(SB)] =

(BS)]B.
By Lemma 3 and computations, we also can verify Y1, Y2, Y3 and Y4 are the solutions of (10)-(13). This

shows that there exist matrices X and Y over R such that M = M2X = YM2 hold. Hence, by Lemma 1, M]

exists.
(ii) By Lemma 1 and Lemma 3, the expression of M] can be obtained from M] = YMX.
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Example for Theorem 3.1: Let R = Z/(6), M =

(
AX + YB A

B 0

)
, where

A =

(
2 2
2 2

)
, B =

(
−4 4
4 4

)
, X =

(
1 1
1 1

)
, Y =

(
2 −2
2 2

)
.

AX =

(
4 4
4 4

)
, YB =

(
−4 0
0 4

)
.

It is easy to verity AX = XA, R(A) ⊂ R(AX) and Rr(A) ⊂ Rr(XA). By a direct computation, we know that
(XAA])] and (SB)] exist.

Further, we have

A] =

(
2 2
2 2

)
, Aπ =

(
−1 −2
−2 −1

)
, (XAA])] =

(
4 4
4 4

)
, SB =

(
4 −4
2 0

)
.

(SB)] =

(
0 2
−4 2

)
, (SB)π =

(
−3 0
0 −3

)
, Z =

(
0 2
0 2

)
.

Clearly, R(B) = R(BSB) and Rr(B) = Rr(BSB). By Theorem 1, M] exists and

M] =


−4 −2 −2 −2
0 0 2 2
4 4 4 4
4 2 4 4

 .
The following corollary follow Theorem 1.

Corollary 3.2. [23,Theorem1], Let M =

(
AX + YB A

B 0

)
, where A,B,X,Y ∈ Kn×n, A] exists, XA = AX, r(A) =

r(AX), then

(i) M] exists if and only if r(B) = r(BSB), where S = AπY − (XAA])];

(ii) If M] exists, then the representation of M] is the same as in Theorem 1.

Proof. When R = K, it is easy to see that

r(A) = r(AX)⇐⇒ R(A) ⊂ R(AX) and Rr(A) ⊂ Rr(XA);

r(B) = r(BSB)⇐⇒ R(B) ⊂ R(BSB) and Rr(B) ⊂ Rr(BSB).

Whence the corollary is easily proved.

Next, we consider the generalizations of some results in [13, 14, 19, 20].

Theorem 3.3. Let M =

(
A B
C D

)
∈ R(n+m)×(n+m), where A ∈ Rn×n, A] exists, and AπB = 0, Let S = D − CA]B. If

S] exists, then

(1) M] exists if and only if P = A2 + BSπC is regular, PπrA = APπl = 0 and SπCAπ = 0, for some P(1)
∈ P{1};

(2) If M] exists, then M] = M1M2, where

M1 =


AP(1)(BS]CA] + I)AP(1)

−AP(1)B(S])2

SπCP(1)(I + BS]CA])AP(1)

−S]CA]AP(1) (S])2
− SπCP(1)B(S])2

,

M2 =

(
A − BS]CAπ BSπ

CAπ S

)
.
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Proof. (1): The “Only if ” part.
Since M] exists, we have that Lemma 1, there exist matrices X and Y over R such that M = M2X = YM2.

By computations, AπB = 0, and P = A2 + BSπC, we have

M =

(
A 0

SπC S

)
42 = 41M2, M2 = 41

(
P 0
0 S2

)
42,

where 41, 42 are the following invertible matrices,

41 =

(
I BS]

CA] I + CA]BS]

)
, 42 =

(
I A]B

S]C I + S]CA]B

)
,

and

4
−1
1 =

(
I + BS]CA]

−BS]

−CA] I

)
, 4−1

2 =

(
I + A]BS]C −A]B
−S]C I

)
.

From M] exists, we have M2 is group invertible, so is also regular. By M2 = 41dia1(P,S2)42, it is easy to see
that P is regular. Let

X = 4−1
2

(
X1 X2
X3 X4

)
, Y =

(
Y1 Y2
Y3 Y4

)
4
−1
1 ,

by the equations M = M2X and M = YM2, we have(
P 0
0 S2

) (
X1 X2
X3 X4

)
=

(
A − BS]CAπ BSπ

CAπ S

)
and (

Y1 Y2
Y3 Y4

) (
P 0
0 S2

)
=

(
A 0

SπC S

)
.

From above the two equations, we have

PX1 = A − BS]CAπ, (17)

PX2 = BSπ, (18)

S2X3 = CAπ, (19)

S2X4 = S, (20)

Y1P = A, (21)

Y2S2 = 0, (22)

Y3P = SπC, (23)

Y4S2 = S. (24)

From (17), we get PX1A]A = A, so PP(1)A = A, i.e., PπrA = 0. By (21), we have AP(1)P = A, i.e., APπl = 0.
Using (19), we get SπCAπ = 0.

The “if ” part.
Let

X1 = P(1)A(I − A]BS]CAπ), X2 = P(1)BSπ, X3 = (S])2CAπ, X4 = S]

and
Y1 = AP(1), Y2 = 0, Y3 = SπCA]AP(1), Y4 = S].

Note that, by AπB = 0, PπrA = APπl = 0 and SπCAπ = 0, it is easy to verify X1, X2, X3, X4 and Y1, Y2, Y3, Y4
satisfy the Eqs.(17)− (20) and (21)− (24), respectively. That implies M = M2X = YM2 have solution X, Y, so
M] exists.
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(2) By Lemma 1, we can compute that

M] = Y2M =

(
Y1 Y2
Y3 Y4

)
4
−1
1

(
Y1 Y2
Y3 Y4

)
4
−1
1 41M2

=

(
AP(1) 0

SπCA]AP(1) S]

) (
I + BS]CA]

−BS]

−CA] I

) (
AP(1) 0

SπCA]AP(1) S]

) (
A − BS]CAπ BSπ

CAπ S

)
= M1M2.

Example for Theorem 3.3: LetZ be the integer ring, and let M =

(
A B
C D

)
be a matrix overZ/(6Z), where

A =

(
2 0
2 4

)
, B =

(
2 0 2
2 4 4

)
, C =

 2 2
1 0
0 1

 , D =

 4 2 0
4 3 4
0 4 3

 .
Then

A] =

(
2 0
2 4

)
, Aπ =

(
3 0
0 3

)
, AπB = 0, S = D − CA]B =

 2 0 0
0 3 0
0 0 1

 ,
S] =

 2 0 0
0 3 0
0 0 1

 , Sπ =

 3 0 0
0 4 0
0 0 0

 , P = A2 + BSπC =

(
4 0
4 4

)
.

Let P(1) =

(
4 0
−4 4

)
. Therefore PπrA = APπl = 0, SπCAπ = 0. By Theorem 2, we have

M] =


−2 2 −2 2 2
−2 2 −2 2 0
−2 2 2 2 0
−1 −2 2 1 −2
0 −1 0 2 1

 .
By computations, from Theorem 2, we can obtain the following corollaries.

Corollary 3.4. [13,Theorem3.1][14,Corollary3.1], M =

(
A B
C D

)
∈ R(n+m)×(n+m), where A ∈ Rn×n is invertible

and S = D − CA−1B is group invertible, then

(i) M] exists if and only if P = A2 + BSπC is invertible;

(ii) If M] exists, then M] =

(
M1 M2
M3 M4

)
, where

M1 = AP−1(A + BS]C)P−1A,

M2 = AP−1(A + BS]C)P−1BSπ − AP−1BS],

M3 = SπCP−1(A + BS]C)P−1A − S]CP−1A,

M4 = SπCP−1(A + BS]C)P−1BSπ − S]CP−1BSπ − SπCP−1BS] + S].

Proof. When A is invertible, we have Aπ = Pπr = Pπl = 0. Further, PP(1) = I = P(1)P, this implies P is
invertible and P(1) = P−1. Whence the corollary is easily proved.
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Corollary 3.5. [19,Theorem12], M =

(
A B
C D

)
∈ R(n+m)×(n+m), where A ∈ Rn×n and S = D − CA]B are group

invertible, AπB = 0 and SπC = 0 ,then M] exists and

M] =

(
A] + A]BS]CA]

−A]BS]

−S]CA] S]

) (
I − A]BS]CAπ A]BSπ

S]CAπ I

)
.

Proof. Note that SπC = 0, P = A2 and P(1) = (A])2, the proof immediately follows from Theorem 2.

Corollary 3.6. [20,Theorem5], M =

(
A B
C D

)
∈ R(n+m)×(n+m), where A ∈ Rn×n and S = D − CA]B are group

invertible, AπB = 0, CAπ = 0 and SπC = 0, then M] exists and

M] =

(
A] + A]BS]CA] A](I + BS]CA])A]BSπ − A]BS]

−S]CA] S](I − C(A])2BSπ)

)
.

Proof. Note that CAπ = 0, the proof immediately follows from Corollary 3.
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