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Abstract. The main object of this paper is to present a systematic introduction to the theory and applications
of the extended Appell-Lauricella hypergeometric functions defined by means of the extended beta function
and extended Dirichlet’s beta integral. Their connections with the Laguerre polynomials, the ordinary
Lauricella functions and the Srivastava-Daoust generalized Lauricella functions are established for some
specific paramters. Furthermore, by applying the various methods and known formulas (such as fractional
integral technique; some results of the Lagrange polynomials), we also derive some elegant generating
functions for these new functions.

1. Introduction

Multivariable hypergeometric functions (such as the famous Appell, Lauricella and Kampé de Fériet
functions, etc.) and their various generalizations appear in many branches of mathematics and its appli-
cations. Many authors have contributed works on this subject; we mention a few: [8], [11], [27] and [28].
In recent years, several authors have considered some interesting extensions of the Appell and Lauricella
functions (see, for example, [22], [24] and [30]). Motivated by their works, we introduce a class of new
extensions of the Lauricella functions and find their connection with other celebrated special functions.

The following extension of beta function, introduced in [17], plays a key role in the construction of our
new functions.

Definition 1.1. The extended beta function B}(J.D;’ﬁ A) (%, y) with R (b) > 0 is defined by
1
a - b
8 (x, =ft"‘11—tV1P(;;——)df, 1
b;p,A (x y) 0 ( )b | B (1 - t)A 1)

where p >0, A =20, min{R (@), R (B)} >0, R (x) > —R (pa), R (y) > —R (Aa) and 1F; («; B; z) is the confluent
hypergeometric function [28, Section 1.3].
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For the case when a = B and p = A = 1, we always write

By(x,y) =By (vy) (xyeO).
When b = 0, (1) reduces to the ordinary beta function B (x, y) (min{R (x), R (y)} > 0).

Throughout the paper, r is assumed to be a positive integer. Boldface letters with subscript r denote
vectors of dimension r; for instances m, := (my,---,m;) € INj and x; := (x1, -+ ,x;) € C". The length of
vector m, is given by [m,| := my + - - - + m,. More generally, if its subscript starts ati (1 < i < r), then we write
;| := x; + -+ + x, for vector x;, = (x;,- -+ ,x,). The inner product of two r-dimensional vectors u, and v, is
defined by (u,,v,) := u1v1 + ---u,v,. When there is no danger of confusion, multiple series are written in
simplified notation:

3, mems 3%,

ny =0
and
[m,| My +-+-+1M,
means
k=0 k=0

Moreover, we always write

£@5)

bM(x+n,y+m)

B(x,y)

where parameters a, , p, A and b are assumed to satisfy the restrictions stated in Definition 1.1 unless
otherwise specified.

With the help of Definition 1.1 and notation (2), the extended Appell-Lauricella hypergeometric functions
defined (by single or multiple integrals) in Section 3 can be expressed properly as the following series:

)

bp}\

(x+ny+m):= (n,m € Nyp), (2)

0 ;0] = FCPY [0,y 1]

A

3 8 v by L 3
—Z(ﬂ)|m|H (bi +mj, ci — )— : mr!, 3)

m,=0
(Rc)>R0i)>0,i=1,-,7; |+ +x]<1)
Fl(;:a/ﬁ;p//\) [x,;b] = (“Xﬁ o /\) [a;, by c;x; D]
(aﬁ xml X

= Z (bl)ml . (b )m, H B (al +m;, |az+1 r+1| + |mz+1 r+1|) e W:r!’ (4)

m,=0

(@ =c—lalf; muy1=0; R(a)>0,i=1,---,r, R(c—la]) > 0; max{jxil,---, x|} <1)

PP ] = FCP) 0, b3

~ 0 (a'ﬁ) 11111 x:@.
= 2, 0000, By @+ imd e —a) e )

m,=0

(R(© > R @ >0; max{ul, - bl) < 1)
SO0 b = S0 [,y )

n My

x
= Z (a)lm | H B( ﬁ) (b + 1, [biv1 1] + (Mg r+1|) —

m,=0
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(br1 =c = Ibyl; mpyq = 0; R(bi) > 0,i=1,---,7, R(c— b)) > 0; max{lxi],---,Ixl} <1)
where (v),, denotes the Pochhammer symbol (or the shifted factorial) defined by

W) _Tw+n) |1 (n=0;veC\{0})
Vhn += F'wv) J|o@+1---w+n-1 neN;veC).

It is noted that, by setting b = 01in (3)—(6), we obtain the Lauricella hypergeometric functions FX), Fg) and F}, Y
(see, for example, [27, p. 33]). In addition, if we set b = 0 and 7 = 2 in (3)—(6), they may reduce to the Appell
hypergeometric functions F,, F3 and Fj, respectively (see [27, pp. 22-23]). They also have some natural
connections with the extended generalized hypergeometric functions [17, p. 632, Eq. (6)]. For instance, in

view of the elementary series identity [28, p. 61, Eq. (9)]

b m1 r/m,
Y, f m ) 2 m%}m=2ﬂmmmw

m,=0 : k=0

we can easily find the reduction formula

1PS:“"“”” [a,b;cx, -, x;b] = (aﬁm [|brc| R b]' ?
where 2F$a’ﬁ o) [x; b] is the extended Gauss hypergeometric function defined by [17, p. 632, Eq. (5)]
nga,ﬁ;p,A) c o ] Z A), B(aﬁ) (B+n,C— B) = (RO>RB>0 |x<1). (®)
The confluent form of (8) is given by
1F$a'ﬁ;p'}\) g X; b] a ZB(“ #) (B+n,C— B) (R(©O)>R(B)>0; |x| <o), ©)
] n=0

which will be used in Section 4.
When bt >0, @ = fand p = A = 1, we use the following notations:

FO [x,; 0] = FC" x,;0],  FY [x,; 0] = FS9"Y [x, 0],

V) [x 0] =1 FR Y [x bl oFy) [xisb] = 2F ) [x,;b].
and

A,B . (aall)AB .
F[C,,b] oF] [C,x,b].

These special cases attract great interest because they are relatively easy to handle, and the relationship
between such extensions and their original forms are clear.

The paper is organized as follows. In Section 2, we introduce a new extension of the Dirichlet integral. In
Section 3, we first state the formal definitions of the extended Appell-Lauricella hypergeometric functions
by using the extended beta function (1) and the extended Dirichlet integral (see Theorem 2.1). Then, by
applying some results of the Laguerre polynomials, we expand FX) [x,; b] and 1Fg) [x,; b] in terms of the

(r)

Laguerre polynomials and the ordinary Lauricella functions FX) and F;. We also prove in this section

that Fg) [x,; b] and ng) [x,; b] can be expanded by using the Laguerre polynomials and Srivastava-Daoust

(r:a,ﬁ;p,/\) [Xy; b]

generalized Lauricella functions. In Section 4, we establish several generating functions for F),

A generating function for F (rcfip.) [x,; D] is contained in Section 5. Generating functions for 1Fg:a'ﬁ oA) [x;; D]
and 21-“,(J Fid) [x,; ] and their connections with the Lagrange polynomials and extended fractional integral

operators are considered in Section 6.
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2. An Extension of Dirichlet’s Integral

The well-known Dirichlet integral is given by (see [1, p. 62, Eq. (4)]; see also [13, p. 434, Eq. (2.1)])

SHAES T (b)) T (by)
k-1=1 —_ - cee = —1 = k
- [1 ' ul] duq -+ - dug T+ +b) (10)

where R (b)) >0(@G=1,--- ,k), k>2,and
k-1
Epq:= {(ul/"' JUg-1) sup 20,000 U 20, u; < 1} (11)

is the standard simplex in RF-1,
The complex measure pp,, defined on simplex Ex_; by

k-1 el

dup, (1) := LR 1- . duy---d 12

o (1) 1= st u' u; uy - dugy (12)
i=1

is called a Dirichlet measure, which is introduced by Carlson (see [1, p. 64]). The normalizing constant
B (by) is given by

' (by)--- T (by)

B(by) =B(by, - ,b) = r(b1+"'+bk)'

By (10), it is easy to see that

i, (Ex-1) = f dpp, (ur-1) = 1.

The total variation measure |uyp, | is given by

B (R (by)) B (R (by))
d - ————d , J(Ery) = —m
b, | (ui—1) = B (bp)| U Uk-1), || (Ex-1) B (bp) |
When k = 2, we shall write (12) as
bl—l 1 _ bz—l
dpun) = T (13)

B (b1, by)
where B (b1, by) is the ordinary beta function.

Theorem 2.1. Let Ey_ be the standard simplex in R*! defined by (11). Then

=1 \Bel e o™
f ui’lfl-'-ui"_‘ll_l 1-Y u H1F1 a; ;—'—A duy -+ -dup
Ex1 i i U; 1 i

-1

Hgf}‘;ﬁ) by byt + -+ by, (14)

where p, A > 0, min{R (b), R (@), R (B)} >0,

R () > —R (pa), R (b) > -%k(_Af)

(i:2/..‘ /k)/
and

wr=1 wyi=1-u), w3:=1—ug—up), -+, wp-1:= 1 —ug—-— ).
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Proof. Denote the integral in (14) by Ii (b1, - - - , bx). We can express I (b1, -+, by) as

k-1 p+Ab

Ie(by, -+, by) = bk)

’:1

k-1 = ‘—M)

1F1 [04 B;— ]dlibk (Ur-1), (15)

where up, (#4-1) is the Dirichlet measure defined by (12). From the properties of the Dirichlet measure
b, (1x-1) and confluent hypergeometric function 1 Fy, it is clear that the integral in (14) exists.
For k = 2, we have

1 p+A l’]
I (b1, by) = GVENC) 1Fq (a;ﬁ;—wl—A)dH (u1)
0

F(b1 + bz) uflJ (a)1 - Ml)
Lo b1 b
= | A -w) |- ————|du
fo 1 Q—w)? 1[ p uf(l—ul)}‘] 1
=8 (01,b), (@1=1) (16)

which is just the extended beta function (1). If we set k = 3, then
a)p-%-/\b wp+/\b
I3 (b1, by, bs) = B (bs) f 1F1| @ ;= ————— | 1F1 | @ B; =2 | dpan; (02). (17)
uy P (w1 —u1) u, P (w2 — up)
Integrating over u; and noting that w, = 1 — u; with w1 = 1, we have

b a)p+A
I3(b1,b2,b3) =B (b3) | 1F (a}ﬁ;_ﬁ]lFl a; ﬁ}—Z—A dus, (12)
Ey ul (1 - ul)

Mg(a)z—uz)
- b
= u' P | B, ————— |du
j; 1 11( p uf(l—ul)A) 1

e bs-1 wSMb
f Uy (w2 =u2)® by | fy —————— |dua.
0

uz (0)2 - uZ)

Setting 1, = w, v, we get

1
13 (bl, bz, b3) = f ul171—1w1212+b3 (a ﬁ L)dul
0 ( 1)

1
. f o1 (1 _ U)hrl 1F1 (Oé;ﬁ; _L\)dv
0 P (1 —v)

1
- - b
—Bﬁ“p’? (b, b3) f Wt =) TR (a;ﬁ;——p )A]dul

uy (1=

= B (03,b3) B (b1, by + ). as)

In above evaluation of I3 (b, by, b3), we have used Fubini’s theorem (see [1, p. 294, Theorem B.2]). Actually,
there exists a positive number 9t such that

b b
ff 1F1( W (1 - oJlFl(aﬁ’_vP(l—v)A)

d ] ) d ] )
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1 1
Sﬂﬁ[) d|y)(u1)f0 d|y|(v)

B(R (b1), R (b + b3)) B(R (by), R (b3)) o
B (b1, by + b3)| B (by, b3)| ’

(19)

where min{R (b1), R (b)), R (b3)} > 0

M‘R(lﬁ)—l (1- ul)%(bz)*'(bs)—l R E2)-1 - U)‘R(b3)—1

_ 1 _
b)) = =gy and Jul@) = =g

do,

which means the use of Fubini’s theorem in evaluating I3 (b1, by, b3) is valid. According to the method used
in [17, p. 633, Theorem 2.1], we know that the range of parameters R (b;) (i = 1,2, 3) can be easily extended.
In general, we have

k=2 a)p+/\b
L(by, - ,b) = bi=1 b2l Filag——t — 1du---d
k(b1 b)) = Uy uw's 1Fi| o B —— 7 uy -+ dutg—r
Ex-» i i i

W1 p+}\b
f b“l(wk 1~ Up— 1)"111:1[6¥,3 i ]duk—1
0

Mk 1(wk1—uk 1)
2

k-
=80 G b) [ bk”b“Hla[aﬁ

Ex2

+A
pb

du1 tee duk_z
)t

i= Ll (wz

Bgap‘i\) (b1, bi) L= (b1, -+, b2, bie—1 + br)

Bl(,(;ﬁ;? (be-1, br) 3( ﬁ) 1 B2, b + b)) I (b1, -+, s, bz + b1 + br)

»

—1

BZSD;‘;) (b, by + -+ ). 20)

IR
—_

j

The validity of evaluating integral Ii (b1, - - , bx) as an iterated integral can be verified in the same manner
as we have done to I3 (b1, by, b3), and then Fubini’s theorem gives the final result.

Finally, the ranges for parameters b; (i = 1, --- , k) are decided by the extended beta function involving
the most parameters. The requirement R (b;) > —R (pa) is natural. We also see that

R (Aa)

Rb)>-=—

(i=1,k) = Rbr+---+b)>-R(Aa).
Hence, each extended beta function appearing in the final expression is proper. [J

Remark 2.2. If we set b = 0 in (14), it reduces to the Dirichlet integral (10).

3. Extended Appell-Lauricella Hypergeometric Functions

In this section, we introduce four new multivariable hypergeometric functions by means of their Euler
type integrals.

Definition 3.1. Theextended Appell-Lauricella hypergeometric functions of r variables can be defined by the following
four Euler type integrals:
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o The extension of Pg) denoted by nga,ﬁ ) is defined by

FE) 4 b bl = HW

. , b
N bl (1 — )b R ag B - —— | (1 = (%, w,)) ™ dug - - - du,. 21
fo foH” (1 - u) 11(aﬁ ufa_u,-)A)( (e ) duty -+ d e1)

Rc)>R@W)>0,i=1,---,7)

o The extension of Fg) denoted by Fl(;:“’ﬁ o) is defined by

(r:a,ﬁ;p,A) r (C)
B [ar brs i U] = ey T @) T =)
p+A
f H (1 - ) Yy [a Bi- ](1 — ) duy - day. (22)
E 21 - uz)

(@i=c—lal; R@)>0,i=1,---,r, R(c—lal)>0)

o The function Fg) has two reasonable extensions, they are

(raﬁp/\) [a brlc xr/ ] ﬁ
1 b - ‘
i a—1 _\c—a-1 Q. e\
fo W (1 —u)f (a,ﬁ, — (1—u)A)[1[(1 xu) ™ du (23)
(R (c) > R (a) > 0)
and
(r:a,ﬁ;p,/\) r (C)
b e b G b = e T ) T e~ o)
p+?\b
f H i F [aﬁ ](1 )™ (1 = Cup, %) i - d. (24)
E, i=1

(brs1 =c—1Ibf; R(:)>0,i=1,---,r; R(c—Ibs])>0)

Remark 3.2.

a. In the case b = 0, the above extended Appell-Lauricella hypergeometric functions reduces immediately to the

Euler type integral representations of the original Lauricella functions FO, Fy ") and F(r respectively (see [11,
pp. 4849, Section 2.3]).

b. Fora = Band p = A = 1 the extended hypergeometric functions in (21), (22) and (24), becomes into the known
results due to Sahin (see [24, p. 1142]). Here, it is important to mentioning that Sahin also point out that the
third kind of Lauricella’s hypergeometric function Fg) can not be extended in this manner, since its coefficient
can not be expressed as a product of beta functions.

c. By suitably expanding the integrands in above integrals, we can easily find their series representations (3)—(6)
by termwise integration. The series expressions (3)—(6) (may be not heuristic) can also be considered as the
definitions of the extended Appell-Lauricella hypergeometric functions, since they are easier to be manipulated
especially in deriving some identities.
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3.1. Expansions for FX) [x,; b] and 1Fg)[x,; b]

The (generalized) Laguerre polynomials LE,“) (x),aeC,x>0,andn =0,1,2,--- can be defined by the
generating function [28, p. 84, Eq. (14)]:

(1-2)Texp (— - ) =Y 19wz, E <. (25)
0

z

For a = 0, we simply write L, (x) = Lﬁ,o) (x).

Theorem 3.3. For the extended Appell-Lauricella hypergeometric function FZ) [x,; b], the following expression holds
true:

oo |my|

(ci = bj),,.
F(V) [4,b,; ¢ x,; b] = o2 Z Z 7/kL(Oé) (q) H mz: 1+1 \Hi mai+1
my,=0 k=0 (Cl Moi—1+Mpi+2

-Pg [a,b1 +my+1,--- by +myg +Lcp +my +my+2,--- ¢ + Mppey + 1o +2;%],  (26)

where g > 0, |x1| + -+ + x| < 1 and

_ p(2r+1)
Vk = FA

b b
a+1,_m27,k,'1,"',1,C¥+1,'—,"' /_/1]/
o —_———
2r

it being assumed that each member of the assertion (26) exists.

Proof. Setting a = f and p = A = 1 in the integral representation (21), we get
- 1 ! YT, P p—
Flabieinitl = | | g=——p fo fo [T @ =)™ 5050 (1 = G, )™ dun - duy. (27)
i=1 ’ i=1

b
The key part of the proof is to expand [];_; e “() in a suitable way. By applying the familiar expansion
[2, p. 238, Eq. (5.155)]

e = 2 Z Ly (B) Ly (b) 741 (1 = 1)1, (28)
m,n=0
and writing (technically) b = tgq (> 0) in it, we can get

r

__f =
[Te ™ =e1 Y Ly, (t9) L, (bg) "™ (1 =)™

i=1 my,my=0
o2t Z Lo, , (tq) L, (tq) i +1 1- ur)m2,+1
May—1,M2,=0
Y HLm, (tq)l_[ matl (] gyl -
my,=0 j=1

It is known that for the products of various Laguerre polynomials we have the following elegant result
due to Erdélyi (see [7, p. 156, Eq. (5)]; see also [27, p. 48, Eq. (2)]):

[my|

H L) (z) = Y oil” @), (30)
k=0
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where the coefficients @y (k > 0) are given by
= (m1 + al) . (mr * ar)l—"(rﬂ) [ +1,-m, —ka +1,a+1z,1]. (31)

4 my
With the help of the expansion formula (30), we can express (29) as

oo |my|

H e ,‘1(1 W) = g2t Z Z )/kL(a) @) H oy 1+1 ui)n12i+1 ) (32)

mz,—O k= 0

where

Vk :F(Azrﬂ)[a+ 1,-my, —k;1,---,1,a+1;t,-- ,t,l].
——— N———
2r 2r
Now, we can set f = b/q to find that

oo |my|

H T = Y Y L (q)H raetl (] — )"t (33)

i=1 my,=0 k=0

where

b b
Vi = F(2r+1)[a+ 1,-my,—k;1,--- ,1,a+1;-,--- ,—,1].
—_— q q

Finally, making use of (33), the integral (27) can be evaluated as

oo |my|

(r) —2rb (@)
F, [a,brcrx; bl =e HB e =D ZO;YL @)
: f f Hu?*’”z"* (1= )" (1 = (x,, u,) ™" duty -+l
r oo |my| @
=e L B (b +maioy +1,¢; — bi + my; + 1
Y B(bz,c,—b)ZZOkZ;V" (Q)H (b iy + 1,6 = bi 4 mai + 1)

Ff;) [a,b1 +m +1,--- ,by+1712r,1 + Lo +m+my+2,--- ¢+ My +m2,+2;x,].

(34)

This completes the proof. [J

Theorem 3.4. For the extended Appell-Lauricella hypergeometric function 1Fg) [x;; b], the following expression holds
true:

oo m+n

1FD [a, by, 0] = e Z Z)/ L“)( )M Dla+m+1,bic+m+n+2;x], (35)
m,n=0 k=0 ( )m+n+2

where g > 0, max{|x1],--- , x|} <1and
yk:Ff>[a+1 —m,-n, k11a+1§§1]

it being assumed that each member of the assertion (35) exists.
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Proof. By settinga =, p = A =1and b = tg (> 0) in the integral representation (23), we get

1 1 w1 .
(r) ey — a—1 —a-1 = | | — )7l
FD [Cl, brr C; Xr; t‘i] - B(Q,C _ ﬂ) j; u (1 - u)c e mmn | | (1 X,M) du. (36)

Now, the same argument gives

yotm C+‘Vl a _T
D a,by;c;x,;tq] = e Z Ly (tq) Ly (tq)f Bg — H(l xiu) ™ du
m,n=0
o214

B(ac ZL (t9L,(tq)Bla+m+1,c—a+n+1)

-Fg) [a+m+1,b,c+m+n+2;x]

,2tq oo m+n
_ (@) _
) ZZykLk (@B@a+m+1,c—a+n+1)
mmn=0 k=0
~Fg)[a+m+1,br;c+m+n+2;xr], (37)
where
Ve =FQla+1,-m,-n,-k1,1,a+1;tt1]. (38)

The result follows directly by letting t = b/q in (37) and (38). O

Remark 3.5. Setting x1 = --- = x, = x in (35) and using the reduction formula (7), we can find that
Ib,l,a SO (a) —a) b, a+m+1
r cxb| = e—zb L (@) m+1 n+1 Smtl Pl py [ rls ;x] ,
[ ] m;();y ( ) (C)m+n+2 ctm+n+2

which is equivalent to the known result [20, p. 18, Section 3].

3.2. Expansions for Fg) [x,; b] and ng)[x,; b]

The Srivastava-Daoust generalized Lauricella function is defined by [27, p. 37]

oo ) g (@0 OO0 ((60) : LS (H0) :
F C: D(l) D(n) . F C: D(l D(n) Xy
X, () : p®, .o, 0] : [(d(l)) M- ;[(d(r)) - 60];
m1 XT"
_ZOQ(m’)_."'m" (39)

where, for convenience,

A BO )
H ( ])m19(1)+ +m,9§.’) H (bﬁl))m1¢(l) H ( jy))m qb(,r)
Q(m,) = j=1 j=1 j=1 '
r c DO p® ’
H (Cj)m1¢;1)+~~+mr4’;” H (dgl))mm(n o ] (djly)>m,b<v")
j=1 j=1 / j=1 /
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the coefficients
0= 1 =B
lljﬁk)l]_l/'”/c; 65']()/].:1/”'/[)(}{); Vke{ll'”/r}

are real and positive, and (a) abbreviates the array of A parametersay,--- , a4, (b(k)) abbreviates the array of
B® parameters b;k), j=1,---,B®;Vk € {1,--- 7}, with similar interpretations for (c) and (d(k)), k=1,---,r;
et cetera. For the precise conditions under which the multiple series (39) and its special cases converge

absolutely, see [25, pp. 157-158, Section 5].
First, we need the following lemma.

Lemma 3.6. Ifb > 0 and min{R (x), R (y)} > 0, then we have
e Y Bc+k+1,y+1+ DL B) L (B)| < e HEDIB(R (), R () (40)
1=0

for 3 (x+y)#0,and

ke

e Y IBr+k+1y+1+ 1)L )L ()] < e"B(R (), R (v)) (41)

k1=0
for 3(x+y)=0.
Proof. For the Laguerre polynomial Ly (b), we have the following useful inequality [21, p. 450, Eq. (18.14.8)]
Ly W)l <" (b= 0; k€ Ny),
and for gamma function we have |I' (x) | < T (R (x)) (R (x) > 0) and [1, p. 51, Eq. (7)]
TG0 = T (R (1) (sech 73 ()2 > T (R (1)) e F13) (‘R ) > %; I (x) # o).

By using these inequalities, we get:

e Y Btk +1,y+1+ 1)L (B) 1Ly (b))

I=0
R r(x+k+1)r(y+l+1) o TR +k+DT(R(y)+1+1) 3 0
= ,;5 Fx+y+k+1+2) G e BT (R (x + y) +k+1+2) Be+y)=0)
e 23 LR @+ DT R @) +1) ¥ Z R @)+ D (R () +1), 1) (1)
TR(x+y)+2) & (R(x+y)+2),,, Kk I
e HIBCHIBR 1)+ LR (1Y) + D[R+ LR +1L,L,LR(x+y)+21,1] < oo, (42)

where Fj is the Appell function defined by [27, p. 23, Eq. (4)]

(o)

b), ('
Fsla,a',b,V;cx,y] = Z @ (H(Z]): z)k( ) i'% (max{lxl, [yl} < 1).
k=0 +

The conditions under which the Appell function F3 converges absolutely for |x| = |y| = 1 can be found, for
example, in [23] and [14]. By making use of the integral representation [27, p. 279, Eq. (17)]

1
Fsla,a',bb;a+a’;x,y] = ﬁ f w1 - u)“/_1 1- ux)_h [1-(1-u) y]_b/ du,
, 0
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(max{R @), R @)} >0; |xl <1,|yl <1)
we can find that
BAR®)+LR(+1DF[R®+LRW+1L,L,LRx+y)+2;1,1]=B(Rx),R(y)). (43)
Substituting (43) into (42) we get the inequality (40). The inequality (41) can be found similarly. O

Theorem 3.7. For the extended Appell-Lauricella hypergeometric function ng) [x;; b], the following expression holds
true:

—2rb oo L]

e
FY [a,brcixb] = b ;};y WL (q)HB(b +Dict + 1, [bjg1 gl + boj + 1)
2r =" 1
r r—1 r—1
—_—— —_— —_——
o [a;1,--- 1], [Ibysa|l ++1:0,1,---,1],-- , [Ibyrpa| + Ly +1:0,---,0,1] :
.Fr: P
r:0;-+,;0
byl +h+L+2:1,--- 1], [Ibyy1| + ooy + Ly +1:0,---,0,1] :
S—— S——
r r—1
by +L+1:1];--- by + by +1:1];
X |, (44)

where byy1 = ¢ — |b,|, my1 = 0,9 >0, max{lxi],-- -, x|} < 1and

4

b
)/k:Ffr+1)|:0(+1’—12”k;1,--.,110(4-1;— 1
—_— q

2r

{&w
<
N

2r

it being assumed that each member of assertion (44) exists.

Proof. For the extended beta function By, (x, y), we have the following expansion [2, p. 238, Theorem 5.13]:

By (x,y) = % Z B(x+k+1,y+I1+1)Li(®)Li(b) (b>0; min{R (x),R (y)}>0). (45)
k,1=0

Then, from the series expression (6), we have

1 ) r flnl xmr
2P 6] = 5 Z (@, H By (b + i it | + bt ) S

ml m,

=563 Z (@ '...m'llz B(by +my + 11 + 1, byt + Mol + 1o + 1) Ly, (b) Ly, (b)

Z B (by + 1, + Loy + 1, syl + 1Mysnpa| + by + 1) Ly, (0) Ly, (0)

b2r-1,12r=0
—2717 sl mr
)Z‘()‘mr m'...
> H Ly, b) H B(bi + i + byt + 1, bis il + M ol + Iy +1). (46)

I,=0 j=1 i=1
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By using Lemma 3.6, we can easily derive the fact that the multiple series (46) is absolutely convergent for
max{|x1], -, x|} < 1. In fact, we only need to prove the convergence of the following series

o 20 |X1| w
W(x)=e 1;0 S iy
o 2r r
: Z H ILy; (b) | H |B (b + m; + Loisy + 1, [bisypia| + My pia| + b + 1) (47)
15=0 j=1 i=1

Without loss of generality we may assume that J (|b;41]) #0,i=1,--- ,r. The use of (40) gives

W (x) < e [ [ e2P(®nDB (R (), R(Ibisa,raa])
i=1
9&(b ))m, (%(|bl+1 r+1|))|mx+1 r+1‘ |xl|m1 |xr|my
Y, H R, !

m,=0

= H ¢313(EDIB (R(by), R(lbis 1))

Z (oD T2 (Rt D (RO, (RO, Doy g
(‘R(|b1 r+1|))|m | [T (‘R(lbi,fﬂl))mmﬂ my! my!
e [ [t (R (), Rlbias )
r r-1 r-1
—_— —_— —_—
1 1 [lall 1/ Tty 1]/ [% (|b2,r+1|) : 0/ 1/ Tty 1]/ Tty [% (|br,r+1|) : 0/ e /0/ 1] :
L
r:0;-+,0
[% (lbl,r+1|) : 1/ Tty 1]/ Tty [% (lbr,r+l|) : O/ e rOr 1] :
—— N——
r r—1
[R (1) : 1L+ 5 [R(by) : 115
bl | < 0o for max{il,--bxl) < 1. (48)
Thus, we can interchange the order of summations and find that
FO [x,; b Ly, (b
2F) ;] = B(bm)ZOH 5 (b)
m1 m,
xV
mz_o(a)"“'HB(b iy 1, i a4 Bl i 1) 2
e & -
“ B Z H Ly, (b) H B(bi + i1 + 1, [biy pa1] + I + 1)
(i + hic1 + 1)y, (b1l + i+ )y ox
Z (@)m,| H 5 l l oL (49)
mo0 (bl + hica + bi + 2) m!  m,!

The final result (44) can be obtained by interpreting the inner series in (49) as the Srivastava-Daoust
generalized Lauricella function and using formula (30). O
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We can prove the following result for Fg) [x;; b] in a similar manner, so we omit its proof.

Theorem 3.8. For the extended Appell-Lauricella hypergeometric function Fg) [x,; b], the following result holds true:

—Zrb oo |l r
Fg) [a;, b,; c;x,; ] = Z Z kL,((a) (q) H B(a; + L1 + 1, |aic1 p1] + i + 1)
0 k=0 i=1
r—1 r—1
—_—— —_—
llazs1l ++1:0,1,--- 1]+, [laj41l + Lr +1:0,---,0,1] :
. Pr.—?:Z,:m;Z
lla,al +h+hL+2:1,--- 1], [lape1l + Iope1 + I +1:0,---,0,1] :
~— ——
r r=1
[(b1:1][ar + L +1:1);--- 5 [br 2 1), [ay + Loy +1:1];
X |, (50)

where ary1 = ¢ = |ay], mpy1 = 0,9 > 0, max{lxl, -+, %[} <1and

b b
y _F(ZH—D a+1/_12r/k;1/"'/1/0(+1/‘_/"' /_/1 ’
2r —
2r

it being assumed that each member of the assertion (50) exists.

4. Generating Functions for F(mﬁ iPA) [x,; bl

In this section, we derive several generating functions for the extended Appell-Lauricella hypergeomet-
ric function Fgr:a'ﬁ;p'/\) [x; b] with the help of the method considered in [6] and [26].

Theorem 4.1. The following generating function holds true:

2 (a+k (rapip.A) v 2B Ak — —a—1 p(rappA) oz Xz
;( k )FA [_k,brrcr/Xr/b]Z _(1—2) FA |:a+1,br,chm"“’z_1/b:|' (51)

In particular, we have

ZP(”W)[ —k,by; ¢y Xy b] 2 = ¢ H plesed) [C] i b] (52)

k=0 j=1

where 1F§a”3;P ) [z; b] is the extended confluent hypergeometric function given by (9).

Proof. Since (52) is just the confluent form of (51), which can be easily derived by replacing z by z/a and
letting a — oo, it would suffice to prove the generating function (51).
Let A (z) deonte the left-hand side of (51) and let

(mll mi’) _HB( ﬁ)(bi+milci_bi) (MieNo;izl,"‘,T’).

b;p,A
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G20 b

Then, by substituting the series expression (3) for the function F), and using the elementary

identities
(DN k!
——— O0<N<k
(=k)n =4 (k= N)!
0, N>k
and
a+k\ (a+1)
k) k7
we find that
v @+l o ulooa
= kZ_: . ;,—0 (=K)jm,) © (m1, -+~ ,my) m—l, e m_y!Z
oo 0<my+--+m,<k |m,| m m,
1 +1 X
= %@( m, . mr)%...xL'Zk. (53)
e (= my])! mi! !
By applying the multiple series identity [28, p. 102, Lemma 4, Eq. (17)]
oo lymy+--+lm,<k
D, i)=Y Z ®my, - myk b+t ),
k=0 my,,my=0 k=0 myq, ,m,=0
we obtain
Az) = i O (m, - my) T2 XA i @+ Dy 2 (54)
- e 1s s ity m1! mr! — +m, | k' :

Now, the use of identity (A),,,,, = (1), (A + n),, and the binomial theorem can give us the following result

A@=01-2"" Z ©(my, - ,m,)

mi, =0

(@4 im, ()" ()

my!---ml\z—1 z—1

S -

_ -1- (r-“rﬁrpr/\) o
_(1_2) aFA |:a+1/brrcr/ZT1/' '/Z_l/
This completes the proof of (51). [

Remark 4.2. For b = 0, the generating function (51) and its confluent form (52) may reduce to the results derived
by Srivastava and Choe [26, p. 60, Egs. (2.1) and (2.7)].

Now, let
F(p;%:) —Z(#)LA(Jr)x’“- i (56)

and

G(wys) =) (B Y-y, (57)
k=0
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where, and in what follows,
L:=hji+-+Lj; M=mbk +---+msks (I,--,l, e N;u,my,--- ,ms €C)

and {A (j,)} and {B (k;)} are suitably bounded multiple complex sequences. The modified Hadamard product
(or convolution) of F and G, which was first introduced by Chen and Srivastava [6], is defined formally by

(F* G) (x5 y5) = Y. Y () AGr) B x) - x] yf- g

j=0 1=0

With the help of this concept and some series rearrangement techniques, Chen and Srivastava proved the
following bilateral generating function [6, p. 2, Theorem 1]:

= (1), n
Za %F(—n; x,) G (1 +m;ys)t

~ _ . £\ t\" ;m Ys
=(1-1 “(F*G)(uﬂq(m) e ey s P IR (58)

Specializing the bounded sequences {A (j,)} and {B (k,)} by putting

b;p,A b;p,A

AG) = []BE) 0+ jiei—b) and B():= HB(“ﬂ) (i + ki i — dy),
i=1
we can deduce from (58) the following bilateral generating functions for nga,ﬁ ) [x,; b].

Theorem 4.3. The following generating function holds true:

00

Z (l:l)|n Fg’;alﬁ}f),)\) [—7’1,’ br; i Xy b] Fl(:;a,ﬁ}[),/\) [a +n; ds; hS; Ve b] 1

n=0

_ 1 n-ap(resappd) [ ) ) cxat ot s ]

_(1 t) PA a/brrdsrcrrhsrt_lr rt_l/l_t/ /1_t1b . (59)
Remark 4.4. By setting y3 = -+~ = ys = 0Oand a = a + 1 in (59), we can get the former result (51). If we put
X1, , % = 01in (59), we obtain the following generating function

Z a)”F(w’SM) [0+ mdy; by b = (1 — 5" ES00) [a; d; hg; % , 1% t;b].

n=0 ! - -

5. Generating Functions for Fl(:a"g #4) [x,; b]

In this section, we establish a generating function for the extended Appell-Lauricella hypergeometric

function F)(;:a'ﬁ;p'A) [x,;b]. Our theorem mainly depend on the following result due to Exton [12, p. 247,
Theorem 1]:

] ) @ O, (t
- Y oy S (1)

B Z Dy k) <+ ey >m,
B (|kr|)|m,| my!-

ZC(pr “)P (=), - (=), (60)

m,=0 p=0

where C(m,) is any arbitrary function of my,---,m,. The generating function (60) is derived by using
Exton’s multidimensional generalization of Bailey’s transform (see [12]; see also [11, p. 139]).
By suitably specializing the parameters, we obtain the following result.
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Theorem 5.1. The following generating function holds true:

Ik | (raﬂp)\)[ x1t Xt ]_ - (kl)ml" (r)m, Im, | (rapip.A) e
(1 ) F af kV/C/t_li 7 t_llb - Z m1| mr! t F [ar/ mrlclxr/b]' (61)

Proof. The generating function (61) is easily derived by putting d = |k,| and

my m,
¥ N X _
C(m,) = H B,EM) (@i + 113, i1, r41] + I i) (1) R — @m=c—lal me =0).
L room!

in (60) and suitably expressing the resulting equation in terms of the function Fj, (o) [x;b]. O
Remark 5.2. Setting b = 0 in (61) gives the result [12, p. 251, Eq. (A.9)].

If we specialize the parameters in another way, we may get a generating function for the function

1Fg:a’ﬁ o) [x,; b]. This result will be given in Section 6.

6. Generating Functions for 11—"](;:“”;;‘0 A) [x,; b] and ng:a’ﬁ;p A) [x,; b]

The familiar (two-variable) polynomials g, (a6) (%, y) generated by

y _1})

are known as the Lagrange polynomials which occur in certain problems in statistics (see [9]; see also

Y i @z == -y (< min(d
n=0

[28, pp. 441-442]). The multivariable Lagrange polynomials g o) (x;) = g(“l @) (x1,--+,x,), which are
popularly known as the Chan-Chyan-Srivastava polynomials, are generated by (see [3]; see also [5] and [19])

r

[T{(-%2)"} - Zg“" )2 (ol < minfal ™ ol ™). (62)

j=1
The explicit representation of the Chan-Chyan-Srivastava polynomial is given by

00 Ky xk,

)= Y @@ e (63)

ki+-+k,=n

which is equivalent to [16, p. 522, Eq. (17)]

Nr—1 .
ar) (x,) = Z Z Z (al)nl (a2) 12—y (@) 11 x;zlxrzzz—nl L xf—n,,l' (64)
m!(ny —ny)l--- (n —n,q)!
n-1=0mn,_,=0 m

We also present here the following important generating function (see [3, p. 143, Eq. (20)]; see also [5, p.
246, Remark 1])

(" i =TT o (2 1252) )

n=0 j=1

For other recent results concerning these polynomials and their extensions, we refer to [4], [10] and [29].
The following lemma, given in [16, p. 521, Eq. (12) and (13)], will be useful in the sequel.
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Lemma 6.1. The following formulas

o (e8] 00 00 ny 3
Z Z '--ZA(nl,nz,'-- M) = Z Z '--ZA(m,nz—nl,'-- My = My_q) (66)
n,=0n,-1=0 n1=0 n,=0n,-1=0 n1=0

and

(o] n, 1y o o] [
Z Z -‘-ZA(m,nz,---,nr):Z Z -‘-ZA(nl,m +1,0 e 1) (67)
n,=0n,_1=0 n1=0 n,=0n,_1=0 n1=0

holds true provided that each of the series involved is absolutely convergent.

Theorem 6.2. The following bilateral generating function holds true:

- a,B;0,A
ng‘;yY)(xr)lF(Dsa/p )[ﬂ,_n,bz,"',bs;C;T/ll,"',us;b]Zn
n=0
;
~Vj (s+r-LaBip,A) X1uU1z XU Z ]
= 1_x'z }F al I“.I Ibl‘..lb;cl. “.I Iul"‘lu;b . 68
j:l{( ]) 1fp V1 Vs 02 s Xz -1 %z —1 2 s (68)

Proof. Let A (z) denote the left-hand side of (68). Then, by some simple calculations, we get

n

B0,/
o (Xr)1F1(7saﬁp )[

gk

A(Z) = gn a/_n/bZ/"'/bs;C;ull"'/us;b]Z

n=0
Y M () D) e,
_ ;gn (xr)m ;‘_og"“ @+l e =a) (1), (02, 0y, o

(=] umz My ( ﬁ) ml

- o us ) ~ u' o,
= mZn;O A (e Ry ;;;Ogn () By @+ Il c = a) (o), - Lz
_ - VA TR () (o ﬁ) uml e
- mmgf‘ls:O (bz)mz - (bS)mS m_z' o m_s' HZ‘S r;‘ Jrem; X ( r)B ({Il + |m5| €= a)( n-— ml)ml m_l'z
= i B (a0t fmuly =) () -+ (B, e 500 ) (- tyn S e
= bip, A sly 2)m, mSm' |gn+ml Xy

n,mq, - ,mg=0

(o) umz mg
= Y B @t imil e - ) (2),, - (B0, (i)™ 2 (“ml)gm (x)2"  (69)
2 : myl mg! n 1
ml,"',ms 0 n:0
From (65), we have
r 00
.
A@=TT{1-)"} Y, B @+ imdc-a @, @)
j=1 my - ,ms=0
(X% )_ m " 7
Im ( 1-xz" "1-xz (i) mo!l mg! (70)

Upon substituting (64) into (70), we find that

r o ny ms

A2) = H {(1 - sz)‘?’f} Z B2y -+ (o), % ... %

=1 g, =0 s



R. P. Agarwal et al. / Filomat 31:12 (2017), 3693-3713 3711
. i i . i (Vl)nl (7/2)”2—”1 Tt (‘)/V)n—ny,l
ni! (np —ny)!--- (my —nyq)!

nmq =0 My 1=0 np =0

1-—x1z — X2 1-—xz

By using Lemma 6.1, we get

r

A@=[T{0-x2)"} i B @+ lmul + Inal e @) (2), - (0,

j=1 1y, My, My, s =0

_ my s
X, )m1 (_ulz)m1+|ny 1l U, u;ﬂ.

2 ... (72)
1-xz nil - -n,_qlmqy! mo! mg!

00 02y 0y (7)o
Now, we interpret this last multiple series by means of (5), and the result follows. [
Remark 6.3. Setting b = 0 in (68) yields the result [16, p. 525, Theorem 2.12].

The next result is derived by performing a suitable fractional integral operator on the generating function
(62). The fractional integral operator to be used is defined by [17, p. 647]

1 “ -1 o Zp+Ab
mﬁf(t)(z—f)’ 1F1(Ol,l3, —tP(z—t)A) ,

where p > 0,4 > 0, min{R (o), R (B), R (1), R (b)} > 0. It is clear that If’b may reduce to the Riemann-
Liouville (left-sided) fractional integral operator [15, p. 69] when b = 0. The case whenp =A =1and a = f
have been considered in [22]. Similar constructions are also used in [18] and [30].

For this operator, we have [17, p. 647, Eq. (47)]

I f (@) = (73)

1) = T i, B> 7
Lemma 6.4.
12_”’17{2”‘1 (1 - ij)_b/} - %Zcﬂng:a’ﬁm'A) [a,b,;c;2x]. (75)
j=1

(R () > R(a)>0; max{xizl, -, Izl <1)

Proof. Direct calculations yield

r m1 m,

I;—u,b{za—l H (1 - X] Z (bl)m1 ' (b )m IC ub{ wrimt- 1} 1! e :; !

j=1 m,=0

(z 1)"“ ()™

Z (b)), Bt) @+ 1yl e~ a)

F(c "

F(a #C= ( ﬁ) (zx )m1 (zxr)""

“TE 1; By - (0r), By (@ + [, = ) mll! e
= MZC‘HFSH'W” [a,b,;c;2%,],

T T(o)

where we have used property (74) and the interchange of the order of summation and integration can be
justified by the absolute convergence of the series involved. [
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Theorem 6.5. The following generating function holds true:

Z B9 @+ nc-a) g™ ()2 = FS ) bz, o b (76)

n=0
(12l < min {pe |-+ bl ™)

Proof. Upon replacing a; (i=1,---,r) in (62) by b; (i =1,---,r), multiplying its both sides by 21, and
applying the extended fractional integral operator £ to the resulting equation, we get

r

I;—u,b{za—l H (1 _ x] A =1 ab Zg b,) (x,) 2+~ 1} (77)

j=1

The left-hand side of (77) can be evaluated by using Lemma 6.4, and the right-hand side of (77) can be
evaluated as

IC flb Zg r)(x)za+n1 Zg r)(xr)lc ab{a+n 1}
__F vy gl ) () "
T o ZBb;P'A (a+n,c—a)g,” (x)z
F (ﬂ) oo 1 ("‘ ﬁ)
F(c) Z B, o (a+n,c—a) g,, ) (x,) 2" (78)
Therefore, the generating function (76) follows from (75), (77) and (78). [

Remark 6.6. By setting b = 0, the generating function (76) reduces to the one derived by Chan et al [3, p. 141, Eq.
(11)].

We end this section by giving the following two theorems without proof. In fact, they can be easily
derived by applied the methods used in Section 4 and 5.

Theorem 6.7. The following generating function holds true:

a = (k (e m a,
(1-1)" k| F(V BipA) [a kr/cl%l'.' ,%;b] — Z %tlml F(V ﬁPA)[ —m,; ;x5 b]. (79)
re

=

Theorem 6.8. The following generating function holds true:

) R o R e
pan k z-1 z-1
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