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Available at: http://www.pmf.ni.ac.rs/filomat

Yetter-Drinfeld Modules for Weak Hom-Hopf Algebras

Shuangjian Guoa, Yuanyuan Keb

aSchool of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, P. R. China
bSchool of Mathematics and Computer Science, Jianghan University, Wuhan, 430056, P. R. China

Abstract. The aim of this paper is to define and study Yetter-Drinfeld modules over weak Hom-Hopf
algebras. We show that the category HWYD

H of Yetter-Drinfeld modules with bijective structure maps
over weak Hom-Hopf algebras is a rigid category and a braided monoidal category, and obtain a new
solution of quantum Hom-Yang-Baxter equation. It turns out that, If H is quasitriangular (respectively,
coquasitriangular)weak Hom-Hopf algebras, the category of modules (respectively, comodules) with bijec-
tive structure maps over H is a braided monoidal subcategory of the category HWYD

H of Yetter-Drinfeld
modules over weak Hom-Hopf algebras.

1. Introduction

The first examples of Hom-type algebras were related to q-deformations of Witt and Virasoro algebras,
which play an important role in Physics, mainly in conformal field theory. The q-deformations of Witt
and Virasoro algebras are obtained when the derivation is replaced by a σ-derivation. It was observed
in the pioneering works (See [5]-[8]). Motivated by these examples and their generalization, Hartwig,
Larsson and Silvestrov introduced the Hom-Lie algebras when they concerned about the q-deformations
of Witt and Virasoro algebras in [4]. In a Hom-Lie algebra, the Jacobi identity is replaced by the so called
Hom-Jacobi identity via an homomorphism. Hom-associative algebras, the corresponding structure of
associative algebras, were introduced by Makhlouf and Silvestrov in [12]. The associativity of the Hom-
algebra is twisted by an endomorphism (here we call it the Hom structure map). The generalized notions,
Hom-bialgebras, Hom-Hopf algebras were developed in [13], [14]. Caenepeel and Goyvaerts studied
in [2] Hom-bialgebras and Hom-Hopf algebras from a categorical view point, and called them monoidal
Hom-bialgebras and monoidal Hom-Hopf algebras respectively, which are slightly different from the above
Hom-bialgebras and Hom-Hopf algebras. Thus a monoidal Hom-bialgebra is Hom-bialgebra if and only
if the Hom-structure map α satisfies α2 = id. Yau introduced Quasitriangular Hom-bialgebras in [17]),
which provided a solution of the quantum Hom-Yang-Baxter euqation, a twisted version of the quantum
Yang-Baxter equation called the Hom-Yang-Baxter equation in [18]. Zhang and Wang introduced weak
Hom-Hopf algebra H, which is generalization of both Hom-Hopf algebras and weak Hopf algebras, and
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discussed the category Rep(H) (resp. Corep(H)) of Hom-modules (resp. Hom-comodules) with bijective
Hom-structure maps, they proved that if H is a (co)quasitrialgular weak Hom-bialgebra (resp. ribbon weak
Hom-Hopf algebra), then Rep(H) (resp. Corep(H)) is a braided monoidal category (resp. ribbon category)
in [19].

Makhlouf and Panaite defined and studied Yetter-Drinfeld modules over Hom bialgebras, a generalized
version of bialgebras obtained by modifying the algebra and coalgebra structures by a homomorphism.
Yetter-Drinfeld modules over a Hom bialgebra with bijective structure map provide solutions of the Hom-
Yang-Baxter equation in [10]. It is well known that the Yetter-Drinfeld modules category of a (weak)
Hopf algebra is a rigid monoidal category, and is braided. Does this result remain true in a weak Hom-
Hopf algebra? How the corresponding results appear under the condition that the associativity and
coassociativity are twisted by an endomorphism? Is there any relation between this Yetter-Drinfeld modules
category and module category or comodule category? This is the motivation of the present article. In order
to investigate these questions, we introduce the definition of Yetter-Drinfeld modules over weak Hom-Hopf
algebras, which is generalization of both weak Yetter-Drinfeld modules introduced by [3] or [15] and Hom-
Yetter-Drinfeld modules introduced by [10] or [11], and consider that when the Yetter-Drinfeld modules
category of a weak Hom-Hopf algebra is is a rigid monoidal category, and is braided.

To make sure that the Yetter-Drinfeld modules category of a weak Hom-Hopf algebra H is a monoidal
category, we need H is unital and counital, and the Hom structure maps over H are all bijective maps.

The paper is organized as follows. In Section 2, we recall now several concepts and results, fixing thus
the terminology to be used in the rest of the paper.

In Section 3, we introduce the definition of Yetter-Drinfeld modules over weak Hom-Hopf algebras and
show the category HWYD

H of Yetter-Drinfeld modules is a monoidal category and a rigid category.
In Section 4, we show that the category HWYD

H of Yetter-Drinfeld modules is a braided monoidal
category and obtain a new solution of quantum Hom-Yang-Baxter equation. It turns out that, if H is a
quasitriangular weak Hom-Hopf algebra, the category of left H-modules with bijective structure maps is a
braided monoidal subcategory of the category HWYD

H of Yetter-Drinfeld modules.
In Section 5, we find another braided monoidal category structure on the category HWYD

H of Yetter-
Drinfeld modules , with the property that if H is a coquasitriangular weak Hom-Hopf algebra, then
HWYD

H contains the category of right H-comodules with bijective structure maps as a braided monoidal
category.

2. Preliminaries

Throughout the paper, we let k be a fixed field and all algebras are supposed to be over k. For the
comultiplication ∆ of a vector space C, we use the Sweedler-Heyneman’s notation:

∆(c) = c1 ⊗ c2,

for any c ∈ C. τ means the flip map τ(a ⊗ b) = b ⊗ a. When we say a ”Hom-algebra” or a ”Hom-coalgebra”,
we mean the unital Hom-algebra and counital Hom-coalgebra.

In this section, we will review several definitions and notations related to weak Hom-Hopf algebras and
rigid categories.

2.1. Hom-algebras and Hom-coalgebras.

Recall from [12] that a Hom-associative algebra is a quadruple (A, µ, η, αA), in which A is a linear space,
αA : A → A, µ : A ⊗ A → A and η : k → A are linear maps, with notation µ(a ⊗ b) = ab and η(1k) = 1A,
satisfying the following conditions, for all a, b, c ∈ A:

(1) αA(ab) = αA(a)α(b);
(2) αA(a)(bc) = (ab)αA(c);
(3) αA(1A) = 1A;
(4) 1Aa = a1A = αA(a).
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A morphism f : A → B of Hom-algebras is a linear map such that αB ◦ f = f ◦ αA, f (1A) = 1B and
µB ◦ ( f ⊗ f ) = f ◦ µA.

Let A be a Hom-algebra. Recall that a left A-module is a triple (M, αM, θM), where M is a k-space,
αM : M→M and θM : A⊗M→M are linear maps with notation θM(a⊗m) = a ·m, satisfying the following
conditions, for all a, b ∈ A,m ∈M:

(1) α(a ·m) = α(a) · αM(m);
(2) α(a) · (b ·m) = (ab) · αM(m);
(3) 1A ·m = αM(m).

A morphism f : M→ N of A-modules is a linear map such that αN ◦ f = f ◦αM and θN ◦ (idA ⊗ f ) = f ◦θM.
Recall from [14] that a Hom-coassociative coalgebra is a quadruple (C,∆, ε, αC), in which C is a linear space,

α : C→ C, ∆ : C→ C⊗C and ε : C→ k are linear maps, with notation ∆(c) = c1⊗c2, satisfying the following
conditions for all c ∈ C:

(1) ∆(αC(c)) = αC(c1)α(c2);
(2) αC(c1) ⊗ ∆(c2) = ∆(c1) ⊗ αC(c2);
(3) ε ◦ αC = ε;
(4) ε(c1)c2 = c1ε(c2) = αC(c).

A morphism f : C → D of Hom-coalgebras is a linear map such that αD ◦ f = f ◦ αC, εC = εD ◦ f and
∆D ◦ f = ( f ⊗ f ) ◦ ∆C.

Let C be a Hom-coalgebra. Recall that a right C-comodule is a triple (M, αM, ρM), where M is a k-space,
αM : M→M and ρM : M→M⊗C are linear maps with notation ρM(m) = m(0)⊗m(1), satisfying the following
conditions for all m ∈M:

(1) ρM(αM(m)) = αM(m(0)) ⊗ αC(m(1));
(2) αM(m(0)) ⊗ ∆(m(1)) = ρM(m(0)) ⊗ αC(m(1));
(3) ε(m1)m0 = αM(m).

A morphism f : M→ N of C-comodules is a linear map such that αN ◦ f = f ◦αM and ρN ◦ f = (idC⊗ f )◦ρM.
Recall from [19] that a weak Hom-bialgebra is a sextuple H = (H, αH, µ, η,∆, ε) if (H, αH) is both a Hom-

algebra and a Hom-coalgebra, satisfying the following identities for any a, b, c ∈ H:
(1) ∆(ab) = ∆(a)∆(b);
(2) ε((ab)c) = ε(ab1)ε(b2c), ε(a(bc)) = ε(ab2)ε(b1c);
(3) (∆ ⊗ idH)∆(1H) = 11 ⊗ 121′1 ⊗ 1′2, (idH ⊗ ∆)∆(1H) = 11 ⊗ 1′112 ⊗ 1′2.
Recall from [19] that a Weak Hom-Hopf algebra is a septuple (H, µ, η, ∆, ε,S, αH), in which (H, αH) is a

weak Hom-bialgebra, if H endowed with a k-linear map S (the antipode), such that for any h, 1 ∈ H, the
following conditions hold:

(1) S ◦ αH = αH ◦ S;
(2) h1S(h2) = εt(h), S(h1)h2 = εs(h);
(3) S(h1) = S(1)S(h), S(1H) = 1H;
(4) ∆(S(h)) = S(h2) ⊗ S(h1), ε ◦ S = ε.
Let (H, αH) be a weak Hom-bialgebra. Define linear maps εt and εs by the formula

εt(h) = ε(11h)12, εs(h) = 11ε(h12),

for any h ∈ H, where εt, εs are called the target and source counital maps. We adopt the notations Ht = εt(H)
and Hs = εs(H) for their images.

Similarly, we define the linear maps ε̂t and ε̂s by the formula

ε̂t(h) = ε(h11)12, ε̂s(h) = 11ε(12h),

for any h ∈ H. Their images are denoted by Ĥt = ε̂t(H) and Ĥs = ε̂s(H).
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2.2. Duality and rigid categories.

Recall from [9] that let (C,⊗, I, a, l, r) be a monoidal category. V ∈ C, a left dual of V is a triple
(V∗, evV, coevV), where V∗ is an object, evV : V∗ ⊗ V → I and coevV : I → V ⊗ V∗ are morphisms in C,
satisfying

rV ◦ (idV ⊗ evV) ◦ aV,V∗,V ◦ (coevV ⊗ idV) ◦ l−1
V = idV,

and

lV∗ ◦ (evV ⊗ idV∗ ) ◦ a−1
V∗,V,V∗ ◦ (idV∗ ⊗ coevV) ◦ r−1

V∗ = idV∗ .

Similarly, a right dual of V is a triple (∗V, ẽvV, c̃oevV), where ∗V is an object, ẽvV : V ⊗ ∗V → I and
c̃oevV : I→ ∗V ⊗ V are morphisms in C, satisfying

r∗V ◦ (idV ⊗ ẽvV) ◦ a∗V,V,∗V ◦ (c̃oevV ⊗ id∗V) ◦ l−1
∗V = id∗V,

and

lV ◦ (ẽvV ⊗ idV) ◦ a−1
V,∗V,V ◦ (idV ⊗ c̃oevV) ◦ r−1

V = idV.

If each object in C admits a left dual (resp. a right dual, both a left dual and a right dual), then C is called
a left rigid category (resp. a right rigid category, a rigid category).

3. Left-right Yetter-Drinfeld Modules over a Weak Hom-Hopf Algebra

Definition 3.1. Let (H, αH) be a weak Hom-Hopf algebra. A Yetter-Drinfeld module over H is a vector
space (M, αM), such that M is a unital left H-module (with notation h ⊗ m 7→ h · m) and a counital right
H-comodule (with notation m ⊗ h 7→ m(0) ⊗m(1)) with the following compatibility condition:

(h ·m)(0) ⊗ (h ·m)(1) = α−1
H (h21) ·m(0) ⊗ [α−2(h22)α−1

H (m(1))]S−1(h1), (3. 1)

for all h ∈ H and m ∈ M. We denote by HWYD
H the category of Yetter-Drinfeld modules, morphisms

being the H-linear H-colinear maps.
Proposition 3.2. one has that(3.1) is equivalent to the following equations

ρ(m) = m(0) ⊗m(1) ∈M ⊗t H , (11 ⊗ 12) · (M ⊗H) (3. 2)
αH(h1) ·m(0) ⊗ α

2
H(h2)αH(m(1)) = (h2 ·m)(0) ⊗ (h2 ·m)(1)α

2
H(h1) (3. 3)

Proof (3.1) =⇒ (3.2), (3.3). We have

m(0) ⊗m(1)

= α−1
H (121) · α−1

M (m(0)) ⊗ [α−2
H (122)α−2

H (m(1))]S−1(11)

= 1′1 · (12 · α
−1
M (m(0))) ⊗ [α−2

H (1′2)α−2
H (m(1))]S−1(11)

= 1′1 · (12 · α
−1
M (m(0))) ⊗ α−1

H (1′2)[α−2
H (m(1))S−1(α−1

H (11))]

= 1′1 · (12 · α
−1
M (m(0))) ⊗ 1′2[α−2

H (m(1))S−1(11)].
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Then we do a calculation as follows:

(h2 ·m)(0) ⊗ (h2 ·m)(1)α
2
H(h1)

= α−1
H (h221) ·m(0) ⊗ [(α−2

H (h222)α−1
H (m(1)))S−1(h21)]α2

H(h1)

= h21 ·m(0) ⊗ [(α−1
H (h22)α−1

H (m(1)))S−1(h12)]αH(h11)

= h21 ·m(0) ⊗ [(h22m(1))]S−1(h12)h11

= h21 ·m(0) ⊗ [h22m(1)]S−1(11)ε(h112)

= h12 ·m(0) ⊗ [αH(h2)m(1)]S−1(11)ε(α−1
H (h11)12)

= α−1
H (h12)1′2 ·m(0) ⊗ [αH(h2)m(1)]S−1(11)ε(α−2

H (h11)α−1
H (1′1)12)

= α−1
H (h12)1′2 ·m(0) ⊗ [αH(h2)m(1)]S−1(11)ε(α−1

H (h11)[α−1
H (1′1)α−1

H (12)])

= α−1
H (h12)1′2 ·m(0) ⊗ [αH(h2)m(1)]S−1(11)ε(α−1

H (h11)[1′112])

= h112 ·m(0) ⊗ [h2m(1)]S−1(11)

= h11′112 ·m(0) ⊗ [αH(h2)[1′2α
−1
H (m(1))]]S−1(11)

= αH(h1)[12 · α
−1
M (m(0))] ⊗ α2

H(h2)[[13α
−1
H (m(1))]S−1(α−1

H (11))]

= αH(h1) ·m(0) ⊗ α
2
H(h2)αH(m(1)).

For (3.2), (3.3) =⇒ (3.1), we have

α−1
H (h21) ·m(0) ⊗ [α−2

H (h22)α−1
H (m(1))]S−1(h1)

= α2
M(α−4

H (h22) · α−2
M (m))(0) ⊗ (α−4

H (h22) · α−2
M (m))(1)α

2
H(α−4

H (h21))S−1(h1)

= (α−1
H (h2) ·m)(0) ⊗ (α−2

H (h2) · α−1
M (m))(1)α

−2
H (h12))S−1(α−2

H (h11))

= (α−1
H (h2) ·m)(0) ⊗ (α−2

H (h2) · α−1
M (m))(1)11ε(12α

−2
H (h1))

= (1′2α
−2
H (h2) ·m)(0) ⊗ (1′2α

−3
H (h2) · α−1

M (m))(1)11ε(121′1α
−3
H (h1))

= (13α
−2
H (h2) ·m)(0) ⊗ (13α

−3
H (h2) · α−1

M (m))(1)11ε(12α
−2
H (h1))

= (12α
−1
H (h) ·m)(0) ⊗ (12α

−2
H (h2) · α−1

M (m))(1)11

= (12 · (α−1
H (h) · α−1

H (m))(0) ⊗ (12 · (α−2
H (h2) · α−2

M (m)))(1)11

= 11 · α
−1
M (h ·m)(0) ⊗ 12α

−1
H (h ·m)(1)

= (h ·m)(0) ⊗ (h ·m)(1).

Definition 3.3. Let (H, αH) be a weak Hom-Hopf algebra. Left-right weak-Hom type entwining structure
is a triple (A,C, ψ), where (A, αA) is a Hom-algebra and (C, αC) is a Hom-coalgebra with a linear map
ψ : A ⊗ C→ A ⊗ C such that ψ ◦ (αA ⊗ αC) = (αA ⊗ αC) ◦ ψ satisfying the following conditions:

ψ(ab) ⊗ αC(cψ) = ψaϕb ⊗ αC(c)ψϕ, (3. 4)

ψ(c ⊗ 1A) = ε(cψ1 )ψ1A ⊗ c2, (3. 5)

αA(ψa) ⊗ ∆(cψ) = αA(a)ϕψ) ⊗ (c(1)
ψ
⊗ c(2)

ϕ), (3. 6)

ε(cψ)ψa = ε(cψ)a(ψ1A). (3. 7)

Over a weak-Hom type entwining structure (A,C, ψ), a left-right weak-Hom type entwined modules (M, αM)
is both a right C-comodule and a left A-module such that

ρM(a ·m) = αA(ψa) ·m(0) · ⊗αC(mψ
(1)), (3. 8)

for all a ∈ A and m ∈M. AWM(ψ)Cwill denote the category of left-right weak-Hom type entwined modules
and morphisms between them.
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Proposition 3.4. Let (H, αH) be a weak Hom-Hopf algebra. Define φ : H ⊗ H → H ⊗ H given by
φ(a ⊗ c) = α−1

H (a21) ⊗ (α−2
H (a22)α−1

H (c))S−1(a1) for all h, 1 ∈ H, and so HWM(ψ)H is the category of weak-Hom
type entwined modules. In fact, for any (M, µ) ∈ HWM(ψ)H, one has compatible condition

ρM(a ·m) = α−1
H (a21) ·m(0) ⊗ (α−2

H (a22)α−1
H (m(1)))S−1(a1).

Proof. We need to prove that (3.4-3.7) hold. First, it is straightforward to check (3.4) and (3.6). In what
follows, we only verify (3.5) and (3.7). In fact, for all a, b, c ∈ H, we have

c2 ⊗ ε(cψ1 )ψ1A = c2 ⊗ ε(α−2
H (13)α−1

H (c1))S−1(11))αH(12)

= 1̃2α
−1
H (c2) ⊗ ε(1′′2 [̃11α

−2
H (c1))]1′2)ε(1′1S−1(11))121′′1

= 1̃2α
−1
H (c2) ⊗ ε([1′′2 1̃1]α−1

H (c1)1′2)ε(1′1S−1(11))121′′1
= 1′′3 α

−1
H (c2) ⊗ ε([1′′2 α

−1
H (c1)]1′2)ε(1′112)S(11)1′′1

= 1′′3 α
−2
H (c2)1′3 ⊗ ε([1′′2 α

−1
H (c1)]1′2)ε(1′112)S(11)1′′1

= 1′′2 α
−1
H (c)1′2 ⊗ ε(1′112)S(11)1′′1

= 1′′2 α
−1
H (c)12 ⊗ S(11)1′′1

= 1′2α
−1
H (c)S−1(11) ⊗ 121′1

= 13α
−1
H (c)S−1(11) ⊗ 12

= cψ ⊗ ψ1A.

As for (3.7), we compute:

ε(cψ)ψa = ε((α−2
H (a22)α−1

H (c))S−1(a1))αH(a21)

= ε((α−2
H (a22)α−1

H (c))12)ε(11S−1(a1))αH(a21)

= ε(α−1
H (a22)(α−1

H (c)12))ε(11S−1(a1))αH(a21)

= ε(α−1
H (a22)1′1)ε(1′2(α−1

H (c)12))ε(11S−1(a1))αH(a21)

= ε(α−1
H (a22)1′1)ε(1′2(α−1

H (c)S−1(11)))ε(a112)αH(a21)

= ε(a21′1)ε(1′2(α−1
H (c)S−1(11)))ε(α−1

H (a11)12)αH(a12)

= ε(a21′1)ε(1′2(α−1
H (c)S−1(11)))ε(a1(1′′1 12))a211′′2

= ε(α−1(a2)1′′2 1′1)ε(1′2(α−1
H (c)S−1(11)))a11′′1 12

= ε(a2[1′′2 1′1])ε(1′2(α−1
H (c)S−1(11)))a11′′1 12

= ε(1′2(α−1
H (c)S−1(11)))αH(a1)1′112

= ε(1′2(α−1
H (c)S−1(11)))a1[1′112]

= ε(13(α−1
H (c)S−1(11)))a112

= ε(cψ)a(ψ1A).

Proposition 3.5. Let (H, αH) be a weak Hom-Hopf algebra, for any (M, αM), (N, αN) ∈ HWYD
H, and

define the linear map

BM,N : M ⊗N→ N ⊗M, BM,N(m ⊗ n) = n(0) ⊗ α
−1
H (n(1)) ·m.

Then, we have (αN ⊗ αM) ◦ BM,N = BM,N ◦ (αM ⊗ αN) and, if (P, αP) ∈ HWYD
H, the maps B−,− satisfy the

Hom-Yang-Baxter equation:

(αP ⊗ BM,N) ◦ (BM,P) ⊗ (αM ⊗ BN,P)
= (BN,P ⊗ αM) ◦ (αN ⊗ BN,P) ◦ ((BM,P ⊗ αM).
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Proof. The proof is similar to Proposition 3.4 in [10].
lemma 3.6. Let(H, αH) be a weak Hom-Hopf algebra, then Hs is the unit object in HWYD

H with the
action: for any h ∈ H, x ∈ Hs,

h · x = ε̂s(h)(hx), ρ(x) = x1 ⊗ x2,

and αHs = α.
Proof. The proof is similar to [15].
lemma 3.7. Let (H, αH) be a weak Hom-Hopf algebra, the left and right unit constraints lM : Hs⊗t M→M

and rM : M ⊗t Hs →M and their inverses are given by the formulas

lM(x ⊗m) = S(x) · α−2
M (m), l−1

M (m) = 1H ⊗ αM(m),

rM(m ⊗ x) = x · α−2
M (m), r−1

M (m) = ε(13)εs(12) · αM(m) ⊗ 11.

Proof. It is easy to see that lM is natural isomorphisms in HWYD
H. We only check that

l−1
M lM(x ⊗t m) = l−1

M (S(x) · α−2
M (m)) = 1H ⊗t S(x) · α−1

M (m)
= εt(11) ⊗ (12S(x)) ·m
= εt(ε̂s(S(x))1) ⊗ ε̂s(x)2 ·m
= εt(11ε̂s(S(x))) ⊗ 12 ·m
= εt(11x) ⊗ 12 ·m = x ⊗t m,

and

lMl−1
M (m) = lM(1H ⊗t αM(m)) = 1H · α

−2
M (αM(m)) = m,

which implies l−1
M is the inverse of lM.

Similarly, we can check that rM is a natural isomorphism with the inverse r−1
M in HWYD

H.

Theorem 3.8. Let (H, αH) be a weak Hom-Hopf algebra. Then (HWYD
H,⊗t,Hs) is a monoidal category.

Proof. Firstly, for any (M, αM), (N, αN), (P, αP) ∈ HWYD
H, define an associativity constraint by

aM,N,P((m ⊗t n) ⊗t p) = α−1
M (m) ⊗t (n ⊗t αP(p)), m ∈M, n ∈ N, p ∈ P.

Obviously that a is natural and satisfies aM,N,P ◦ (αM ⊗ (αN ⊗ αP)) = ((αM ⊗ αN) ⊗ αP) ◦ aM,N,P. For any h ∈ H,
since

aM,N,P(h · ((m ⊗t n) ⊗t p))

= α−1
M (h11 ·m) ⊗t (h12 · n ⊗t αP(h2 · p))

= h1 · α
−1
M (m) ⊗t (h21 · n ⊗t h22 · αP(p))

= h · (α−1
M (m) ⊗t (n ⊗t αP(p)))

= h · (aM,N,P((m ⊗t n) ⊗t p)),

aM,N,P is H-linear.
Next we will check that aM,N,P is H-colinear.

(aM,N,P ⊗ idH) ◦ ρ(M⊗̂N)⊗̂P((m ⊗ n) ⊗ p)

= (aM,N,P ⊗ idH)((m ⊗ n)(0) ⊗ p(0) ⊗ α
−2
H (p(1)(m ⊗ n)(1)))

= aM,N,P((m(0) ⊗ n(0)) ⊗ p(0)) ⊗ α−2
H (p(1)α

−2
H (n(1)m(1)))

= α−1
M (m(0)) ⊗ (n(0) ⊗ αP(p(0))) ⊗ α−2

H (p(1))α−4
H (n(1)m(1)),
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ρ(M⊗̂N)⊗̂P ◦ aM,N,P((m ⊗ n) ⊗ p)

= ρ(M⊗̂N)⊗̂P(α−1
M (m) ⊗ (n ⊗ αP(p)))

= α−1
M (m)(0) ⊗ (n ⊗ αP(p))(0) ⊗ α

−2
H ((n ⊗ αP(p))(1)α

−1
M (m)(1))

= α−1
M (m)(0) ⊗ (n(0) ⊗ αP(p)(0)) ⊗ α−2

H (α−2
H (αH(p)(1)n(1))α−1

M (m)(1))

= α−1
M (m)(0) ⊗ (n(0) ⊗ αP(p)(0)) ⊗ [α−3

H (p)(1)α
−4
H (n(1))]α−3

M (m)(1)

= α−1
M (m(0)) ⊗ (n(0) ⊗ αP(p(0))) ⊗ [α−2

H (p)(1)[α−4
H (n(1))α−4

M (m)(1)]

= α−1
M (m(0)) ⊗ (n(0) ⊗ αP(p(0))) ⊗ α−2

H (p(1))α−4
H (n(1)m(1)).

And aM,N,P is a bijection because of αM, αP are all bijective maps. Thus a is a natural isomorphism in
HWYD

H.
Secondly, it is also a direct check to prove that a satisfies the Pentagon Axiom.
At last, we will check the Triangle Axiom. In fact, for any x ∈ Hs, we have

(rM ⊗ idN)((m ⊗t x) ⊗t n)

= x · α−2
M (m) ⊗t n

= 11 · (x · α−2
M (m)) ⊗t 12 · n

= 11x · α−1
M (m) ⊗t 12 · n

= 11 · α
−1
M (m) ⊗t 12S(x) · n

= 11 · α
−1
M (m) ⊗t 12 · (S(x) · α−1

N (n))

= α−1
M (m) ⊗ S(x) · α−1

N (n)

= α−1
M (m) ⊗t S(x) · α−2

N (αN(n))
= (idM ⊗ lN)aM,Ht,N((m ⊗t x) ⊗t n).

Let (H, αH) be a weak Hom-Hopf algebra with a bijective antipode S. Consider the full subcategory
HWYD

H
f .d. of HWYD

H whose objects are finite-dimensional. Using the antipode S of H, we can provide
WYD(H) f .d. with a duality.

For any (M, αM) ∈ HWYD
H
f .d., we set ∗M = Hom(M, k), with the action and the coaction of H on M∗ given

by
(h · f )(m) = f (S(α−1

H (h)) · α−2
M (m)) and f(0)(m) ⊗ f(1) = f (α−2

M (m(0))) ⊗ S−1(α−1
H (m(1))).

Similarly, for any (M, αM) ∈ WYD(H) f .d., we set ∗M = Hom(M, k), with the action and the coaction of H
on M∗ given by

(h · f )(m) = f (S−1(α−1
H (h)) · α−2

M (m)) and f(0)(m) ⊗ f(1) = f (α−2
M (m(0))) ⊗ S(α−1

H (m(1))).

Theorem 3.9. The category HWYD
H
f .d. is a rigid category.

Proof. Define the maps

coevM : Ht →M ⊗t M∗, x 7→
∑

x · (ei ⊗t αM∗ (ei)),

where ei and ei are bases of M and M∗, respectively, dual to each other, and

evM : M∗ ⊗t M→ Ht, f ⊗t m 7→ f (11 ·m)12.

Firstly, we will prove that M∗ is indeed an object in HWYD
H, and α∗M is given by

α∗M( f )(m) = f (α−1
M (m)), f ∈ ∗M, m ∈M.
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We have

(h · f )(0)(m) ⊗ (h · f )(1) = (h · f )(α−2
M (m(0))) ⊗ S−1(α−1

H (m(1)))

= f (S(α−1
H (h)) · α−4(m(0)))) ⊗ S−1(α−1

H (m(1))),

(α−1
H (h21) · f(0))(m) ⊗ (α−2

H (h22)α−1
H ( f(1)))S−1(h1)

= f(0)(S(α−2
H (h21)) · α−2

M (m)) ⊗ (α−2
H (h22)α−1

H ( f(1)))S−1(h1)

= f (S(α−4
H (h21)) · α−4

M (m))(0)) ⊗ (α−2
H (h22)α−2

H (S(α−1
H (h21)) · α−2

H (m(1))))S−1(h1)

= f (S(α−5
H (h2112)) · α−4

M (m)(0)) ⊗ (α−2
H (h22)

[S−1(α−4
H (h212))(α−5

H (S−1(m(1)))α−6
H (h2111))])S−1(h1)

= f (S(α−4
H (h212)) · α−4

M (m)(0))) ⊗ ([α−4
H (h222)S−1(α−4

H (h221))]

(α−4
H (S−1(m(1)))α−4

H (h211))])S−1(h1)

= f (S(α−4
H (h212)) · α−2

M (m)(0))) ⊗ (11ε(12h22)

(α−4
H (S−1(m(1)))α−4

H (h211))])S−1(h1)

= f (S(α−4
H (h221)) · α−4

M (m)(0))) ⊗ (11ε(12h222)(α−4
H (S−1(m(1)))α−3

H (h21))])S−1(h1)

= f (S(α−4
H (h221)) · α−4

M (m)(0))) ⊗ (11ε(12h222)(α−4
H (S−1(m(1)))α−3

H (h21))])S−1(h1)

= f (S(α−3
H (h21)) · α−4

M (m)(0))) ⊗ (11ε(12h22)(α−3
H (S−1(m(1)))[α−2

H (h12))S−1(α−2
H (h11))]

= f (S(α−3
H (h21)) · α−4

M (m)(0))) ⊗ (1′1ε(1′2h22)(α−3
H (S−1(m(1)))11ε(12h1)

= f (S(α−4
H (1′′2 h12)) · α−4

M (m)(0))) ⊗ (1′1ε(1′2h2)(α−2
H (S−1(m(1)))11ε(121′′1 h11)

= f (S(α−3
H (12h1)) · α−4

M (m)(0))) ⊗ (1′1ε(1′2h2)(α−3
H (S−1(m(1)))11

= f (S(α−4
H (1′′1 h1))S(12) · α−4

M (m)(0))) ⊗ (S−1(1′2)ε(1′11′′2 h2)(α−3
H (S−1(m(1)))11

= f (S(α−3
H (121′1h)) · α−4

M (m)(0))) ⊗ (S−1(1′2)(α−3
H (S−1(m(1)))11

= f (S(α−2
H (h))S(12) · α−4

M (m)(0))) ⊗ (S−1(13α
−3
H (S−1(m(1)))S−1(11))

= f (S(α−1
H (h))(12 · α

−5
M (m)(0))) ⊗ (S−1(13α

−3
H (S−1(m(1)))S−1(11))

= f (S(α−1
H (h)) · α−4

M (m)(0)) ⊗ S−1(α−1
H (m(1))).

Which means that
(h · f )(0) ⊗ (h · f )(1) = (α−1

H (h21) · f(0)) ⊗ (α−2
H (h22)α−1

H ( f(1)))S−1(h1).

We have known that Hs ∈ HWYD
H, with left H-module structure h · z = ε̂s(hz) and right H-comodule

structure ρ(x) = x1 ⊗ x2, for all x ∈ Hs. Next, we will check evM and coevM are morphisms in HWYD
H. For

any h ∈ H, m ∈M, f ∈M∗, we compute

evM(h · ( f ⊗t m)) = (h1 · f )(11 · (h2 ·m))12

= f (S(1′1α
−2
H (h1)) · ((11 · (1′2α

−3
H (h2))) · α−1

M (m)))12

= f ((S(11α
−2
H (h1))(12α

−2
H (h2))) · ·α−1

M (m))13

= f (εs(11α
−2
H (h)) ·m)12

= f (εs(α−2
H (h1)) · v)εt(α−2

H (h1))
= f (11 ·m)εt(h12) = h · (evM( f ⊗t m)),

and on one hand,

ρ ◦ evM( f ⊗m) = ρ(12) f (11 ·m)
= f (11 ·m)S(1′1) ⊗ 1′2S−1(12),



S. Guo, Y. Ke / Filomat 31:13 (2017), 4069–4084 4078

on the other hand

(evM ⊗ id) ◦ ρ( f ⊗m) = (evM ⊗ id)( f(0) ⊗m(0)) ⊗ α−2
H (m(1) f(1))

= f(0)(11 ·m(0))12 ⊗ α
−2
H (m(1) f(1))

= f (12 · α
−2
M (m(0)(0)))(1′2) ⊗ α−2

H (m(1))S−1(1′113α
−3
H (m(0)(1))S−1(11))

= f (12 · α
−1
M (m)(0))(1′2) ⊗ α−3

H (m(1)2)S−1(1′113α
−3
H (m(1)1)S−1(11))

= f (12 · α
−1
M (m)(0))(1′2) ⊗ S−1(εt(m(1)))S−1(1′1))

= f (11 ·m)1′2 ⊗ S−1(12)S−1(1′1)

= f (11 ·m)S(1′1) ⊗ 1′2S−1(12).

Thus evM is H-linear and H-colinear. And it is easy to get that evM ◦ (αM∗ ⊗ αM) = αH ◦ evM, hence
evM ∈ HWYD

H.
Next we have

coevM(h · x)(m) =
∑

εt(hx) · (ei ⊗ αM∗ (ei))(m)

= εt(hx) · α−2
M (m)),

and

h · coevM(x)(m) = (α−1
H (h1)x1) · αM(ei) ⊗t ((α−1

H (h2)x2) · α2
M∗ (e

i))(m)

= (α−1
H (h1)x1) · (S(α−2

H (h2)α−1
H (x2)) · α−3

M (m))

= εt(α−2
H (h)α−1

H (x)) · α−2
M (m) = εt(hx) · α−2

M (m),

hence coevV is H-linear, it is not hard to check that coevV is H-colinear and is left to the reader. Obviously
that coevM ◦ αH = (αM ⊗ αM∗ ) ◦ coevM, thus coevM ∈ HWYD

H.
Secondly, we consider

(rM ◦ (idM ⊗ evM) ◦ aM,M∗,M ◦ (coevM ⊗ idM) ◦ l−1
M )(m)

= (rM ◦ (idM ⊗ evM) ◦ aM,M∗,M)((11 · ei ⊗t 12 · αM∗ (ei)) ⊗t αM(m))
= rM(ei ⊗t 12 · α

2
M∗ (e

i)(11 · α
2
M(m)))

= ε̂s(12) · (11 · α
2
M(m)) = m,

and

(lM∗ ◦ (evM ⊗ idM∗ ) ◦ a−1
M∗,M,M∗ ◦ (idM∗ ⊗ coevM) ◦ r−1

M∗ )( f )(m)

= (lM∗ ◦ (evM ⊗ idM∗ ) ◦ a−1
M∗,M,M∗ )(αM∗ ( f ) ⊗t (αM(ei) ⊗t α

2
M∗ (e

i)))(m)

= lV∗ (α2
M∗ ( f )(11 · αM(ei))12 ⊗t αM∗ (ei))(m)

= f (11 · (S(12) · α−2
M (m))) = f (m).

Thus HWYD
H
f .d. is a left rigid category.

Similarly, we define the following maps

c̃oevM : Ht →
∗M ⊗t M, x 7→ x · (

∑
α∗M(ei) ⊗t ei),

and
ẽvM : M ⊗t

∗M→ Ht, m ⊗t f 7→ f (S−1(11) ·m)12.

We can show that (∗M, ẽvM, c̃oevM) is a right dual of M. Thus HWYD
H
f .d. is a right rigid category.
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4. A Braided Monoidal Category HWYD
H I

Proposition 4.1. Let (H, αH) be a weak Hom-Hopf algebra. For any (M, αM), (N, αN) ∈ HWYD
H, then

M ⊗t N = 11M ⊗ 12N ∈ HWYD
H with structures:

h · (m ⊗t n) = h1 ·m ⊗t h2 · n,
m ⊗t n 7→ (m ⊗t n)(0) ⊗t (m ⊗t n)(1) = (m(0) ⊗t n(0)) ⊗ α−2

H (n(1)m(1)).

Proof. Obviously M ⊗t N is a left H-module and a right H-comodule. We check now the compatibility
condition. We compute:

(h · (m ⊗ n))(0) ⊗ (h · (m ⊗ n))(1)

= (h1 ·m ⊗ h2 · n)(0) ⊗ (h1 ·m ⊗ h2 · n)(1)

= ((h1 ·m)(0) ⊗ (h2 · n)(0) ⊗ α
−2
H ((h2 · n)(1)(h1 ·m)(1))

= (α−1
H (h121) ·m(0) ⊗ α

−1
H (h221) · n(0)) ⊗ α−2

H (((α−2
H (h222)α−1

H (n1))S−1(h21))

((α−2
H (h122)α−1

H (m(1)))S−1(h11)))

= (h12 ·m(0) ⊗ α
−1
H (h212) · n(0)) ⊗ α−2

H ((h22n1)

((S−1(α−3
H (h2112))α−3

H (h2111))(α−1
H (m(1))S−1(α−1

H (h11))))

= (h12 ·m(0) ⊗ α
−1
H (h212) · n(0)) ⊗ α−2

H ((h22n1)

(12ε(α−3
H (h211)11)(α−1

H (m(1))S−1(α−1
H (h11))))

= (h12 ·m(0) ⊗ α
−1
H (h221) · n(0)) ⊗ α−2

H ((h222n1)

(12ε(α−2
H (h21)11)(α−1

H (m(1))S−1(α−1
H (h11))))

= (α−1
H (h211) ·m(0) ⊗ α

−1
H (h221) · n(0)) ⊗ α−2

H ((h222n1)

(12ε(α−2
H (h212)11)(α−1

H (m(1))S−1(h1)))

= (α−2
H (h211)1′1 ·m(0) ⊗ α

−1
H (h221) · n(0)) ⊗ α−2

H ((h222n1)

(12ε(α−2
H (h212)1′211)(α−1

H (m(1))S−1(h1)))

= (α−2
H (h211)1′1 ·m(0) ⊗ α

−1
H (h221) · n(0)) ⊗ α−2

H ((h222n1)

(12ε(α−2
H (h212)1′211)(α−1

H (m(1))S−1(h1)))

= (α−2
H (h211)1′211 ·m(0) ⊗ α

−1
H (h212) · n(0)) ⊗ α−2

H ((αH(h22)n1)

(12(α−1
H (m(1))S−1(α−1(h1)1′1)))

= α−1
H (h21) · (m ⊗ n)(0) ⊗ α

−2
H (h22)α−1

H (m ⊗ n)(1)S−1(h1).

Hence M ⊗t N ∈ HWYD
H.

Proposition 4.2. Let (M, αM), (N, αN) ∈ HWYD
H. Define the map

cM,N : M ⊗t N→M ⊗t M, cM,N(m ⊗ n) = α−1
N (n(0)) ⊗ α−1

M (α−1
H (n(1)) ·m).

Then cM,N is H-linear H-colinear and satisfies the conditions (for (P, αP) ∈ HWYD
H)

a−1
P,M,N ◦ cM⊗N,P ◦ a−1

M,N,P = (cM,P ⊗ idN) ◦ a−1
M,P,N ◦ (idM ⊗ cN,P), (4. 1)

aN,P,M ◦ cM,N⊗P ◦ aM,N,P = (idN ⊗ cM,P) ◦ aN,M,P ◦ (cM,N ⊗ idP). (4. 2)
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Proof. First, we prove that cM,N is H-linear, we compute:

cM,N(h · (m ⊗ n))
= cM,N(h1 ·m ⊗ h2 · n)
= α−1

N ((h2 · n)(0)) ⊗ α−1
M (α−1

H ((h2 · n)(1))) · (h1 ·m))

= α−1
N (α−1

H (h221) · n(0)) ⊗ α−1
M (α−1

H ([α−2
H (h222)α−1

H (n(1))]S−1(h21)) · (h1 ·m))

= α−1
N (h21 · n(0)) ⊗ α−1

M (α−1
H ([α−1

H (h22)α−1
H (n(1))]S−1(h12)) · (α−1

H (h11) ·m))

= α−1
N (h21 · n(0)) ⊗ α−1

M ([α−2
H (h22)α−2

H (n(1))]S−1(α−1
H (h12)) · (α−1

H (h11) ·m))

= α−1
N (h21 · n(0)) ⊗ α−1

M ([α−2
H (h22)α−2

H (n(1))][S−1(α−2
H (h12))α−2

H (h11)] · αM(m))

= α−1
N (h21 · n(0)) ⊗ α−1

M ([α−2
H (h22)α−2

H (n(1))][S−1(11)ε(α−2
H (h112))] · αM(m))

= α−1
N (α−1

H (h12)13 · n(0)) ⊗ α−1
M ([α−2

H (h2)14α
−2
H (n(1))][S−1(11)ε(α−2

H (h1112))] · αM(m))

= α−1
N (h112 · n(0)) ⊗ α−1

M ([α−2
H (h2)13α

−2
H (n(1))]S−1(11) · αM(m))

= h1 · (12 · α
−2
N (n(0))) ⊗ α−1

H (h2)[13α
−4
H (n(1))S−1(11)] ·m

= h1 · α
−1
N (n(0)) ⊗ α−1

M (h2)α−2
H (n(1)) ·m

= h · cM,N(m ⊗ n).

Next we prove that cM,N is H-colinear.

ρN⊗McM,N(m ⊗ n)
= ρN⊗M(α−1

N (n(0)) ⊗ α−1
M (α−1

H (n(1)) ·m))

= α−1
N (n(0)(0)) ⊗ (α−2

H (n(1)) · α−1
M (m))(0) ⊗ α

−2
H ((α−2

H (n(1)) · α−1
M (m))(1)α

−1
N (n(0)(1)))

= α−1
N (n(0)(0)) ⊗ α−3

H (n(1)21) · α−1
M (m(0)) ⊗ α−2

H ((α−4
H (n(1)22)α−2

H (m(1))

S−1(n(1)1))α−1
N (n(0)(1)))

= α−1
N (n(0)(0)) ⊗ α−2

H (n(1)1) · α−1
M (m(0)) ⊗ α−2

H ((α−2
H (n(1)2)α−1

H (m(1)))

[S−1(α−3
H (n(0)(1)2))α−3

N (n(0)(1)(1))])

= n(0) ⊗ α
−3
H (n(1)1)12 · α

−1
M (m(0)) ⊗ α−2

H ((α−3
H (n(1)2)13α

−1
H (m(1)))S−1(11))

= α−1
N (n(0)(0)) ⊗ α−3

H (n(0)(1))12 · α
−1
M (m(0)) ⊗ α−2

H ((α−2
H (n(1))13α

−1
H (m(1)))S−1(11))

= α−1
N (n(0)(0)) ⊗ α−2

H (n(0)(1))(12 · α
−2
M (m(0))) ⊗ α−2

H (n(1)[13α
−2
H (m(1))]S−1(11))

= α−1
N (n(0)(0)) ⊗ α−2

H (n(0)(1)) · α−1
M (m(0)) ⊗ α−2

H (n(1)m(1))
= (cM,N ⊗ idH)ρM⊗N(m ⊗ n).

As for (4.2), for any m ∈M,n ∈ N and p ∈ P, we have

(aN,P,M ◦ cM,N⊗P ◦ aM,N,P)((m ⊗t n) ⊗t p)
= aN,P,M(α−1

N (n(0)) ⊗ p(0) ⊗ α
−4
H (αH(p(1))n(1)) · α−2

M (m))

= α−2
N (n(0)) ⊗ (p(0) ⊗ α

−3
H (αH(p(1))n(1)) · α−1

M (m))

= (idN ⊗t (cM,P))(α−2
N (n(0)) ⊗ (α−2

H (n(1)) · α−1
M (m) ⊗ αP(p))

= ((idN ⊗t cM,P) ◦ aN,M,P ◦ (cM,N ⊗t idP))((m ⊗t n) ⊗t p),

we can check that (4.1) in the similar way.
Lemma 4.3. cM,N is bijective with inverse

c−1
M,N(n ⊗m) = α−1

M (α−1
H (S(n(1))) ·m) ⊗ α−1

N (n(0)).
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Proof. First, we prove that cM,N ◦ c−1
M,N = id. For any m ∈M and n ∈ N, we have

cM,Nc−1
M,N(n ⊗m)

= cM,N(α−1
M (α−1

H (S(n(1))) ·m) ⊗ α−1
N (n(0)))

= cM,N(α−2
H (S(n(1))) · α−1

M (m) ⊗ α−1
N (n(0)))

= α−2
N (n(0)(0)) ⊗ α−3

N (n(0)(1)) · [α−3
H (S(n(1))) · α−2

M (m)]

= α−2
N (n(0)(0)) ⊗ [α−4

N (n(0)(1))α−3
H (S(n(1)))] · α−1

M (m)

= α−1
N (n(0)) ⊗ [α−4

N (n(1)1)α−4
H (S(n(1)2))] · α−1

M (m)

= α−1
N (n(0)) ⊗ 12ε(11n(1)) · α−1

M (m)

= 1′1α
−2
N (n(0)) ⊗ 12ε(111′2n(1)) · α−1

M (m)

= 11α
−1
N (n) ⊗ 12 · α

−1
M (m)

= n ⊗m.

Then, we note that the following relation holds, for all m ∈M,

m(0) ⊗m(1)

= α−1
H (121) · α−1

M (m(0)) ⊗ [α−2
H (122)α−2

H (m(1))]S−1(11)

= 1′1 · (12 · α
−1
M (m(0))) ⊗ [α−2

H (1′2)α−2
H (m(1))]S−1(11)

= 1′1 · (12 · α
−1
M (m(0))) ⊗ α−1

H (1′2)[α−2
H (m(1))S−1(α−1

H (11))]

= 1′1 · (12 · α
−1
M (m(0))) ⊗ 1′2[α−2

H (m(1))S−1(11)]

= 12 · α
−1
M (m(0)) ⊗ α−2

H (m(1))S−1(11).

Finally, we check that c−1
M,N ◦ cM,N = id. For any m ∈M and n ∈ N, we have

c−1
M,NcM,N(m ⊗ n)

= c−1
M,N(α−1

N (n(0)) ⊗ α−1
M (α−1

H (n(1)) ·m))

= α−3
H (S(n(0)(1))) · [α−3

H (n(1)) · α−2
M (m)] ⊗ α−2

N (n(0)(0))

= [α−4
H (S(n(0)(1)))α−3

H (n(1))] · α−1
M (m) ⊗ α−2

N (n(0)(0))

= [α−4
H (S(n(1)1))α−4

H (n(1)2)] · α−1
M (m) ⊗ α−1

N (n(0))

= εs(n(1)) · α−1
M (m) ⊗ α−1

N (n(0))

= 11S((S−1εs(n(1)))) · α−1
M (m) ⊗ 12 · α

−1
N (n(0))

= S(12)S((S−1εs(n(1)))) · α−1
M (m) ⊗ S(11) · α−1

N (n(0))

= S((S−1εs(n(1)))12) · α−1
M (m) ⊗ S(11) · α−1

N (n(0))

= S((S−1εs(n(1)))S(11)) · α−1
M (m) ⊗ S2(12) · α−1

N (n(0))

= S2(11) · α−1
M (m) ⊗ S2(12S−1εs(n(1))) · α−1

N (n(0))

= S2(11) · α−1
M (m) ⊗ S2(12) · α−1

N (n)
= m ⊗ n.

Theorem 4.4. HWYD
H is a braided monoidal category.

We can make now the connection between Yetter-Drinfeld modules over weak Hom-Hopf algebras and
modules over quasitriangular weak Hom-Hopf algebras.

Definition 4.5.[16] Let (H, α) be a weak Hom-bialgebra. If there exists R = R(1)
⊗R(2)

∈ ∆op(1)(H⊗kH)∆(1),
such that the following conditions hold:
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(1) (α ⊗ α)R = R;
(2) R∆(h) = ∆op(h)R;
(3) there exists R ∈ ∆(1)(H ⊗k H)∆op(1), such that RR = ∆op(1), RR = ∆(1);
(4) α(R(1)) ⊗ R(2)

1 ⊗ R(2)
2 = α−1(r(1)R(1)) ⊗ R(2)

⊗ r(2);
(5) R(1)

1 ⊗ R(1)
2 ⊗ α(R(2)) = r(1)

⊗ R(1)
⊗ α−1(r(2)R(2)),

where h ∈ H, r = R = R(1)
⊗ R(2) = r(1)

⊗ r(2), then R is called an R-matrix of H, R is called the weak inverse of
R. (H,R) is called a quasitriangular weak Hom-bialgebra.

Proposition 4.6. Let (H, αH,R) be a quasitriangular weak Hom-Hopf algebra, then we have
(i) Let (M, αM) be a left H-module with action H ⊗ M → M, h ⊗t m 7→ h · m. Define the linear map

ρM : M → M ⊗t H, ρM(m) = m(0) ⊗t m(1) := R(2)
· m ⊗t αH(R(1)). Then (M, αM) with these structures is a

Yetter-Drinfeld module over H.
(ii) Let (N, αN) be another left H-module with action H ⊗t N → N, h ⊗t n 7→ h · n, regarded as a Yetter-

Drinfeld module as in (i), via the map ρN : N → N ⊗ H, ρN(n) = n(0) ⊗ n(1) := r(2)
· m ⊗t αH(r(1)). We regard

(M ⊗t N, αM ⊗ αN) as a left H-module via the standard action h · (m ⊗ n) = h1 ·m ⊗t h2 · n and then we regard
(M⊗t N, αM ⊗ αN) as a Yetter-Drinfeld module as in (i). Then this Yetter-Drinfeld module (M⊗t N, αM ⊗ αN)
coincides with the Yetter-Drinfeld module M ⊗t N defined as in Proposition 4.1.

Proof. First we have to prove that (M, αM) is a right H-comodule; ρ(α(m)) = αM(m(0))⊗α(m(1)) is easy and
left to the reader, we check

(αM ⊗ ∆)ρM(m) = αM(R(2)
·m) ⊗ ∆(αH(R(1)))

= αH(R(2)) · αM(m) ⊗ αH(R(1)
1 ) ⊗ αH(R(1)

2 )

= r(2)R(2)
· αM(m) ⊗ α2

H(r(1)) ⊗ α2
H(R(1))

= αH(r(2)) · (R(2)
·m) ⊗ α2

H(r(1)) ⊗ α2
H(R(1))

= r(2)
· (R(2)

·m) ⊗ αH(r(1)) ⊗ α2
H(R(1))

= ρM(R(2)
·m) ⊗ α2

H(R(1))
= (ρM ⊗ αM)ρM(m).

Now we check the Yetter-Drinfeld condition (3.3):

(h2 ·m)(0) ⊗ (h2 ·m)(1)α
2
H(h1) = R(2)

· (h2 ·m) ⊗ αH(R(1))α2
H(h1)

= αH(R(2)) · (h2 ·m) ⊗ α2
H(R(1))α2

H(h1)

= (R(2)h2) · αM(m) ⊗ α2
H(R(1)h1)

= (h1R(2)) · αM(m) ⊗ α2
H(h2R(1))

= αH(h1) · (R(2)
·m) ⊗ α2

H(h2)α2
H(R(1))

= αH(h1) ·m(0) ⊗ α
2
H(h2)αH(m(1)).

(ii) We only need to prove that the two comodule structures on M ⊗t N coincide, that is, for all m ∈ M
and n ∈ N,

m(0) ⊗ n(0) ⊗ α
−2
H (n(1)m(1)) = R(2)

· (m ⊗ n) ⊗ αH(R(1)),

that is

R(2)
·m ⊗ r(2)

· n ⊗ α−2
H (αH(r(2))αH(R(2))) = R(2)

1 ·m ⊗ R(2)
2 · n ⊗ αH(R(1)),

which is equivalent to

αH(R(2)) ·m ⊗ αH(r(2)) · n ⊗ r(2)R(2) = R(2)
1 ·m ⊗ R(2)

2 · n ⊗ αH(R(1)).



S. Guo, Y. Ke / Filomat 31:13 (2017), 4069–4084 4083

Proposition 4.7. Let (H, αH,R) be a quasitriangular weak Hom-Hopf algebra. Denote by Rep(H) the
category whose objects are left H-modules and whose morphisms are H-linear maps. Then Rep(H) is a
braided monoidal subcategory of HWYD

H, with tensor product defined as in Proposition 4.1, associativity
constraints defined by the formula aM,N,P((m⊗̃n)⊗̃p) = α−1

M (m)⊗̃(n⊗̃αP(p)) for any M,N,P ∈ Rep(H), and
braiding cM,N : M ⊗t M → N ⊗t M, m ⊗t n 7→ R(2)

· α−1
N (n) ⊗t R(1)

· α−1
M (m), with inverse c−1

M,N : N ⊗t M →

M ⊗t M, n ⊗t m 7→ R
(1)
· α−1

M (m) ⊗t R
(2)
· α−1

N (n), for any (M, αM), (N, αN) ∈ Rep(H).

5. A Braided Monoidal Category HWYD
H II

Modules over quasitriangular weak Hom-Hopf algebras become Yetter-Drinfeld modules over weak
Hom-Hopf algebras are proved in Section 4. Similarly, comodules over coquasitriangular weak Hom-Hopf
algebras become Yetter-Drinfeld modules over weak Hom-Hopf algebras; inspired by this, we can introduce
a second braided monoidal category structure on HWYD

H. We include these facts here for completeness.
Each of the next results is the analogue of a result in Section 4; their proofs are similar to those of their
analogues and are left to the reader.

Proposition 5.1. Let (H, αH) be a weak Hom-Hopf algebra.
(i) Let (M, αM), (N, αN) ∈ HWYD

H, with notation as above, and the tensor product M⊗̃N is obtained by

M⊗̃N = {m⊗̃n = m0 ⊗k n0ε(m1n1) | m ∈M,n ∈ N},

with structures:

h · (m⊗̃n) = α−2
H (h1) ·m⊗̃α−2

H (h2) · n,
m⊗̃n 7→ (m⊗̃n)(0) ⊗ (m⊗̃n)(1) = (m(0)⊗̃n(0))⊗̃n(1)m(1).

(ii) HWYD
H is a braided monoidal category, with tensor product ⊗̃ as in (i) and associativity constraints

aM,N,P and quasi-braiding cM,N defined as follows: for any (M, αM), (N, αN), (P, αP) ∈ HWYD
H, define an

associativity constraint by

aM,N,P((m⊗̃n)⊗̃p) = α−1
M (m)⊗̃(n⊗̃αP(p)), m ∈M, n ∈ N, p ∈ P,

cM,N : M⊗̃N→M⊗̃M, cM,N(m⊗̃n) = α−1
N (n(0))⊗̃α−1

M (α−1
H (n(1)) ·m).

with inverse
c−1

M,N(n⊗̃m) = α−1
M (α−1

H (S(n(1))) ·m)⊗̃α−1
N (n(0)).

Definition 5.2.[16] Let (H, α) be a weak Hom-bialgebra, if there is a linear map σ : H ⊗k H→ k, such that
the following conditions hold:

(1) σ(a, b) = ε(b1a1)σ(a2, b2)ε(a3b3);
(2) σ(a1, b1)a2b2 = b1a1σ(a2, b2);
(3) there exists σ′ ∈ homk(H ⊗H,k), such that σ(a1, b1)σ′(a2, b2) = ε(ab),

and σ′(a1, b1)σ(a2, b2) = ε(ba);
(4) σ(α(a), α(b)) = σ(a, b);
(5) σ(α(a), bc) = σ(a1, α(c))σ(a2, α(b));
(6) σ(ab, α(c)) = σ(α(a), c1)σ(α(b), c2),

where a, b, c ∈ H, then σ is called an coquasitriangular form of H, σ′ is called the weak convolution inverse of σ.
(H, σ) is called a coquasitriangular weak Hom-bialgebra.

Proposition 5.3. Let (H, αH, σ) be a coquasitriangular weak Hom-Hopf algebra, then we have
(i) Let (M, αM) be a left H-comodule with coaction M → M⊗̃H, ρM(m) = m(0)⊗̃m(1). Define the linear

map H ⊗M→ M, h⊗̃m 7→ h ·m := σ(αH(h),m(1))m(0). Then (M, αM) with these structures is a Yetter-Drinfeld
module over H.

(ii) Let (N, αN) be another left H-comodule with coaction N → N⊗̃H, ρN(n) = n(0)⊗̃n(1). Define the linear
map H ⊗ N → N, h⊗̃n 7→ h · n := σ(αH(h),n(1))n(0). We regard (M⊗̃N, αM ⊗ αN) as a left H-module via the
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standard action h · (m⊗̃n) = α−2
H (h1) ·m⊗̃α−2

H (h2) · n and then we regard (M⊗̃N, αM ⊗ αN) as a Yetter-Drinfeld
module as in (i). Then this Yetter-Drinfeld module (M⊗̃N, αM ⊗ αN) coincides with the Yetter-Drinfeld
module M⊗̃N defined as in Proposition 5.1.

Theorem 5.4. Let (H, αH, σ) be a coquasitriangular weak Hom-Hopf algebra. Denote by Corep(H)
the category whose objects are right H-comodules (M, αM) and morphisms are morphisms of right H-
comodules. Then Corep(H) is a braided monoidal subcategory of HWYD

H, with tensor product defined as
in Proposition 5.1, associativity constraints defined by the formula aM,N,P((m⊗̃n)⊗̃p) = α−1

M (m)⊗̃(n⊗̃αP(p)) for
any M,N,P ∈ Corep(H), and braiding cM,N : M⊗̃N → N⊗̃M, m⊗̃n 7→ α−1

M (n0)⊗̃α−1
M (m0)σ(m1,n1), with inverse

c−1M,N : N⊗̃M→M⊗̃N, n⊗̃m 7→ α−1
M (m0)⊗̃α−1

N (n0)σ′(m1,n1), for any (M, αM), (N, αN) ∈ Corep(H).
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