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Abstract. This paper deals with information properties of mixture models in terms of the single distri-
butions in finite model. We provide an expression for the entropy of mixture models. Also, we derive
bounds as well as an approximation to approximate the behavior of entropy of mixture distributions. More-
over, some new results on the entropy of mixture distributions in terms of ordering properties of single
distributions are provided. Examples are given to illustrate the results.

1. Introduction

It is known that one of the most important issues to measure of uncertainty and predictability is the
Shannon entropy defined by Shannon [19]. Differential entropy as a measure of uncertainty extends the
classical entropy to continuous random variables. The differential entropy unlike the discrete case gives
a value within [−∞,∞] and achieves a minimum when the random variable comprises no uncertainty
and approaches a maximum as the random variable becomes uniformly distributed. Let X denote an
absolutely continuous nonnegative random variable with the cumulative distribution function (cd f ) F(·)
and the probability density function (pd f ) f (·). By definition, for a continuous random variable X with pdf
f (x), the differential entropy is given by

H( f ) = H(X) = −

∫
∞

−∞

f (x) log f (x)dx = −

∫ 1

0
log f (F−1(u))du, (1)

where “log” stands for the natural logarithm and F−1(u) = inf{x : f (x) ≥ u} for all 0 < u < 1. The last
equality is obtained by using the probability integral transformation U = F(X). Shannon entropy (1)
measures lack of uniformity under f (·). It is more difficult to predict an outcome with a less concentrated
distribution. Another useful measure of uncertainty for measuring the distance between two distributions
is the Kullback-Leibler (KL) discrimination information of random variables X and Y with pd f s f (·) and
1(·), respectively, which is defined by

K( f : 1) =

∫
∞

−∞

f (x) log
f (x)
1(x)

dx = −H( f ) + H( f , 1), (2)
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where H( f , 1) = −E f [log 1(X)] is known as Fraser information (see, e.g., Ebrahimi et al. [6]) and also
is known as “inaccuracy measure” due to Kerridge [10]. The KL discrimination information is always
nonnegative and is zero if and only if f (x) = 1(x) almost everywhere. The KL information was first
introduced by Kunllback and Leibler [11] to measure of the distance between two distributions. As the pdf
of 1 is dissimilar or farther from the pdf of f , then K( f , 1) is large. For more information about the other
applications of Shannon entropy and KL discrimination information, see also Asadi et. al. [1], Ebrahimi
et. al. [6], Ebrahimi et. al. [7], among others. A detailed discussion about the Shannon entropy, properties
and its applications can be found in Cover and Thomas [5]. Dynamic and bivariate versions can be seen in
Asadi et al. [1], Chamany and Baratpour [4], Jomhoori and Yousefzadeh [9] and Navarro et al. [14].

The monograph given by Cover and Thomas [5] often do not provide analytic calculations of differential
entropy for many probability distributions specially the mixture distributions. The aim of the present
paper is to investigate information properties of finite mixture model. Finite means the number of random
variables is finite. Let Xi, i = 1, · · · ,n be a collection of n independent random variables. Suppose Fi(·) be the
distribution function of Xi and assume α = (α1, · · · , αn) be the mixing probabilities. Then, the distribution
of finite mixture random variable Xα with cd f Fα(·) is defined by

Fα(x) = P(Xα ≤ x) =

n∑
i=1

αiFi(x), x ∈ R, (3)

where αi ≥ 0,
∑n

i=1 αi = 1. If the random variable Xi is absolutely continuous, from (3) the pd f of Xα is given
by

fα(x) =

n∑
i=1

αi fi(x), x ∈ R. (4)

There are several papers about the entropy of mixture distributions in the literature; see, e.g., Tan et
al. [20], Lu [12], Hild et al. [8], Rohde et al. [17], Poland and Shachter [16] and the references therein.
Michalowicz et al. [13] provided an analytical expression for signal entropy in situations where the cor-
rupting noise source is mixed-Gaussian. The rest of this paper is organized as follows: In Section 2, we
provide an expression for the entropy of mixture distribution as well as bounds for it. Moreover, we derive
an approximation for the given entropy. Some ordering properties of mixture distribution’s entropy are
discussed in Sections 3. For illustrative purposes, some examples are given. Finally, a brief conclusions are
given in Section 4.

2. Entropy of Mixture Model

It is known that the entropy of mixture distributions generally cannot be calculated in the closed form
due to the logarithm of a sum of mixture distribution functions, except for the special case of a single
distribution which is computationally easy. Therefore, it is not easy to compute the exact value of entropy
of mixture models. But, we provide an expression for the entropy of mixture model (4) by using the
properties of entropy concept. It can be used to provide bounds and approximation for the entropy of
mixture distributions. We have

H( fα) = −

∫
∞

−∞

fα(x) log fα(x)dx

=

n∑
i=1

αi

[
−

∫
∞

−∞

fi(x) log fα(x)dx
]

=

n∑
i=1

αiH( fi) +

n∑
i=1

αiK( fi : fα). (5)

The second equality in (5) is derived from (4) and the linearity property of integration and the last equality
is obtained from (2). Expression (5) can be used to compute the exact value of H( fα) when the pdf (4) does
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not have a complicated form. But, it is hard to find H( fα) in many cases. Hence, bounds can be used in such
situations. It is worth to point out that (5) provides lower and upper bounds as described in the sequel.
Since

∑n
i=1 αiK( fi : fα) ≥ 0, then we have

H( fα) ≥ HL( fα) =

n∑
i=1

αiH( fi). (6)

It is known that the probability integral transformation Ui = Fi(Xi), i = 1, · · · ,n are uniformly distributed
in [0, 1]. Then the lower bound of H( fα) in (6) becomes

HL( fα) =

n∑
i=1

αiH( fi) =

n∑
i=1

αiE[log fi(F−1
i (Ui))].

It is worth to mention that the lower bound (6) can also be obtained by using the concavity property of
entropy. One can see that the computation of the right-hand-side of (6) is easy as linear function of single
distribution’s entropy. To provide an upper bound, we use the convexity property of the KL discrimination
information. From (5) we have

H( fα) = HL( fα) +

n∑
i=1

αiK( fi : fα)

≤ HL( fα) +

n∑
i=1

n∑
j=1

αiα jK( fi : f j). (7)

As an applications of the given bounds, consider the following example.

Example 2.1. Let Xi have the Normal distribution with mean 0 and variance σ2
i i.e. Xi ∼ N(0, σ2

i ), i =
1, 2, · · · ,n. It is well-known the differential entropy of Normal distribution is

H( fi) =
1
2

log(2πeσ2
i ), i = 1, 2, · · · ,n.

Moreover, it is not hard to verify that for all i, j = 1, 2, · · · ,n,

K( fi : f j) = log
(
σi

σ j

)
+
σ2

i

2σ2
j

−
1
2
.,

where σi and σ j are the standard deviation. Therefore from (6), the Gaussian-mixture entropy is bounded
as follows

1
2

n∑
i=1

αi log(2πeσ2
i ) ≤ H( fα) ≤

1
2

n∑
i=1

αi log(2πeσ2
i ) +

n∑
i=1

n∑
j=1

αiα j

log
(
σi

σ j

)
+
σ2

i

2σ2
j

 − 1
2
. �

The critical part of calculation of the mixture model’s entropy is the logarithm of the pdf fα(x) in (4).
To obtain an accurate and versatile entropy approximation that can be evaluated analytically, we use the
given bounds in (6) and (7). In fact, the bounds themselves can be used for efficiently approximating the
true entropy value. It is worth calculating of the average of the lower and upper bounds i.e. the center of
the interval. Hence, we define

H̃( fα) = HL( fα) +
1
2

n∑
i=1

n∑
j=1

αiα jK( fi : f j).

Since this value is between the lower and upper bounds of the differential entropy of H( fα), it is an
approximation of entropy of mixture distributions as reasonable measure. One should notice that the use
of approximations is clearly advantageous from the computational complexity aspect.
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Example 2.2. Following Example 2.1, the approximation of H( fα) is

H̃( fα) =
1
2

 n∑
i=1

αi log(2πeσ2
i ) +

n∑
i=1

n∑
j=1

αiα j

log
(
σi

σ j

)
+
σ2

i

2σ2
j

 − 1
2

 . �
3. Ordering Properties

Hereafter, we provide some results on ordering properties of entropy of mixture distributions in terms
of ordering properties of single distributions. First, we need the following definitions in which X and Y
denote random variables with cd f s F(·) and G(·), pd f s f (·) and 1(·), and survival functions F̄(x) = 1 − F(x)
and Ḡ(x) = 1 − G(x), respectively.

Definition 3.1. A random variable X is said to have a decreasing failure rate (DFR) if the hazard function
hX(t) = f (t)/F̄(t) is decreasing in t ∈ R.

Definition 3.2. Suppose that X and Y be a two random variables with the cd f s F(·) and G(·), respectively.

(i) A random variable X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y) if
F̄(t) ≤ Ḡ(t) for all t ∈ R.

(ii) A random variable X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y) if
hX(t) ≥ hY(t) for all t ∈ R.

(iii) A random variable X is said to be smaller than Y in the dispersive order (denoted by X ≤disp Y) if
F−1(u) − F−1(v) ≤ G−1(u) − G−1(v), ∀ 0 < v ≤ u < 1, and F−1(·) and G−1(·) be right continuous inverses
of F(·) and G(·), respectively, or equivalently 1(G−1(v)) ≤ f (F−1(v)), 0 ≤ v ≤ 1.

Definition 3.3. A random variable X is said to be smaller than Y in the entropy order (denoted by X ≤e Y)
if H(X) ≤ H(Y).

It is well-known that X ≤disp Y implies X ≤e Y; see Oja [15]. Now, we derive some results about
the stochastic ordering entropy of mixture models. First, in the following theorem, we suppose the case
that two mixture distributions have the same probability vectors but they constructed based on different
distributions.

Theorem 3.4. Let Xi and Yi, i = 1, · · · ,n be a collection of random variables with cd f s Fi(·) and Gi(·), respectively.
Also, assume Xα and Yα be two mixture random variables with cd f s Fα(·) and Gα(·), respectively. If Xi ≤st Yi and Yi
is DFR for all i = 1, · · · ,n, then Xα ≤e Yα.

Proof. Since Xi ≤st Yi, it is not hard to see that Xα ≤st Yα. On the other hand Yα is DFR provided that
Yi is DFR (see Barlow and Proshcan [3]). Therefore, Theorem 2.2 of Ebrahimi et al. [7] concluded that
Xα ≤e Yα.

In the next theorem, we extend the preceding results to the different probability vectors and distributions.

Theorem 3.5. Let Xi and Yi, i = 1, · · · ,n be a collection of random variables with cdfs Fi(·) and Gi(·), respectively.
Also, assume α = (α1, · · · , αn) and β = (β1, · · · , βn) be two mixing probability vectors and Xα and Yβ be two mixture
random variables with cdfs Fα(·) and Gβ(·), respectively. If for all i = 1, · · · ,n,

(i) Xi ≤st Yi and Xi ≤st Xi+1,

(ii) α ≤st β,

(iii) Yi is DFR,
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then Xα ≤e Yβ.

Proof. Let Xβ denote the random mixtures of X1, · · · ,Xn with mixing probability vector β = (β1, · · · , βn). The
condition Xi ≤st Xi+1 means that F̄i(x) is an increasing function of i. Let us suppose that F̄α(x) and Ḡα(x) be
the survival functions of Xα and Xα, respectively. We have

F̄α(x) =

n∑
i=1

αiF̄i(x) ≤
n∑

i=1

βiF̄i(x) ≤
n∑

i=1

βiḠi(x) = Ḡβ(x), x ∈ R.

The first inequality is obtained from Theorem 1.A. 3 of Shaked and Shanthikumar [18] by noting that F̄i(x)
is an increasing function of i and α ≤st β. The last inequality is obtained from the assumption Xi ≤st Yi. On
the other hand Yβ is DFR provided that Yi is DFR. Therefore, Theorem 2.2 of Ebrahimi et al. [7] completes
the proof.

As a special case of Theorem 3.5, we suppose that Xi
d
= Yi, i = 1, · · · ,n,where notation d

= means equality
in distribution.

Corollary 3.6. Let Xi be a collection of random variables with cd f s Fi(·). Assume α = (α1, · · · , αn) and β =

(β1, · · · , βn) be two mixing probability vectors and Xα and Xβ be two mixture random variables with cd f s Fα(·) and
Fβ(·), respectively. If for all i = 1, · · · ,n,

(i) Xi ≤st Xi+1,

(ii) α ≤st β,

(iii) Xi is DFR,

then Xα ≤e Xβ.

As an application of the preceding corollary, consider the following example.

Example 3.7. Let Xi have the exponential distribution with mean λi for all i = 1, · · · ,n which is DFR. Assume
that λ1 ≥ · · · ≥ λn, then X1 ≤st · · · ≤st Xn. As an application of Corollary 3.6 immediately yields Xα ≤e Xβ for
every two probability vectors α and β such that α ≤st β. �

In the forthcoming theorem, we provide the same result of Corollary 3.6 for the hazard rate which is a
stronger stochastic order. First of all, we need the following theorem due to Bagai and Kochar [2].

Theorem 3.8. Let X and Y be two random variables with the cd f s F(·) and G(·), respectively. If X ≤hr Y and either
X or Y is DFR, then X ≤disp Y.

Theorem 3.9. Suppose that Xi be a collection of random variables with cd f s Fi(·) in which it is DFR (i = 1, · · · ,n,).
Assume α = (α1, · · · , αn) and β = (β1, · · · , βn) be two probability vectors. Let Xα and Xβ be two mixture random
variables with cumulative distribution functions Fα(·) and Fβ(·), respectively. If Xi ≤hr Xi+1 for all i = 1, · · · ,n, and
α ≤hr β, then Xα ≤e Xβ.

Proof. Since Xi ≤hr Xi+1 andα ≤hr β, by Theorem 1.B.14 of Shaked and Shanthikumar [18], we have Xα ≤hr Xβ.
On the other hand Xα and Xβ are DFR provided that Xi is DFR. Hence Theorem 3.8 implies Xα ≤disp Xβ

which this means that Xα ≤e Xβ and thus the desired result follows.

4. Conclusion

In this paper, we provided some new results on information properties of mixture distributions. More-
over, we derived bounds for the entropy of mixture models as well as the approximation on it. In the
sequel, we provided some stochastic ordering properties of entropy of mixture distributions in terms of
single models.
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