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Abstract. In this paper we study some properties of generalized-homogeneous operators. These properties
are applied to find eigen functions and associated functions of some classes of differential operators, as well
as to construct solutions of differential equations of fractional order.

1. Introduction and Problem Statement

Hereinafter, we need the notion of normalized systems of functions, considered in [6]. Now we give
the definition. Let () be some domain in the space R”,n > 1, X be a linear space of functions defined on the
domain Q. We denote elements of the space X by f(x) and let Ny = N U {0}, N is the set of natural numbers.
Assume, that the linear operators L; and L,, mapping X into X, are given.

Definition 1.1. A system of functions {fi(x) : k € Ny} from X is called f— normalized with respect to (L1, Lp) in Q
with the basis fy(x), if everywhere of this domain the following equalities hold:

Lifo(x) = f(x), Lifi(x) = Lo fr-1(x), k € No, x € Q.

If L, = I, where I is the unit operator, then in this case f— normalized system of functions with respect to
(L1,1) has the property:

Ly fo(x) = f(x), Lifi(x) = fiea(x), k € No,x € Q. (1)

If in (1), f(x) = 0, then in this case the system of functions fi(x) : k € Ny is called simple normalized

with respect to the operator L; in Q.
fhs

k+s)l’

k € No,s > 1 are (Sts_—_ll)!— normalized with respect to the operator % in the domain Q = R. If s = 0, then

the system fi(t) = ]t(—k!,k € Ny will be simple normalized. Further, in [1],[2],[4] properties of generalized

Let L = 4 be a differentiation operator of the first order. Then the system of functions fi(f) =
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exponential functions associated with the Laguerre type derivatives were introduced and investigated. In
particular, in [1] the properties of generalized exponential functions of the following form

i s n=20,1,.. )

were studied. It was proved, that the functions of the form (2) are eigen functions of the operator D, =
Dt..DtDtD, where D = 4, t is n—times multiplied, and the operator D is n + 1- times used. In this paper
we study properties of generalized - homogeneous operators of § order. Using the normalized systems for
these operators, the results of [1],[2],[4] are generalized to the general class of differential operators. We
prove that these solutions are eigen-functions and associated functions of the operator. Moreover, we build
normalized systems for differential operators of fractional order, and discuss application of these systems
to construct solutions of differential equations of fractional order.

2. Construction of Normalized Systems for Generalized Homogeneous Operators and their Applications

In this section we give a technique for constructing normalized systems for certain classes of operators
in one dimensional case.

Definition 2.1. Operator Dy is called generalized - homogeneous of the f order with respect to the variable t, if
Dgtt = Cput'F,t >0, 3)
where 0 < f < w is a real number, Cg, is a constant.

Let Dg be a generalized homogeneous operator of the § order, and let for some s = 0, 1, ..., the equality
Dgt® = 0 holds. We consider a monomial tP+s k =0,1,2,.... Due to (3), we have

Dﬁt’Bk+s - C[%,k,st6k+s_ﬁ- (4)
Multiplying both sides of the equality (4) to the monomial t#5*f, we get
Cﬁ,k,s — t_ﬁk_s_"‘BDﬁf‘BkH.

Lets=0,1,.... Consider the coefficients:

C(B,s,1) = H Cpis = H (PP Dt ) i 2 1,C(B,5,0) = 1.

k=1 k=1

It is easy to show, that for the coefficients C(f, s, i) the following equality holds:

1 (t—ﬁk—s Dﬁ tﬁk+ﬁ+s)
CBsDh  CHsitD ©)
Consider the system of functions:
; tﬁi+s ‘
£ = 5o ©)

Lemma 2.2. Let the operator Dg be generalized homogeneous of B order with respect to the variable t, and for some
s =0,1,... the equality Dgt* = 0 holds. Then the system of functions (6) is 0 — normalized with respect to the operator
Dg.

]
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Proof. By the definition of the operator Dg we have:
Dlgt“ = F”*ﬁDﬁt”t“’ﬁ,
Then Dgfso(t) = 0, and for alls = 0, 1, ..., and i > 1 the following equality holds:

Dﬁ i’ﬁiﬂ (t—ﬁi+ﬁ—sD‘Btﬁi+s)

D s,i(f) = ~ = " t‘BHs_ﬁ.
pfeilf) C(B,s, 1) C(B,s, 1)
Further, due to (5), we get:
(t—ﬁi+/3—s Dy tﬂi+s) 1
- = - ,i>1.
C(ﬁr S, Z) C(ﬁr 51— 1)
Consequently,
b tﬁ(i—l)+5
s fsi(t) = CEoi D fsica(8).
O
Let the coefficients C(f, s, i) be defined by (6). Consider the function:
ha . tﬁiJrS
s(f) = Al —. 7
ys(t) ZO BoD 7)

The following proposition is true.

Theorem 2.3. Let the series (7) be convergent, and it be possible to use the operator Dy termwise to (7). If there exist
values of the parameter s such that

(tfﬁiferﬁ Dﬁ tﬁi+s) =0,

i=0

then at these values of the parameter s the functions y,(x) satisfy the following equation:

Dgy(t) = Ay(1). 8)
Proof. Due to Lemma 2.2, the system f;;(t) = %
Therefore, applying the operator Dy to the functions ys(x), and considering that the term, when i = 0, by
the condition of Theorem, equals to zero, we have

is 0 — normalized with respect to the operator Dg.

Dsys(t) = ), A'Dgfui() = ) A'foia ().
i=1 i=1

Further, replacing the summation index i to j + 1, we get

Dyys(t) = Y AL = A Y N (0) = Aye(d).

j=0 j=0

Corollary 2.4. Functions ys(x) at all values of s = 0,1, ... are eigen functions of the operator Dpg.
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Now we consider the following generalization of the function (7):

o i tﬁi+s
sp(t) = AP —, 9
vep(0) ; (rk@w ©)
1 i
where p = m,p =0,12,..,.

It is obvious that y,o(t) = ys(t). The following proposition is true.

Theorem 2.5. Let the series (9) be convergent, and it be possible to use the operator Dg — A termuwise to (9). If there
exist values of the parameter s such that

=0,

(t—[ﬂi—s+/3Dﬁ tﬁi+s) 0

then the functions ys,(x) at all values of s satisfy the following equations:

(D B A) Ysp(t) = Ysp1(t),p 2 1, w0

(Dﬁ - /\) ys,O(t) = 0, (11)
i.e. it forms the normalized by the parameter p. system with respect to the operator Dg — A.

Proof. The equality (11) has been proved in Theorem 2.3. Let’s prove the equality (10). Applying the

operator Dy to the functions y;,(x), due to normability of the system f; () = % , we obtain

Dgysp(t) = Z AP ( ; )Dﬁfs,i(f) = Z AP ( ; )fs,i—l(f)-
i=p i=p

Changing the summation index i to j + 1, we get

Dgysp(t) = Z‘ )U'(Pl)( j+1 )fs,j(t)-

j=p-1 F

Consider now the function Dgys,(t) — ys,-1(t). By the definition of the functions y;,-1(t), we have

mew%wm=ZAW“W;ﬂmm—ZAW”@Zme

j=p-1 j=p-1
_ . -y | T+l ) _ ] ,
- Y50 )-(, 4 e
j=p=

Moreover, if j = p— 1, then

30

j=p-1 (

=<
N —
P
=
(.
— =
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Therefore,

Dyses =i = Y00 () 20 =2 77 ( 1) 0 = g0

j=p =p
i.e. the following equality holds:

(Dﬁ - /\) ]/s,p(f) = ]/s,p_1(t).
O

Corollary 2.6. By the conditions of Theorem 2.5, the functions ys,(t) at all values of s = 0,1, ..., are associated
functions of the operator Dg.

Corollary 2.7. By the conditions of Theorem 2.5, the functions ys,(t) at values of p = 0,1, ..., N — 1 are solutions of
the equation:

N
(Dg=1) y®y=0
Now we discuss some examples of generalized homogeneous operators.

Example 2.8. Let D = 4 and D, = Dt...DtDtD, where t is n—times multiplied, and the operator D is n + 1—times
applied. In this case:

D”Ltm — mn+1tm—1/
i.e. the given operator is generalized homogeneous of the order 1. It is obvious, that D t° = 0 and

i

C(l, 0, l) — H t_k+1D i’k Hkn+1 _ (l')n+1

k=1

Then from Corollary 2.1 and Corollary 2.2 it follows that:

i 1
W)= ZA p( )(z')"“

are eigen functions when p = 0, and associated functions when p > 1 of the operator D,;. Proposition, that yo(t)
is an eigen function for the operator D, was proved in [1]. In this case the authors called the function yo(t) as a
generalized exponential, and denote it by e, (At).

Example 2.9. Let D, = D*t2D?, where D* =
Therefore,

dfz In this case D*t* = 0,5 = 0,1, and D*" = m(m — 1)t"~2,m > 2.

Dyot™ = D*D?*" = m(m — 1)D*t" = m?(m — 1)*" 2.
Thus, the operator Dy = D*2D? is generalized homogeneous of the order 2. For this case

i i

C2,s,i) = H (22Dt = H 2k + 822k + 5 — 1)%.

k=1 k=1
Ifs =0, then
C(2,0,i) = H 2k +5)2Qk+5-1)=22-2-1)*-4%- (4 - 1)>- ... (20)*(2i — 1)
k=1



B. Turmetov / Filomat 31:13 (2017), 4275-4286 4280

=22.12.42.3%. (202 (2i - 1)> =12-22.32- 4% . .- (20 — 1)*(20)* = [(20)"]>.
Analogously, if s = 1, then

C(2,1,i) = H 2k +5)%(2k + 5 — 1) = 2+ 1)> - (2)* - ... - (20 + 1)*(2i)?
k=1

=32.22.52.42. . (2i+1)?Qi)? =12-2%2-3%- 4% .- (20)*Qi + 1)* = [2i + 1)!]*.
Then the functions

had i ; y2i+1
=2,V )qm«>—2;— e
are eigen functions, and
i 1 x2
Yop(¥) = Z(_ : p( ) ()P’

2i+1

i=p

are associated functions of the operator D.
Since

21+1

Z( 1)m—cosx Z( 1)' 1) =sinx,

then obtained functions generalize the trigonometrical functions sin x and cos x. We denote them by sinyx, cosyx, i.e.

21+1

cosy(x) = §:e>K ”,mmw> Z}—)R;:B?

i=0 i=0

These functions coincide with the generalized trigonometrical functions, obtained in [2].

Example 2.10. Let D, = D*t*D*, wherem -1 <a <m,m=1,2,.., D" =g, ]m_a%,

) = o k[@—ﬂ”ﬁ@ﬁ7a>0

I'(a)

We apply the operator D* to functions of the form t',r > 0. By the definition, D*t" = J"~* 424" It is clear that
D" =0,r=0,1,..,m-1.

Ifr>m—1, then

o d" ['(r+1)
Dati’ — Jm a_t‘f —
I dtm Irr+1-a)

Further, we consider the operator of the form D, = D*t*..D*t*D*t*D*, where t* is n—times multiplied, and the

operator D* is n + 1—times applied. Then

r—a

I'r+1)

D tr — DataDatV -
ol I(r+1-a)

DYt = yg_atr—al
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Dyut™ = D, DD D™ =yl

k
where Y, = [F(FX;EL)] . Thus, the operator D, ,, is generalized homogeneous of the o order. Now we construct the

functions ys ,(x). To do this, we find the coefficients C(a, s, ). For this case we choose r = ak +s,5s =0,1,...,p — 1.

Cla,s,i) = F[ (t_ak_ﬁaDa,ntakﬂ) _ ﬁ [ T(ak+s+1) ]ﬂ+1

1 1 Fak+s+1-a)

[Ma+s+1)TRa+s+1) T@i+s+1) |
_[ I'(s+1) r(a+s+1)"‘r(a(i—1)+s+1)]

[F@i+s+1)]™
| Ts+1)

For convenience, one can waive the requirement C(, s,1) = 1, and consider the coefficients C(a, s, i) = T"*!(ai +
s+ 1). Then, functions of the following form:

tai+s

- i-p i - -
Ysp®) ;A (p)rn+1(ai+s+1)

in the casep = 0 at all s = 0,1,...,m — 1 will be eigen functions, and in the case p > 1 associated functions of the
operator D .
If @ = m is integer, then

[(ai+s+1) T(mi+s+1) (mi+s)!

I's+1) I's+1) s!

and therefore,

oo ]
T L P ) i+

In the case m = 1 we get that s = 0, and obtain the function

[} ) ti
yoolt) = Y A T = e,
i=0 :

is considered in Example 2.8.

Example 2.11. For any a > 0 we consider the following integral operator of fractional order in Hadamard sense:

WS = s f (n) " .
0

Letm—-1<a<mm=1,2,..06= t%,ék =0 (6"’1) and gcD%=p]"~*6™ be Hadamard - Caputo type operator
of differentiation. It is easy to show, that the equalities HeD 0 = 0 and yeD*t* = k*t%, k > 1. hold.
Consider the operator D, = %‘HCD“. Then,

Dy1t? = 0,Dg1t* = K11 k> 1.

This operator will be generalized homogeneous of the order 1, and
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i
Cla,0,1) = Hk““ = (i,
k=1

Due to Corollary 2.4, eigen function of this operator has the form:

0o

=Y Nt (12)

pr (Z!)a+1 4

Some properties of the functions (12) have been studied in [4].
Corollary 2.6 implies that in the case p > 1 the functions

) #

yS/P(t Z ( ) (k|)a+1

=p

are associated functions of the operator Dy ;.

3. Application of Normalized Systems to Solve Differential Equations of Fractional Order
Letm—-1<a<y<mm=1,2,... Consider the operator:

an

D% f(t)=r LJr Jpm RL

JmE(E), > 0.

In the case m = 1 this operator was introduced in [3], and it generalizes well known differentiation
operators of fractional order. In particular, D** =g; D is the operator of differentiation of fractional
order in Riemann - Liouville sense, D*"'=cD" is the operator of differentiation in Caputo sense, and if
y =B(m—a)+a,0<p <1, then D* = D*— is the Hilfer operator [5].

It is easy to show, that the system of functions

ia+s

fsi() = =———=,1€ No

T'ia+s+1)

atall valuesof s =y -1,y -2, ...,y —m is 0-normalized with respect to the operator D*?. Then the following
proposition is true.

Theorem 3.1. Letm—-1<a<y<mm=1,2,..,s=y—1,..,y —m. Then the functions

) piar+s

= p_____
Ysp(®) Z(; A iatstD)

i=

for all values of p = 0,1, ..., N — 1 are solutions of the following equation of fractional order:
(D = M)Ny(t) =0, > 0. (13)

The proof of the theorem follows from Corollary 2.7. Convergence of the corresponding series can be
checked by using d’Alembert’s test and the properties of the gamma function.

Now we give an example to f— normalized with respect to the operator D% system and construct a
solution of the inhomogeneous equation

(D™ = )Ny(t) = f(t),t > 0. (14)

Note, that the operator method of constructing the solution of the equation (14) in the case y = p(m —
a)+a,0 < f < 1 had previously been studied in [7],[8].
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Let

P = - i—p l L -
Eh oA 1) ;A (P)F(ia+a)’p 0,1,...

Consider the following function
t
yp((H) = f (=D ELa(=AC = DY) f(0)dT. (15)
0

Theorem 3.2. Letm-1<a <y <m,m=1,2,.... Then functions y,(f)(t),p = 0,1, ... form f—normalized system
with respect to the operator D™V — A, i.e. the following equality holds:

(D™ = 1) yo(H(O) = £0), 1)
(D* = D) yp(HB) = fpa(H), p=1
Proof. When p = 0 the function EJ ,(-A(t — 7)*) coincides with the Mittag - Leffler type operator , i.e.
0 ) fa
0 (_ — 7)) — L
EQa(=At = 17)") ZO] R ren

Then the equality (16) for the case p = 0 is proved, as in the case of Riemann - Liouville operator. Indeed,

t
P00 = fms [ =0 (e
0

t T
= ; _ \ym=y-1 _ -1 _na J
‘r(m—wof ¢-1) Of (T = &) Eaa(Mr = ) f(E)dEdn

t t
- F(ml— ) Of f& ! (t = 0" 77T = & Eqa(A(t — &) )dTdE

We calculate the inner integral. Using representation of the function E,, ,, we have

t
f (=" (2 = £ Eaa(A(r — &)1
&

t
= A S e
— mf(t_,l_) Y 1(T_E)a+a 1dT
i=0
&
* i i+a+m 1 !
z—p t— alt+a -y- .
_ Z A ( - 5) f(l _ G)m—y—19a1+a—ld6
— (ai+ ) X

~ © /\i(t _ é)ai+a+m—y—1
= L(m V);O; Tai+a+m—y)’
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Therefore,
t .
. B & Ai(t _ £)a1+a+m—y—1
0= [ YRy e
0o =
= f (t = &) TE, . (A(t = &)%) f(E)dE.
0
Further,

(o]

_ é)ai+a+m—y—1

qm-1 e qm-1 /\i(t
ST (0 = f Y Tars armyy Ok

0

(t g)aiﬂrﬂ/

Fai+a+m-7y)

dg

ff(cf)Z/\(az+a+m y=D.(ai+a+1-7y)

ai+a— 4

-9
ffé)z F(az+a+l )/)dé

Here we note, that, sincea > m—1,thena -y > m—1-y > -1, i.e. integral from the functions
(t — &)¥+7 converges. Further,

. (- d Ni(z = &)t
A t’”] "N = fr(y a) d”c[ff(g)zr(m+a+1 y)déJdT

We represent the last integral in the followmg form:

] ]m Tyo(f)(t) =

dt’"

R S
Ty -—a)dt y—a d’c[ff(é)z Tai+a+1- y)déJdT
0

Further, taking integral by parts, we obtain

" dtm]m "Yo(N(B)= G lro = f (t=7 ](f f (5)2 Ail”((;fgwl y)d‘f]dT]

R Ty-al(ai+a+1-7y) .
= LT @i a1 @ 0@ [f =87/ dé} £

The case p > 1 can be checked analogously. Indeed, let p > 1. Then, applying the operator |"7” to the
functions y, (f) (t), we have

t
0 = g [ €
0
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t t
__ 1 el et .
I(m—7y) Of f (‘E)f (=17 (1= & Efa(A(T — E)F)dTdE

We calculate the inner integral. Using the representation of the function E}, ,, we have

t
f (= 1" (1 — (A - &)ia
&

(o]

t
_ /\i—p i _ o m=y=1l,_ _ aita-1
-1 T(aci+a)( ; )f(t )" (7 — )P g

1
o0 . ‘ i—p(4 _ c\@itat+m—y-1
-5 ) fa-orro

= I'ai + )

é)ai+a+m7y71

B (| AR -
= Tm - )/Z( ) Tai+a+m—7y)

1=

Hence,

m+a+m—y—1

o F\ AP -
TR0 = ffcf)Z( | e

t

- f (= &L L (At — &)%) FE)E.
0
Further,

t .
qgm-1 - qm-1 = [ /\i—p(t _ é)a1+a+m—y—1
Adrm- 1] pr dtm_lff(g)Z(p) Tai+a+tm—y) dé

0 =p

. i é)ai+a—y
ff(é)ZA ( )mdé

Finally,

t
—a qm . 1 e an —y
PO = g [ €0 (e
0

t

o . aj+a—1
= f Z /\f—(P—l)( j+1 )%f(é)dé.

) S P Iaj+a)
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Thus,
e , aira-1
Dy (f)(E) = Of i—,.Z-‘l Ai(pl)( ;H )% Jeye
Then

o0 . i-(p-1)(+ _ r\ai+a-1
Z(z+1)/\ Pt - €) F&)de

I'(ai + )

D yp(H®) = yp-1 () =
/

T'(ai + a) b i=p

had : i-(p-1)(+ _ c\aita—1 t oo . (s pieant
=fZ(l )A e f(é)dé::Afz(;)%ﬂg)d&:m(t).
0

DYy, (f)(®) = yp-1(F)(E) = Ayp(f)(F),

i.e., atall values of p = 1,2, ... the following equalities hold:

(D% = 2) yp(/)(E) = yp-1())(E)-
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