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Abstract. Motivated by the recent works of Kočinac who initiated investigation of star selection principles,
we introduce and study some new types of star-selection principles. Also some open problems are posed.

1. Introduction and Preliminaries

Classical selection principles, based on the diagonalization arguments, have a long history going back
to the works by Borel [2], Menger [12], Hurewicz [5], Rothberger [13], and others. Scheepers [16] be-
gan a systematic investigation of selection principles, which motivated a large number of researchers for
investigation on selection principles and their applications.

Throughout the paper, [X]<ω (respectively [X]≤ω) will denote the collection of all finite (respectively
countable) subsets of a set X.

LetA and B be collections of families of subsets of an infinite set X.
In 1925, Hurewicz [5] introduced two selection principles (in notation from [16]) S f in(A,B) (derived

from a property introduced by Menger [12]) andU f in(A,B).
S f in(A,B) denotes the following selection hypothesis :

For each sequence {An : n ∈ ω} of elements of A, there is a sequence {Bn : n ∈ ω} of finite sets
such that for each n ∈ ω, Bn ⊂ An and

⋃
{Bn : n ∈ ω} ∈ B.

U f in(A,B) denotes the following selection hypothesis :

For each sequence {An : n ∈ ω} of elements of A, there is a sequence {Bn : n ∈ ω} of finite sets
such that for each n ∈ ω, we have Bn ⊂ An and {

⋃
Bn : n ∈ ω} ∈ B.

In 1938, Rothberger [13] introduced the selection principle S1(A,B) .
S1(A,B) denotes the following selection hypothesis :

For each sequence {An : n ∈ ω} of elements of A, there is a sequence {Bn : n ∈ ω} such that for
each n ∈ ω, we have Bn ∈ An and {Bn : n ∈ ω} ∈ B.

Scheepers [15] mentioned the selection principleSctbl(A,B) as a natural companion of the above selection
principles, where Sctbl(A,B) denotes the following selection hypothesis:
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For each sequence {An : n ∈ ω} of elements of A, there is a sequence {Bn : n ∈ ω} such that for
each n ∈ ω, Bn is a countable subset of An and

⋃
n∈ω Bn ∈ B.

By a space, we mean a topological space and for different notions in topology we follow [4].
For a set X, letU be a collection of subsets of X and A ⊂ X; then star of A with respect toU is denoted

and defined by St(A,U) =
⋃
{U ∈ U : U ∩ A , ∅}. For x ∈ X, we write St(x,U) instead of St({x},U).

A space X is said to be star-compact if for every open cover U of X there exists a finite set A ⊂ X such
that St(A,U) = X [3, 11]. A space X is said to be star-Lindelöf if for every open cover U of X there exists
a countable set A ⊂ X such that St(A,U) = X [3, 11]. From the above definitions, it is clear that every
star-compact space is star-Lindelöf, but the converse is not necessarily true [1].

In 1999, Kočinac [6, 7] introduced the following selection principles in connection with the star operator.
S
∗

1(A,B) denotes the following selection hypothesis:

For each sequence {Un : n ∈ ω} of elements ofA, there exists a sequence {Un : n ∈ ω} such that
for each n ∈ ω, Un ∈ Un and {St(Un,Un) : n ∈ ω} ∈ B.

S
∗

f in(A,B) denotes the following selection hypothesis:

For each sequence {Un : n ∈ ω} of elements ofA, there exists a sequence {Vn : n ∈ ω} such that
for each n ∈ ω,Vn is a finite subset ofUn and

⋃
n∈ω{St(V,Un) : V ∈ Vn} ∈ B.

U
∗

f in(A,B) denotes the following selection hypothesis:

For every sequence {Un : n ∈ ω} of members ofA, there exists a sequence {Vn : n ∈ ω} such that
for each n ∈ ω,Vn is a finite subset ofUn and {St(∪Vn,Un) : n ∈ ω} ∈ B.

Song [18–22], Kočinac [6–10], Sakai [14], Tsaban [23] and many others have made investigations on these
selection principles and interesting results have been obtained.

LetK be a family of subsets of a space X. Then:
SS

∗

K
(A,B) represents the following selection hypothesis:

For every sequence {Un : n ∈ ω} of elements ofA, there exists a sequence {Kn : n ∈ ω} of elements
ofK such that {St(Kn,Un) : n ∈ ω} ∈ B (see [6]).

WhenK is the collection of all one-point [resp., finite, compact] subsets of X, we write SS∗1(A,B) [resp.,
SS

∗

f in(A,B), SS∗comp(A,B)] instead of SS∗
K

(A,B) (see [6]).
Now let us mention the definitions of the games which are naturally associated to the selection principles

mentioned above.
G f in(A,B) denotes an infinitely long game for two players, ONE and TWO, who play a round for each

non-negative integer. In the n-th round ONE chooses a set An ∈ A, and TWO responds by choosing a finite
set Bn ⊂ An. The play {A0,B0,A1,B1, ...,An,Bn, ...} is won by TWO if

⋃
n∈ω Bn ∈ B; otherwise, ONE wins (see

[15]).
G1(A,B) denotes an infinitely long game for two players, ONE and TWO, who play a round for each

non-negative integer. In the n-th round ONE chooses a set An ∈ A, and TWO responds by choosing an
element bn ∈ An. The play {A0, b0,A1, b1, ...,An, bn, ...} is won by TWO if {bn : n ∈ ω} ∈ B; otherwise, ONE
wins (see [15]).

G∗1(A,B) denotes an infinitely long game for two players, ONE and TWO, who play a round for each
non-negative integer. In the n-th round ONE chooses a setUn ∈ A, TWO responds by choosing an element
Un ∈ Un. The play {U0,U0,U1,U1, ...,Un,Un, ...} is won by TWO if {St(Un,Un) : n ∈ ω} ∈ B; otherwise,
ONE wins (see [6]).

G∗f in(A,B) denotes an infinitely long game for two players, ONE and TWO, who play a round for each
non-negative integer. In the n-th round ONE chooses a setUn ∈ A, and then TWO responds by choosing a
finite setVn ⊂ Un. The play {U0,V0,U1,V1, ...,Un,Vn, ...} is won by TWO if

⋃
n∈ω{St(V,Vn) : V ∈ Vn} ∈ B;

otherwise, ONE wins (see [6]).
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If X is a space, then SG∗1(A,B) denotes an infinitely long game for two players, ONE and TWO, who
play a round for each non-negative integer. In the n-th round ONE chooses a setUn ∈ A, TWO responds by
choosing an element xn ∈ X. The play {U0, x0,U1, x1, ...,Un, xn, ...} is won by TWO if {St(xn,Un) : n ∈ ω} ∈ B;
otherwise, ONE wins see (see [6]).

If X is a space, then SG∗f in(A,B) denotes an infinitely long game for two players, ONE and TWO,
who play a round for each non-negative integer. In the n-th round ONE chooses a set Un ∈ A, TWO
responds by choosing an finite subset Fn ⊂ X. The play {U0,F0,U1,F1, ...,Un,Fn, ...} is won by TWO if
{St(Fn,Un) : n ∈ ω} ∈ B; otherwise, ONE wins (see [6]).

If X is a space, then SG∗comp(A,B) denotes an infinitely long game for two players, ONE and TWO,
who play a round for each non-negative integer. In the n-th round ONE chooses a set Un ∈ A, TWO
responds by choosing an compact subset Kn ⊂ X. The play {U0,K0,U1,K1, ...,Un,Kn, ...} is won by TWO if
{St(Kn,Un) : n ∈ ω} ∈ B; otherwise, ONE wins (see [6]).

2. New Selection Principles

In this section we introduce two selection principles in connection with the star operator : ∗U1(A,B)
and ∗U f in(A,B).

Definition 2.1. ∗U1(A,B) denotes the following selection principle:

For each sequence {Un : n ∈ ω} of elements ofA, there exists a sequence {Un : n ∈ ω} such that
for each n ∈ ω, Un ∈ Un and {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ B.

Definition 2.2. ∗U f in(A,B) denotes the following selection principle:

For each sequence {Un : n ∈ ω} of elements ofA, there exists a sequence {Vn : n ∈ ω} such that
for each n ∈ ω,Vn is a finite subset ofUn and {St(

⋃
i∈ω(

⋃
Vi),Un) : n ∈ ω} ∈ B.

Proposition 2.3. ∗U1(A,B)⇒∗ U f in(A,B).

Proposition 2.4. IfA and B are two collections of families of subsets of an infinite set X such thatA ⊂ B, then

∗
U1(B,B)⇒∗ U1(A,B)

∗
U1(A,A)⇒∗ U1(A,B)
∗
U1(B,A)⇒∗ U1(A,A)
∗
U1(B,A)⇒∗ U1(B,B)

Proof. Let {Un : n ∈ ω} be a sequence of elements ofA. ButA ⊂ B. Therefore {Un : n ∈ ω} is a sequence of
elements of B. Since ∗U1(B,B) holds, there exists a sequence {Un : n ∈ ω} such that Un ∈ Un for each n ∈ ω
and {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ B. Therefore, ∗U1(A,B) holds.

Let {Un : n ∈ ω} be a sequence of elements of A. Since ∗U1(A,A) holds, there exists a sequence
{Un : n ∈ ω} such that Un ∈ Un for each n ∈ ω and {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ A. But A ⊂ B. Thus,

{St(
⋃

i∈ω Ui,Un) : n ∈ ω} ∈ B. Therefore, ∗U1(A,B) holds.
Let {Un : n ∈ ω} be a sequence of elements of A. But A ⊂ B. Therefore, {Un : n ∈ ω} is a sequence of

elements of B. Since ∗U1(B,A) holds, there exists a sequence {Un : n ∈ ω} such that Un ∈ Un for each n ∈ ω
and {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ A. Therefore, ∗U1(A,A) holds.

Let {Un : n ∈ ω} be a sequence of elements of B. Since ∗U1(B,A) holds, there exists a sequence
{Un : n ∈ ω} such that Un ∈ Un for each n ∈ ω and {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ A. But A ⊂ B. Thus,

{St(
⋃

i∈ω Ui,Un) : n ∈ ω} ∈ B. Therefore, ∗U1(B,B) holds.

So, we conclude that the selection principle ∗U1(A,B) is monotonic in the second collection and is
anti-monotonic in the first collection.
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Figure 1: Monotonicity of ∗U1(A,B) and ∗U f in(A,B).

Proposition 2.5. ∗U f in(A,B) is monotonic in the second collection and anti-monotonic in the first collection.

Proof. The proof of this proposition is similar to the proof of Proposition 2.4, so omitted.

In this paper, we emphasize on the cases whereA andB are the classes of topologically significant open
covers of a space X:
O - the collection of all open covers of X.
Λ - the collection of all large covers of X. An open coverU of X is a large cover if each x ∈ X belongs to

infinitely many members ofU.
Ω - the collection of all ω-covers of X. An open coverU of X is an ω-cover if every finite subset of X is

contained in a member ofU.
Γ - the collection of all γ-covers of X. An open coverU of X is a γ-cover if it is infinite, and each x ∈ X

belongs to all but finitely many elements ofU.
O
1p - the collection of all groupable open-covers of X. An open cover U of X is groupable if it can be

expressed as a countable union of finite, pairwise disjoint subfamilies of Un, n ∈ ω, such that each x ∈ X
belongs to

⋃
Un for all but finitely many n.

If the covers are considered to be non-trivial then we have, Γ ⊂ Ω ⊂ Λ ⊂ O. Under such condition, we
have the following relation diagram (Figure 2):

Figure 2: Relation Chart 1

Proposition 2.6. Every star-Lindelöf space has the property ∗U1(O,O).

Proof. Let X be a star-Lindelöf space and {Un : n ∈ ω} be a sequence of open covers of X. Since U0 is
an open cover of X and X is star-Lindelöf, there exists a countable set, {x0, x1, x2, ..., xn, ...} ⊂ X such that
St({x0, x1, x2, ..., xn, ...},U0) = X.
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For each n ∈ ω, we select Un ∈ Un such that xn ∈ Un. Clearly {x0, x1, x2, ..., xn, ...} ⊂
⋃

n∈ω Un. Therefore
St(

⋃
n∈ω Un,U0) = X. Thus {St(

⋃
n∈ω Un,Un) : n ∈ ω} is an open cover of X, i.e. ∗U1(O,O) holds for X. Hence

the theorem.

Corollary 2.7. Compact spaces, star-compact spaces and Lindelöf spaces have the property ∗U1(O,O).

Example 2.8. The converse of Proposition 2.6 is not necessarily true, i.e. there exists a space which has the
property ∗U1(O,O) but is not star-Lindelöf.

Consider the space X = R+
\ {R+

⋂
Q ]. Let A = [0, 1] \ ([0, 1]

⋂
Q). For each x ∈ A, Ax = {(n + x) : n ∈

ω}
⋃

A. Set Y = {Ax : x ∈ A}
⋃
{A}, and define τ(X) = {

⋃
B : B ∈ P(Y)}. τ(X) is a topology on X.

Now, let {Un : n ∈ ω} be a sequence of open covers of X. Therefore, U0 is an open cover of X. By the
construction of the space, every open set other than ∅ contains A. We select U0 ∈ U0 such that A ⊂ U0 and
for i ∈ ω \ {0}, select Ui ∈ Ui .

Since St(U0,U0) = X, St(
⋃

i∈ω Ui,U0) = X, so that the set {St(
⋃

i∈ω Ui,Un) : n ∈ ω} is an open cover of X.
Hence, X has the property ∗U1(O,O).

On the other hand, U = {Ax : x ∈ A} is an uncountable open cover of X. For each x, y ∈ A, x , y,
Ax

⋂
Ay = A and

⋃
x∈A Ax = X, but

⋃
i∈ω Axi ( X for any countable set {xi}i∈ω ⊂ A.

Let F = {yi}i∈ω ⊂ X. For each yi ∈ X, there exists a xi ∈ A such that yi ∈ Axi . Therefore, St(F,U) =⋃
i∈ω(Axi ) , X. We find X, not star-Lindelöf eventhough it has the property ∗U1(O,O).

We obtain the following diagram of implication and non-implication from the above results:

Figure 3: Relation Chart 2

Proposition 2.9. S∗1(A,O)⇒∗ U1(A,O).

Proof. Let {Un : n ∈ ω} be a sequence of elements of A. Since S∗1(A,B) holds, there exists a sequence
{Un : n ∈ ω} such that for each n ∈ ω, Un ∈ Un and {St(Un,Un) : n ∈ ω} ∈ O. Hence, {St(Un,Un) : n ∈ ω} is
an open cover for X.

We have, for each n ∈ ω, St(Un,Un) ⊂ St(
⋃

i∈ω Ui,Un). Therefore, {St(
⋃

i∈ω Ui,Un) : n ∈ ω} is also an
open cover for X. Thus ∗U1(A,O) holds.

But ∗U1(O,O); S∗1(O,O) in general. This follows from the example given below.

Example 2.10. Let X = (0, 3] ⊂ R. We consider the topology τ(X) = {(x, y] : x, y ∈ [0, 3) and x < y} ∪ {∅,X},
the upper limit topology on X induced from the upper limit topology of R.

We construct a sequence of open covers of X as follows:

U0 = {(0, 1], (1, 2], (2, 3]},

U1 =
{(

0,
1
2

]
,
(1

2
,

2
2

]
,
(2

2
,

3
2

]
,
(3

2
,

4
2

]
,
(4

2
,

5
2

]
,
(5

2
,

6
2

]}
,
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U2 =
{(

0,
1
22

]
,
( 1

22 ,
2
22

]
,
( 2

22 ,
3
22

]
, ...,

(11
22 ,

12
22

]}
,

........................................................................................

Un =
{(

0,
1
2n

]
,
( 1

2n ,
2
2n

]
,
( 2

2n ,
3
2n

]
, ...,

(3.2n
− 1

2n ,
3.2n

2n

]}
,

.............................................................................................

For each n ∈ ω, length of each interval contained inUn is 1
2n . Also, for each n ∈ ω,Un is a pairwise disjoint

collection of open sets. Choose Un ∈ Un, then we have St(Un,Un) = Un.
So, length of St(Un,Un) = 1

2n , for each n ∈ ω. If St(Un,Un) covers different portions of X for each n ∈ ω,
it will cover a length of X. The maximum length of the subset of X covered by {St(Un,Un) : n ∈ ω} is∑

n∈ω

1
2n =

1
20 +

1
21 +

1
22 + ... = 1 +

1
2

+
(1

2

)2

+
(1

2

)3

+ ... =
(
1 −

1
2

)−1

= 2.

But length of X is 3. Hence, {St(un,Un) : n ∈ ω} can not be a cover of X. So, it is not possible to find a
sequence {Un : n ∈ ω} such that for each n ∈ ω, Un ∈ Un and {St(Un,Un) : n ∈ ω} is an open cover for X.
This implies that X does not have the property S∗1(O,O).

We have Rwith the upper limit topology is hereditarily Lindelöf, hence X is a Lindelöf space. Thus, by
Corollary 2.7, X has the property ∗U1(O,O).

Proposition 2.11. U∗f in(A,O)⇒∗ U f in(A,O).

Proof. The proof is similar to that of Proposition 2.9, so omitted

In view of the above results, we have the following relation diagram (Figure 4):

Figure 4: Relation Chart 3

Problem 2.12. Does there exists a space which has the property ∗U f in(O,O) but does not have the propertyU∗f in(O,O).

Proposition 2.13. If a space X is compact, then it has the property ∗U f in(O,O).

Proof. Let {Un : n ∈ ω} be a sequence of open covers for X. Since X is compact, there exists An ∈ [Un]<ω

for each n ∈ ω, such that An is a cover for X. Let x ∈ X be an arbitrary point. For each n ∈ ω, there exists
Anx ∈ An ⊂ Un such that x ∈ Anx ∈ Un. So, x ∈ Anx ⊂

⋃
An ⇒ Anx ∩ (

⋃
An) , ∅, for each n ∈ ω.

So, x ∈ Anx ⊂ St(
⋃
An,Un), for each n ∈ ω, i.e. x ∈ St(

⋃
i∈ω(

⋃
Ai),Un), for each n ∈ ω. Therefore,

{St(
⋃

i∈ω(
⋃
Ai),Un) : n ∈ ω} is an open cover for X. Hence X has the property ∗U f in(O,O).
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Proposition 2.14. If f : X → Y is a continuous surjection and X has the property ∗U1(O,O), then Y also has the
property ∗U1(O,O).

Proof. Let {Vn : n ∈ ω} be a sequence of open covers for Y. For each n ∈ ω, letUn = { f−1(V) : V ∈ Vn} is a
sequence of open covers of X. Since, X has the property ∗U1(O,O), there exists a sequence { f−1(Vn) : n ∈ ω}
where Vn ∈ Vn for all n ∈ ω such that f−1(Vn) ∈ Un, for each n ∈ ω and {St(

⋃
i∈ω f−1(Vi),Un) : n ∈ ω} is an

open cover for X.
Let y ∈ Y be an arbitrary point. Then, there exists x ∈ X such that f (x) = y. Thus, x ∈ St(

⋃
i∈ω f−1(Vi),Um)

for some m ∈ ω. Therefore, there exists a f−1(Vy) ∈ Um such that x ∈ f−1(Vy) and f−1(Vy)∩(
⋃

i∈ω f−1(Vi)) , ∅.
So, y ∈ Vy ∈ Vm and f−1(Vy)

⋂
f−1(Vi) , ∅ for some i ∈ ω. i.e. Vy

⋂
Vi , ∅.

Thus, Vy ∩ (
⋃

i∈ω Vi) , ∅. ∴ y ∈ St(
⋃

i∈ω Vi,Vm). Hence {St(
⋃

i∈ω Vi,Vn) : n ∈ ω} is an open cover for Y.
This completes the proof of the theorem.

In a similar way we prove the following result.

Proposition 2.15. If f : X→ Y is a continuous surjection and X has the property ∗U f in(O,O), then Y also has the
property ∗U f in(O,O).

Corollary 2.16. If the product of two spaces belongs to the class ∗U1(O,O), then each of them belongs to the class
∗
U1(O,O). Similarly, if the product of two spaces belong to the class ∗U f in(O,O), then each of them belongs to the

class ∗U f in(O,O).

Problem 2.17. Does there exist spaces which have the property ∗U1(O,O) but their product do not have the property.

Proposition 2.18. Let A,B and C are any collection of subsets of X and if C is a cover for X. If ∗U1(A,B) and
∗
U1(B,C) holds, then {X} ∈ C .

Proof. {Un : n ∈ ω} be a sequence of elements of A. Since ∗U1(A,B) holds, there exists a sequence
{Un : n ∈ ω} such that for each n ∈ ω, Un ∈ Un and {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ B.

Suppose Vn = St(
⋃

i∈ω Ui,Un) for each n ∈ ω andV = {Vn : n ∈ ω}. Now, choose a sequence {Vn : n ∈ ω}
such thatVn = V, for each n ∈ ω. Then {Vn : n ∈ ω} is sequence of elements of B. Since ∗U1(B,C) holds,
there exists a sequence {V′

n : n ∈ ω} such that for each n, V′

n ∈ Vn =V and {St(
⋃

i∈ω V′

i ,Vn) : n ∈ ω} ∈ C. We
have St

⋃
i∈ω

V
′

i ,V

 : n ∈ ω

 ∈ C ⇒
St

⋃
i∈ω

V
′

i ,V


 ∈ C ⇒ St

⋃
i∈ω

V
′

i ,V

 = X,

i.e. {X} ∈ C.

Theorem 2.19. If Xk have the property ∗U1(O,O) for any finite k, then X has the property ∗U f in(O,Ω).

Proof. Let {Un : n ∈ ω} be a sequence of open covers of X and let ω = N1
⋃

N2
⋃

N3
⋃
.... be a countable

partition of ω into countable subsets. For each k ∈ ω and each m ∈ Nk, let Wm = {U1 × U2 × ... × Uk :
U1,U2,U3, ...,Uk ∈ Um}. Then {Wm : m ∈ Nk} is a sequence of open covers of Xk.

Since ∗U1(O,O) holds for Xk, we can choose a sequence {Hm : m ∈ Nk} such that for each m, Hm ∈ Wm
and {St(

⋃
i∈Nk

Hi,Wm) : m ∈ Nk} is an open cover of Xk. For every m ∈ Nk and Hm ∈ Wm. Let, Hm =
U1(Hm) ×U2(Hm) ×U3(Hm) × ... ×Uk(Hm), where Ui(Hm) ∈ Um for i ≤ k.

Let F = {x1, x2, x3, ...xs} be a finite subset of X. Then (x1, x2, x3, ..., xs) ∈ Xs, so there exists n ∈ Ns such
that (x1, x2, x3, ..., xs) ∈ St(

⋃
i∈Ns

Hi,Wn), where Hi ∈ Wi and i ∈ Ns. So, there exists a W ∈ Wn such that
(x1, x2, x3, ..., xs) ∈W and W

⋂
(
⋃

i∈Ns
Hi) , ∅. Let W = U1(W) ×U2(W) × ... ×Us(W). Ui(W) ∈ Un, i ≤ s.

Thus x1 ∈ U1(W), x2 ∈ U2(W), ..., xs ∈ Us(W) and (U1(W) × U2(W) × ... × Us(W))
⋂

(
⋃

i∈Ns
Hi) , ∅. i.e.

(U1(W) ×U2(W) × ... ×Us(W))
⋂

(
⋃

i∈Ns
(U1(Hi) ×U2(Hi) ×U3(Hi) × ... ×Us(Hi))) , ∅which implies (U1(W) ×

U2(W) × ... ×Us(W))
⋂

((
⋃

i∈Ns
U1(Hi)) × (

⋃
i∈Ns

U2(Hi)) × (
⋃

i∈Ns
U3(Hi))... × (

⋃
i∈Ns

Us(Hi))) , ∅.
Thus, for each j ≤ s, U j(W)

⋂
(
⋃

i∈Ns
U j(Hi)) , ∅. Hence, for each j ≤ s, U j(W)

⋂
(
⋃

i∈Ns
(
⋃s

j=1 U j(Hi))) , ∅.
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The set {U1(W),U2(W), ...,Us(W)} = Vn is a finite subset of Un and for each j ≤ s, x j ∈ U j(W) ⊂
St((

⋃
i∈Ns

(
⋃s

j=1 U j(Hi))),Un), i.e. for each j ≤ s, x j ∈ U j(W) ⊂ St((
⋃

i∈Ns
(
⋃
Vi)),Un). Thus F ⊂ St((

⋃
i∈Ns

(
⋃
Vi)),Un),

i.e. F ⊂ St((
⋃

i∈ω(
⋃
Vi)),Un).

For each n, Vn is a finite subset of Un satisfying: for each finite set F ⊂ X there is an n such that
F ⊂ St((

⋃
i∈ω(

⋃
Vi)),Un) and {St(

⋃
i∈ω(

⋃
Vi),Un) : n ∈ ω} ∈ Ω. This implies that X satisfies ∗U f in(O,Ω).

Note 2.20. For a finite collection of open covers {Ui : i = 1, 2, 3, ...,n} we define
⋂
{Ui : i = 1, 2, 3, ...,n} =

{U1 ∩U2 ∩U3 ∩ ... ∩Un : U1 ∈ U1,U2 ∈ U2,U3 ∈ U3, ...,Un ∈ Un}.

Theorem 2.21. If a space has the property ∗U1(O,Γ), then it has the property ∗U1(O,O1p).

Proof. Let {Un : n ∈ ω} be a sequence of open covers of X. We construct new open covers follows.

Vn =
⋂{

Ui :
n(n + 1)

2
≤ i <

(n + 1)(n + 2)
2

}
, for each n ∈ ω.

So, {Vn : n ∈ ω} is also a sequence of open covers of X. Since X has the property ∗U1(O,Γ), we can find a
sequence {Wn : n ∈ ω} such that Wn ∈ Vn for each n ∈ ω and every x ∈ X belongs to all but finitely many
members of {St(

⋃
i∈ω Wi,Vn) : n ∈ ω}.

For each i ∈ ω, Wi ⊂ U j, for some U j ∈ U j with i(i+1)
2 ≤ j < (i+1)(i+2)

2 . We consider the set of non-negative
integers n0 < n1 < ... < np < ... defined by np =

p(p+1)
2 .

If x ∈ X belongs to St(
⋃

i∈ω Wi,Vk) for some k ∈ ω, then x belongs to St(
⋃

i∈ω Wi,Ul), for each l such that
nk ≤ l < nk+1. i.e. x ∈

⋃
nk≤l<nk+1

St(
⋃

i∈ω Wi,Ul).
So, for each x ∈ X, we have x ∈

⋃
nk≤l<nk+1

St(
⋃

i∈ω Wi,Ul) for all but infinitely many k ∈ ω.
⋃

i∈ω Wi ⊂⋃
i∈ω Ui. So, for each x ∈ X, we have x ∈

⋃
nk≤l<nk+1

St(
⋃

i∈ω Ui,Ul) for all but infinitely many k ∈ ω. Thus the
cover {St(

⋃
i∈ω Ui,Un) : n ∈ ω} is groupable.

3. Topological Games Related to ∗U1(A,B) and ∗U f in(A,B)

In this section, we introduce two topological games which are naturally associated with the selection
principles introduced in Section 2. The game related to the selection principle ∗U1(A,B) is denoted by
∗G1(A,B) and the game related to the selection principle ∗U f in(A,B) is denoted by ∗G f in(A,B).

Two games, say P and P′ , are equivalent if: ONE has a winning strategy in P if, and only if, ONE has a
winning strategy in P′ , and TWO has a winning strategy in P if, and only if, TWO has a winning strategy
in P′ [17].

Two games, P and P′ , are dual if: ONE has a winning strategy in P if, and only if, TWO has a winning
strategy in P′ , and TWO has a winning strategy in P if, and only if, ONE has a winning strategy in P′ [17].

LetA and B be collections of a families of subsets of a set X.

Definition 3.1. ∗G1(A,B) denotes an infinitely long game for two players, ONE and TWO, who play a
round for each non-negative integer. In the n-th round ONE choosesUn ∈ A, TWO responds by choosing
an element Un ∈ Un. The play {U0,U0,U1,U1, ...,Un,Un, ...} is won by TWO if {St(

⋃
i∈ω Ui,Un) : n ∈ ω} ∈ B;

otherwise, ONE wins.

Definition 3.2. ∗G f in(A,B) denotes an infinitely long game for two players, ONE and TWO, who play a
round for each non-negative integer. In the n-th round ONE choosesUn ∈ A, TWO responds by choosing
Vn ∈ [Un]<ω. The play {U0,V0,U1,V1, ...,Un,Vn, ...} is won by TWO if {St(

⋃
i∈ω(

⋃
Vi),Un) : n ∈ ω} ∈ B;

otherwise, ONE wins.

Proposition 3.3. If for a space X, TWO has a winning strategy in the game G∗1(O,O), then TWO has a winning
strategy in ∗G1(O,O).
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Proof. Suppose TWO has a winning strategy σ in the game ∗G1(O,O). Use σ to define then a strategy ϕ for
TWO in the game G∗1(O,O) on X. Suppose that first move of ONE in the game ∗G1(O,O) is an open cover
U1 of X. If TWO responds in G∗1(O,O) by σ(U1) = U1 ∈ U1, then TWO plays ϕ(U1) = σ(U1) = U1. Assume
that then ONE playsU2 ∈ O in the game G∗1(O,O), and TWO responds by σ(U1,U2) = U2, then TWO plays
ϕ(U1,U2) = U2. And so on.

As σ is a winning strategy for TWO in the game G∗1(O,O), consider a σ-play

U1, σ(U1);U2, σ(U1,U2), ...

won by TWO, i.e.⋃
i∈ω

St (Ui,Ui) = X.

By the definition of ϕ, the ϕ-play

U1, ϕ(U1);U2, ϕ(U1,U2), ...

is won by TWO, since ⋃
i∈ω

St

⋃
i∈ω

Ui,Ui

 ⊃⋃
i∈ω

St (Ui,Ui) .

Now we show that there exists a space X in which TWO has a winning strategy in the game ∗G1(O,O),
but no winning strategy in G∗1(O,O).

Example 3.4. Consider the space X constructed in Example 2.10. This space is Lindelöf because the real
line R with upper limit topology is a hereditarily Lindeöf space. Suppose ONE and TWO are playing
the game ∗G1(O,O) and ONE chooses U0 for the 0-th innings. Clearly there existsW ∈ [U0]≤ω such that
X =

⋃
W. Suppose W = {W0,W1,W2, ....}. TWO, according to his strategy σ, responds by choosing

σ(U0) = W0 ∈ W ⊂ U0. After that for n-th innings (n ∈ ω \ {0}), whenever ONE chooses Un ∈ O, TWO
responds by choosing a Un ∈ Un such that Un ∩Wn , ∅. We observe that Wn ⊂ St(Un,U0) for each n ∈ ω.
So, Wn ⊂ St(

⋃
i∈ω Ui,U0) for each n ∈ ω. Therefore, X =

⋃
{W} ⊂ St(

⋃
i∈ω Ui,U0),. which means that σ is a

winning strategy for TWO in the game ∗G1(O,O).
Now suppose ONE and TWO are playing the game G∗1(O,O) on the same space X. If ONE chooses

Un =
{(

0, 1
2n

]
,
(

1
2n , 2

2n

]
,
(

2
2n , 3

2n

]
, ...,

(
3.22
−1

2n , 3.2n

2n

]}
∈ O for each inning (i.e. for each n ∈ ω), then for any choice

Un ∈ Un by TWO, {St(Un,Un) : n ∈ ω} < O. So, TWO does not have a winning strategy in G∗1(O,O).

From the above results we conclude that the games ∗G1(O,O) and G∗1(O,O) are neither equivalent nor
dual to each other, which intern reflects the significance of our study.

Proposition 3.5. If for a space X, TWO has a winning strategy in ∗G1(A,B), then TWO has a winning strategy in
∗G f in(A,B).

Proposition 3.6. If for a space X, TWO has no winning strategy in ∗G f in(A,B), then TWO has no winning strategy
in ∗G1(A,B).
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