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Fejér-Type Inequalities for Lipschitzian Functions
and their Applications

Kai-Chen Hsu?
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Abstract. In this paper, we shall establish some Fejér-type inequalities for L-Lipschitzian functions. These
inequalities can connect with Fejér inequality (1). Also, some applications to convex function, y-th moment,
mathematical expectation of a random variable and Euler’s Beta function are provided.

1. Introduction

Throughout this paper, let I := [a,b] in R witha < b.
The inequality

b b b b
f(a;b)fg(s)dssff(s)g(s)dsswfg(s)ds )

which holds for all convex functions f : I — R and integrable, symmetric functions g : I — R* U {0} is
known as Fejér inequality [4]. If we choose g(s) = 1, then inequality (1) reduces to Hermite-Hadamard
inequality [5].

Recently, many authors improved, generalized and extended Hermite-Hadamard and Fejér inequalities
(see [1]-[3], [6], [9], [10], [13] and [15]-[18]) or applied them to other inequalities (see [7], [8], [11], [12] and
[14]).

The followings are the theorems we interest:

In[17, Theorem 5-6, Remark 6] and [18, Theorem 1], Yang and Tseng offered the following three theorems
which refined (1).

Theorem 1.1. Let f : [ — Rbe convexand let g : I — R*U{0} be integrable and symmetric about 4. If Py : 1 — R
is defined by

a+b

b
Pg(s)::ff(sx+(1—s) 5 )g(x)dx, 2)
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then Py is convex, increasing on [0,1] and , for all s € [0,1],

+b\ [* b
f(a - )fu g(x)dx =P;(0) < Py(s) <P, (1) = jﬂ‘ £ (%) g (x)dx.
Theorem 1.2. Let f, g be defined as Theorem 1.1. If Q, : I — R is defined by

0+ =3 [P (5l
22 (55

then Q, is convex, increasing on [0,1] and , for all s € [0,1],

b b b
[ r@swir=0,0<0,0<00=LLE [(hma
Theorem 1.3. Let f g be deﬁned as Theorem 1.1. If G, : I — R is defined by

Gy (5) 1= ——— f fsx+1=5)y)g () g (y)dxdy @)
fgx X a

then we obtain the following results:
(1) G is convex on [0, 1], symmetric about 1 decreasing on [O, %] and increasing on [%, 1] ,

b
sup G, (s) = G,(0) =G, (1) = f f(x)g(x)dx

s€[0,1]

and

1
Sér&fl Gy (s) = (2 f Y. f f g(x)g(y)dxdy

(2)
Py(s) <Gy(s) (s€(0,1)).

Besides, Dragomir et al. [2] and Mati¢ and Pecari¢ [9] provided the following theorem where are
Hadamard-type inequalities for L-Lipschitzian functions.

Theorem 1.4. Let f : I — R be a L-Lipschitzian function on the interval I of real numbers. Then we have

b
@+ ff()d G

152 5 ff( )dx

Remark 1.5.

(1) In Theorem 1.1, let g (x) = 1. Then Theorem 1.1 reduces to [1, Theorem 1].
(2) In Theorem 1.2, let g (x) = 1 Then Theorem 1.2 reduces to [16, Theorem 1-2].
(3) In Theorem 1.3, let g (x) = —. Then Theorem 1.3 reduces to [1, Theorem 2].

and

L(b )

The aim of this paper is to establish some Fejér-type inequalities for Lipschitzian functions through
mappings (2), (3) and (4). The study results can generalize inequalities (5) and (6). Besides, some applications
to convex function, y-th moment, mathematical expectation of a random variable and Euler’s Beta function
are presented afterwards.
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2. Main Results

Throughout this section, let f : I — R be a L-Lipschitzian function on I. For all u,v € I, we have

|f @) - f @) <Lu-ol

where L is positive constant.
In order to prove our main results, let us consider the following lemma.

Lemma 2.1. Let g : I - R* U {0} be integrable, nondecreasing on [a, 1] and nonincreasing on (n,b] . Then, we have

b 2y—n—a (M b+n-25 (°
fs(x)g(x)dx$¥f g(x)dx+++f g (x)dx (7)
a a n

(1) 1= y—x, ify=x x€lan]
S\ = x—06, ifx>=0 xe(nb]

Proof. Let x € [a,7]. Since g (x) is nondecreasing on [a, 1],
X
f gt)ydt (xe€la,n])

is a convex function, whence

n
f (- x) g (x) dx ®)

Ul n n
(y—n)fa g(x)dx+ﬁj; [(x—a)fu g(t)dt]dx
2y —n— 1
- VTMfg(x)dx'

Now let x € (1, b]. Similarly, we have

IA

b b+n-26 b
-0 ax < ——— dx.
I e N RCL ©)

Inequality (7) follows from inequalities (8) and (9) . This completes the proof. [

Now, we are ready to state and prove the main inequalities of Fejér’s type.

Theorem 2.2. Let f : I — R satisfy L-Lipschitzian condition and g : I — IR* U {0} be integrable, nondecreasing on

[a, %] and symmetric about 2. Then we obtain
(1) The mapping P, is a-Lipschitzian on [0,1] .

(2) We have the inequalities:

< %L(b—a) fu‘z g (x)dx, (10)

b
P0- [ fWowd

b
P, <t>—f(¥)f g dx

atb

< %L(b—u) ng(x)dx (11)
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and
’ a+b\ (*
Pt [ fos@ar-a-nf("5) [Cgwax 1
a+b
< t(lz_ D - a)f 7 () dx
atb
forall t € [0,1], where a = % (b—-a) fﬂ * g (x)dx and P, is defined by (2).
Proof. (1) Since u, v € [0, 1] and f satisfies L-Lipschitzian condition, we have
|P9 (u) - P, (v)|
b
< f f(ux+(1—u)a+b)—f(vx+(1—v)u+b)‘g(x)dx
. 2 2
b
< f Liu -1 a;—b —x{g(x)dx =].
Now, by using g which is symmetric about % and Lemma 2.1, we obtain
ath
] = 2L|u—v|f (”%b —x)g(x)dx
’ a+b
L -
< E(b—a)(f g(x)dx]lu—vl.
Thus, for all u, v € [0, 1], we get
L e
|Py () - Py (0)] < 5 (b-a) U g (%) dx] lu—1l, (13)

which yields that mapping P, is a-Lipschitzian on [0, 1].
(2) Inequalities (10) and (11) follow from (13) by choosing u = t, v = 1 and u = t, v = 0 respectively.
Inequality (12) follows by adding ¢ times (10) and (1 — #) times (11). This completes the proof. [

Remark 2.3. In (13), let u =1, v =0and g(x) = 1 (x € I). Then inequality (13) reduces to (6) which was proved
by Matié and Pecarié¢ [9].

Theorem 2.2 implies the following corollary which is important in applications for convex function:

Corollary 2.4. Let f : I — R be a differentiable convex mapping on I and L = sup, ., | f (x)| < oo. Then we have
the inequalities:

: 2
Oﬁff(x)g(x)dx—Pg(t)S%L(b—a)f 7 () dx, (14)

and

; 2
OSPg(t)—f(a;b)fg(x)dxséL(b—a)f (0 dx (15)

forallt € [0,1].
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Theorem 2.5. Let f, g and « be defined as Theorem 2.2. Then we have

(1) The mapping Q, is a-Lipschitzian on [0,1].
(2) We have the inequalities:

b b
0, 0)- T [ gyan

SéL(b—a)f2 g (x)dx

1—t Ea
<—VL(b-a) g (x)dx,
2 a

b
Q) - f £ (@) g () dx

and

b b b
Q- [ fwowan-a-n LD [Tyea

a+b

< t(12—_t)L(b—a)‘L‘Zg(x)dx

forallt € [0,1] and Qy is defined by (3) .

Proof. (1) Since u,v € [0, 1] and f satisfies L-Lipschitzian condition, we have

|Q, (1) - Q, @)|
Tt 155 - (e 1550 o(5)

+'f(1;ub+1;ux)—f(1;vb+1;Ux)’g(x;b)]dx

1fb[L|u—va+v—ux| (a+x)
2 2 2 19\
U—0 v—1u x+b
5 b+ > x‘g( 5 )]dx
= i+
a+b

By utilising g which is symmetric about 5= and Lemma 2.1, we obtain

i+

a+b

2 |u-v v—U
fa L| 7 a+ 5 (2x—a)’g(x)dx

IA

IA

+L

b
u—-v, v-u
+fML‘ > b+ > (2x—b)'g(x)dx

a+l

s b
Llu—vl(f (x—a)g(x)dx+fb(b—x)g(x)dx]

ath
< —Llu_vl(b_a)fz g (x)dx.
2 a

Thus, for all u, v € [0, 1], we get

Qs ()~ Q)] < %(b—a)(fzga)dx]m—w,

which yields that mapping Q, is a-Lipschitzian on [0, 1].

4535

(16)

(17)

(18)

(19)
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(2) Inequalities (16) and (17) follow from (19) by choosing u = t, v = 1 and u = t, v = 0 respectively.
Inequality (18) follows by adding ¢ times (16) and (1 — ¢) times (17). This completes the proof. [

Remark 2.6. In (19), let u =1, v = 0and g(x) = 1 (x € I). Then inequality (19) reduces to (5) which was proved
by Dragomir et al. [2].

Theorem 2.5 implies the following corollary which is important in applications for convex function:

Corollary 2.7. Let f and L be defined as Corollary 2.4. Then we have the inequalities:

b) _ e
0 L0 [y ie—0,0< S 1w [ geas 0

and

: 2
0<Q,0- [ f@ewdrsLe-a [ g @

forallt € [0,1].

Theorem 2.8. Let f and g be defined as Theorem 2.2. Then we have
(1) The mapping G, is p-Lipschitzian on [0, 1].
(2) We have the inequalities:

b a+lrr
G- [ fegmar < EE=D maxin1-n [ g, 22)

(23)

Gy (t) - (x) 9 (y) dxd
fg(x)dxff 9 g (y) dxdy

—a
< TIZt—ll‘fﬂ g (x)dx

G, (t) - P, (8)] < %L(b —a) f 700 dx (24)

and

ath
where f = w fa > g(x)dx and G, is defined by (4).
Proof. (1) Since u,v € [0, 1] and f satisfies L-Lipschitzian condition, we have

|Gy () - G, ()|

mff|f(ux+(1 u)y)— f(ox+ (1 -0) y)|g(x)g(y)dxdy
g\x)ax a

b b
1 - - dxdy.
< f:g(x)dxuu v|fufu)y x| 9 () g (y) dxdy
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The double integral in the inequality above can be illustrated as follows:

b b
f f |y = x| 9 () g (y) dxdy

= f Mg(y) f y = x|g (0 dxdy + f 9 (v) f (y = x) g (x) dxdy

+j;mg(y)f (x— y)g(x)dxdwﬁ g(y)f |y = 2] g () dxdy

Jit]+]3+]s

Now, by using Lemma 2.1, we have

ot y ath
h- g(y)(f (y—x)g(x)dx+f (- y)g(x)dx) 25)
ey —a (Y axb _ ash
fg g(y)(%fg g (x)dx + 22 yfy g(x)dx]dy

<
< %fzg(X)dx
3ﬂ4+[7 b g;ﬁb
(f (Wr —y)g(y)dwfw (y—a)g(y)dy]
< (b—a)f g (x)dx - f g (x)dx,
o b
2 < f g(X)dxﬁ+b(y_3a+b)g(y)dy ,
= ——j‘9Qij‘m@w
b s
Js < fg(X)dxf (+3b_y)g(y)dy -
< fg(x)dxf g (x)dx
and
b
Ja = (x) dx + ()d) o
i fz ( (v - x)HXxfy(x y) g (x) dx

IA

ﬁ:g(y)(y_zm fyg(x)dﬂb_yfg(x)dx]
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IA

1
Ej;bg(x)dx

2

o b
U; (b—y)g(y)dwfw (y— l%b)g(y)dy)

4

b b
g(b—a)fazbg(x)dwfmg(x)dx.

IN

2

Then, by using g which is symmetric about %4 and inequalities (25)-(28), we obtain:

a+b 2
Jita+]3+]a< 7(b8—a) (f !J(X)dx] :

Thus, for all u, v € [0, 1], we get

|Gy () - G, ()] < W (fz 7 (%) dx) u — 9| (29)

which yields that mapping G, is -Lipschitzian on [0, 1].
(2) Inequalities (22) and (23) follow from (29) by choosingu =t,v=1or0andu =t,v = % respectively.
Now, we shall prove inequality (24). Since f is L-Lipschitzian, we can write

sm—t)’y—‘ib

a+b
) > (30)

‘f(tx+(1—t)y)—f(tx+(1—t)T

forall t € [0,1] and x,y € I. By multipling inequality (30) by g (x) g (v) and then integrating the result on
I x I, we have

b b
[ [ rex+a-nnswoiay

b b
—fg(y)dyf f(tx+(1—t)¥)9(x)dx

< L(l—t)jjg(x)dxfah +b

a
- T‘ g (y)dy.
Note that, by Lemma 2.1, we get

r

Therefore, we can get

a+b
a+b b—a (7
V== ‘9(y)dy57f g (y)dy.

atb
1-t 2
|G, (1) — P, (1)] < —L@ —a)f g (x)dx
for all t € [0, 1] which proves inequality (24). This completes the proof. [J

Theorem 2.8 implies the following corollary which is important in applications for convex function:
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Corollary 2.9. Let f and L be defined as Corollary 2.4. Then we have the inequalities:

0<ff(x)g(x)dx Gy () < (bg 9) ax{t,l—t}fzg(x)dx, (31)
0 < Gy(0- (%) g (v) dxd (32)
g fgx xff 9 gy y
< 7L(b 1|f g (x)dx
and
OSGy(t)—Py(t)S¥L(b—a)j;2g(x)dx (33)

forall t €[0,1].

3. Applications

In this section, we apply our results to y-th moment of a random variable and Euler’s Beta function.
3.1. The Applicaions to y-th Moment of a Random Variable

Throughout this subsection, let 0 < a4 < b, y > 0 and let X be a continuous random variable having

the continuous probibility density function g : I — R* U {0} which is nondecreasing on [a, M], symmetric

t a+b

about %37, and then y-th moment of X about the origin is defined as follows.

b
Ey(X):f u’g (u)du

which is assumed to be finite.
To prove the results of this section, we need the following lemma [6, Lemma 1].

"Il < oo. Then f is L-Lipschitzian function on [a,b] where
L=

fl

Now, we present some applications of our result to y-th moment of a random variable.

0"

Proposition 3.2. The inequality

4 _1
E,(X) - (1_6)(a+b) _6(aVJ2rb3)S)/bi

holds, fory 20,0<6<1and0<a<b.
Proof. Let f(x)=x"(x €I,y >0),

®-a) (34)

Nl = yb’~!in Lemma 3.1. Since

b b
ff(x)g(x)dX=Ey(X),fg(x)dx:l

b Y b b v
f(a;b)fa Q(X)dx=(a;b) ,f(a);f()ja‘ g(x)dx:a) ;by.

The result follows immediately from inequalities (13) and (19). O

and
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Remark 3.3. In Proposition 3.2, let 6 = 0 and 6 = 1. Then we have

a+b\| ybr!
Ey (X) - (T) < 4 (b - Ll)
and
"4 V4 b)/—l
[ i y4 (b-a)

holds, fory > 0,0 <a <b.

Remark 3.4. In Proposition 3.2, let 6 = 1/2 and 6 = 1/3. Then we have

1|+ (a+bY b1
Ey(X)—E[ : +( : )]sy4 (b—a)

YV by—l
E),(X)—%[a)’+4(¥) +bV] <Z -0

holds, fory > 0,0 <a < b.

Proposition 3.5. The inequality

Ey(X)—fab fﬂb(x;y)yg(x)g(y)dxdy

holds, fory > 0,0 <a < b.

y—1
32

<

(b—a)

Proof. The proof is similar to Proposition 3.2 by using inequality (29). O

3.2. The Applicaions to Euler’s Beta Function

Throughout this subsection, let us recall the Beta function of Euler, that is

1
B(p,q) = f A L (pg>-1).
0
We have for r > 1, that
1
B(p+rp):= f (1 -ty e,
0

In[3],forr>1,t€[0,1], that

1 ! 1 ’
[r — P11 _ P—l[ L ]
HI (¢, p) : B(p,p)fou (=)™ tu+ 5 (1= 1) du
and
[r] 1 ' 1,91 -1 -1 r
Fi (tp) = 5 7 f f w o (1 =T (1= o) [t + (1 - ) 0] dudo.
’ 0 0

Define g : (0,1) — R given by

A R

1
10= 56

4540

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)
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It is clear that

g(t) =g —1t) forallt e (0,1)

1
f g)dt =1.
0

Based on (40), (41) and (42), we can obtain the following propositions of Beta function:

and

Proposition 3.6. The inequality

(43)

‘B(p+r,p)_1—6 <

B(p,p) 2

holds, forallr >1,0< 6 < 1landp > -1.

0
2

= rin Lemma 3.1. Since

0

Proof. Define f :[0,1] —» R givenby f(f) := ', r > 1, we observe that ||’

! 1 v : B(p+1,p)
dt=——— | #1A -t d = —/——=.
faf(t)g(t) : B(P,P)fot (A= rat B(p,p)

The result follows immediately from inequalities (13) and (19). O
Proposition 3.7. The inequality

rt(1—t)
4

B(p+r1,p)
B(p,p)

holds, forall, v >1,0<t <1landp > -1.

<

(44)

~(-n5

HY (t,p) -t

Proof. The proof is similar to Proposition 3.6 by using inequality (12). O

By using inequalities (22) and (24), we can state the following propositions.

Proposition 3.8. The inequality

B )
Fg] tp) - M < 7 max {f,1 -t} (45)

B(p,p) |~ 16

holds, forall, y >1,0<t <1landp > -1.

Proposition 3.9. The inequality

t)

r r r(l-
[FiV(t,p) — HY (¢, p)| < (T (46)

holds, forall, r > 1,0 <t <landp > -1.



K.-C. Hsu / Filomat 31:14 (2017), 4531-4542 4542

References

(1]
(2]

(3]

(4]
[5]

(6]

[7

(8]

[
[10]

[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

S.S. Dragomir, Two mappings in connection to Hadamard’s inequalities, ]. Math. Anal. Appl. 167 (1992), 49-56.

S.S. Dragomir, Y.-J. Cho, S.-S. Kim, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math.
Anal. Appl. 245 (2000), 489-501.

S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Mono-
graphs,Victoria University (2000). Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html.

L. Fejér, Uber die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24 (1906), 369-390 (In Hungarian).

J. Hadamard, Etude sur les propriétés des fonctions entieres en particulier d’une fonction considérée par Riemann, J. Math. Pures
Appl. 58 (1893), 171-215.

D.-Y. Hwang, K.-C. Hsu and K.-L. Tseng, Hadamard-type inequalities for Lipschitzian functions in one and two variables with
applications, |. Math. Anal. Appl. 405 (2013), 546-554.

M. Masjed-Jamei, F. Qi and H. M. Srivastava, Generalizations of some classical inequalities via a special functional property,
Integral Transforms Spec. Funct., 21 (2010), 327-336.

M. Masjed-Jamei, S. S. Dragomir and H. M. Srivastava, Some generalizations of the Cauchy-Schwarz and the Cauchy-
Bunyakovsky inequalities involving four free parameters and their applications, Math. Comput. Modelling, 49 (2009), 1960-1968.
M. Mati¢, J. Pecari¢, On inequalities of Hadamard's type for Lipschizian mappings, Tamkang J. Math. 32 (2) (2001), 127-130.

H. M. Srivastava, Z.-H. Zhang and Y.-D. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen
inequalities in several variables, Math. Comput. Modelling, 54 (2011), 2709-2717.

H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese |. Math.,
14 (2010), 107-122.

H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some generalizations of Maroni’s inequalitity on time scales, Math. Inequal.
Appl., 14 (2011), 469-480.

K.-L. Tseng, G.-S. Yang and K.-C. Hsu, On some inequalities of Hadamard’s type and applications, Taiwanese |. Math., 13 (6B)
(2009), 1929-1948.

S.-H. Wu, H. M. Srivastava and L. Debnath, Some refined families of Jordan-type inequalities and their applications, Integral
Transforms Spec. Funct., 19 (2008), 183-193.

Z.-G. Xiao, H. M. Srivastava and Z.-H. Zhang, Further refinements of the Jensen inequalities based upon samples with repetitions,
Math. Comput. Modelling, 51 (2010), 592-600.

G.-S. Yang and M. C. Hong, A note on Hadamard’s inequalities, Tamkang. |. Math. 28, No. 1 (1997), 33-77.

G.-S. Yang and K.-L. Tseng, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl. 239
(1999), 180-187.

G.-S. Yang, K.-L. Tseng, Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitzian functions, Taiwanese
J. Math. 7 (3) (2003), 433—-440.



