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Fixed Point Results in b-Metric Spaces
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Abstract. In this paper, based on a lemma giving a sufficient condition for a sequence with elements from
a b-metric space to be Cauchy, we obtain Caristi-Kirk type and Boyd&Wong–Browder-Matkowski-Rus type
fixed point results in the framework of b-metric spaces. In addition, we extend Theorems 1, 2 and 3 from
[M. Bota,V. Ilea, E. Karapinar, O. Mleşniţe, On α∗ −ϕ-contractive multi-valued operators in b-metric spaces
and applications, Applied Mathematics & Information Sciences, 9 (2015), 2611-2620].

1. Introduction

The notion of b-metric space was introduced by I. A. Bakhtin [3] and S. Czerwik [14], [15] in connection
with some problems concerning the convergence of measurable functions with respect to measure.

In the last decades a considerable amount of fixed point results in the framework of b-metric spaces
were obtained (see, for example, [1], [2], [6], [7], [8], [13], [17], [20], [21], [22], [23], [24], [25] , [27], [28] and
the references therein).

In this paper we present a sufficient condition for a sequence with elements from a b-metric space
to be Cauchy (see Lemma 2.6). Then, using this result, in Section 3, we obtain Caristi-Kirk type and
Boyd&Wong–Browder-Matkowski-Rus type fixed point results in the framework of b-metric spaces (see
Theorems 3.1 and 3.3). Section 4 is devoted to the presentation of a class of comparison functions, denoted
by Γγ, satisfying the hypotheses of the above mentioned Boyd&Wong–Browder-Matkowski-Rus type fixed
point result. We also point out that Γγ is larger that Berinde’s class Ψb. In Section 5, we show how to extend,
using Lemma 2.6, the results from [9] concerning α∗-ϕ-contractive multivalued operators by considering
comparison functions ϕ from Γγ rather than from Ψb.

2. Preliminaries

In this section we recall some basic facts that will be used in the sequel.

Definition 2.1. Given a nonempty set X and a real number s ∈ [1,∞), a function d : X × X → [0,∞) is called
b-metric if it satisfies the following properties:

i) d(x, y) = 0 if and only if x = y;
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ii) d(x, y) = d(y, x) for all x, y ∈ X;
iii) d(x, y) ≤ s(d(x, z) + d(z, y)) for all x, y, z ∈ X.
The pair (X, d) is called b-metric space (with constant s).

Besides the classical spaces lp(R) and Lp[0, 1], where p ∈ (0, 1), more examples of b-metric spaces could
be found in [2], [4], [8], [14] and [15].

Remark 2.2. Every metric space is a b-metric space (with constant 1). There exist b-metric spaces which are not
metric spaces (see, for example, [2], [13] or [21]).

Definition 2.3. A sequence (xn)n∈N of elements from a b-metric space (X, d) is called:
– convergent if there exists l ∈ X such that lim

n→∞
d(xn, l) = 0;

– Cauchy if lim
m,n→∞

d(xm, xn) = 0 i.e. for every ε > 0 there exists nε ∈ N such that d(xm, xn) < ε for all m,n ∈ N,
m,n ≥ nε.

The b-metric space (X, d) is called complete if every Cauchy sequence of elements from (X, d) is convergent.

Remark 2.4. A b-metric space can be endowed with the topology induced by its convergence.

Using the method of mathematical induction, one can easily establish the following result:

Lemma 2.5. For every sequence (xn)n∈N of elements from a b-metric space (X, d), with constant s, the inequality

d(x0, xk) ≤ sn
k−1∑
i=0

d(xi, xi+1)

is valid for every n ∈N and every k ∈ {1, 2, 3, . . . , 2n
− 1, 2n

}.

The following lemma is the key ingredient in the proof of Theorems 3.1, 3.3 and 5.4.

Lemma 2.6. A sequence (xn)n∈N of elements from a b -metric space (X, d), with constant s, is Cauchy provided that

there exists γ > log2 s such that the series
∞∑

n=1
nγd(xn, xn+1) is convergent.

Proof. With the notation α := γ logs 2 > 1, we have lim
n→∞

s(n+1)(n+2)−αn2
= 0 since lim

n→∞
(n + 1)(n + 2) − αn2 = −∞.

Therefore the sequence (s(n+1)(n+2)−αn2
)n∈N, i.e. ( s(n+1)(n+2)

(2n2 )γ
)n∈N, is bounded and since sup

x∈R
(x + 1)(x + 2) − αx2 =

2 + 9
4(α−1) , we have

sup
n∈N

s(n+1)(n+2)

(2n2 )γ
≤ s2+ 9

4(α−1) := M. (1)

We claim that

d(xn, xn+m) ≤M
∞∑

i=n

iγd(xi, xi+1), (2)

for all m,n ∈N.
Indeed, with the notation l = [

√
log2(m + 1)] (having in mind that 2l2

− 1 ≤ m < 2(l+1)2
− 1), we get

d(xn, xn+m) ≤ sd(xn, xn+1) + sd(xn+1, xn+m) ≤

≤ sd(xn+202
−1, xn+2(0+1)2−1) + s2d(xn+212

−1, xn+222
−1) + s2d(xn+222

−1, xn+m) ≤
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. . . . . . . . . . . . . . . . . . . . . . . .

≤

l−1∑
i=0

si+1d(xn+2i2−1, xn+2(i+1)2−1) + sld(xn+2l2−1, xn+m)
Lemma 2.5
≤

≤

l−1∑
i=0

si+1s(i+1)2


2(i+1)2

−1∑
j=2i2

d(xn+ j−1, xn+ j)

 + sl+1s(l+1)2
2(l+1)2

−1∑
j=2l2

d(xn+ j−1, xn+ j)) =

=

l∑
i=0

si+1s(i+1)2


2(i+1)2

−1∑
j=2i2

d(xn+ j−1, xn+ j)

 ≤
≤

∞∑
i=0

s(i+1)(i+2)

(2i2 )γ


2(i+1)2

−1∑
j=2i2−1

( j + 1)γd(xn+ j−1, xn+ j)

 (1)
≤

≤M
∞∑

i=0

(i + 1)γd(xn+i, xn+i+1) ≤M
∞∑

i=0

(n + i)γd(xn+i, xn+i+1) =

= M
∞∑

i=n

iγd(xi, xi+1).

As the series
∞∑

n=1
nγd(xn, xn+1) is convergent, from (2), we infer that (xn)n∈N is Cauchy.

Using the comparison test, from the above lemma, we obtain the following two results.

Corollary 2.7. A sequence (xn)n∈N of elements from a b -metric space (X, d), with constant s, is Cauchy provided
that there exist γ > log2 s and a sequence (an)n∈N of positive real numbers such that:

a) the series
∞∑

n=1
and(xn, xn+1) is convergent;

b) lim an
nγ > 0.

Corollary 2.8. A sequence (xn)n∈N of elements from a b-metric space (X, d) is Cauchy provided that there exists α > 1

such that the series
∞∑

n=1
αnd(xn, xn+1) is convergent.

3. Caristi-Kirk Type and Boyd&Wong–Browder-Matkowski-Rus Type Fixed Point Results in b-Metric
Spaces

In this section, using Lemma 2.6, we obtain two fixed point theorems in the framework of b-metric
spaces.

Our first result is a Caristi-Kirk type fixed point result (see [12], [16] and [18]).

Theorem 3.1. Let (X, d) be a complete b-metric space, ϕ : X→ [0,∞), f : X→ X and α > 1 such that:
a) f is continuous;
b) d(x, f (x)) ≤ ϕ(x) − αϕ( f (x)) for every x ∈ X.
Then, for every x0 ∈ X, the sequence ( f [n](x0))n∈N is convergent and its limit is a fixed point of f .
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Proof. With the notation xn := f [n](x0), according to b), we have d(xn, xn+1) ≤ ϕ(xn) − αϕ(xn+1), so

αnd(xn, xn+1) ≤ αnϕ(xn) − αn+1ϕ(xn+1),

for every n ∈N and consequently the series
∞∑

n=1
αnd(xn, xn+1) is convergent, its partial sums being between 0

and αϕ(x1). According to Corollary 2.8, the sequence (xn)n∈N is convergent and if we denote by u its limit,
then passing to limit as n → ∞ in the relation xn+1 = f (xn), based on a), we infer that f (u) = u, i.e. u is a
fixed point of f .

Remark 3.2. The above result gives us a sufficient condition for f to be a weakly Picard operator.

Our second result is a Boyd&Wong–Brower-Matkowski-Rus type fixed point result (see [10], [11], [19]
and [26]).

Theorem 3.3. Let (X, d) be a complete b-metric space, with constant s, γ > log2 s, ϕ : [0,∞) → [0,∞) and
f : X→ X such that:

a) ϕ(r) < r for every r > 0;

b) the series
∞∑

n=1
nγϕ[n](r) is convergent for every r > 0;

c) f is a ϕ-contraction, i.e. d( f (x), f (y)) ≤ ϕ(d(x, y)) for all x, y ∈ X.
Then f has a unique fixed point u and the sequence ( f [n](x0))n∈N is convergent to u for every x0 ∈ X.

Proof. With the notation xn := f [n](x0), taking into account c), we have

nγd(xn, xn+1) ≤ nγϕ[n](d(x1, x0)), (3)

for every n ∈N.

Based on (3), b) and the comparison test, we conclude that the series
∞∑

n=1
nγd(xn, xn+1) is convergent and

Lemma 2.6 assures us that the sequence (xn)n∈N is convergent. If we denote by u its limit, then passing to
limit as n → ∞ in the relation xn+1 = f (xn), since f is continuous (see c)), we infer that f (u) = u, i.e. u is a
fixed point of f .

Now let us prove that u is unique.
Indeed, if there exists v ∈ X\{u}having the property that f (v) = v, then we get the following contradiction:

d(u, v) = d( f (u), f (v)) ≤ ϕ(d(u, v))
a)
< d(u, v).

Remark 3.4. We have

d(xn,u) ≤ sd(xn, xn+m) + sd(xn+m,u)
(2) from the proof of Lemma 2.6

≤ sM
∞∑

i=n

iγd(xi, xi+1) + sd(xn+m,u),

for all m,n ∈ N. By passing to limit as m→ ∞ in the above inequality we get the following estimation of the speed
of convergence for ( f [n](x0))n∈N:

d(xn,u) ≤ sM
∞∑

i=n

iγd(xi, xi+1),

for every n ∈N.

Remark 3.5. The above result gives us a sufficient condition for f to be a Picard operator.
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4. Some Classes of Comparison Functions Satisfying Conditions a) and b) from the Hypotheses of
Theorem 3.3

In this section we introduce and study the class Γγ of xγ-summable comparison functions - which is
larger that Berinde’s class Ψb - and whose elements satisfy conditions a) and b) from the hypotheses of
Theorem 3.3.

Definition 4.1. A function ϕ : [0,∞)→ [0,∞) is called a comparison function if:
i) ϕ is increasing;
ii) lim

n→∞
ϕ[n](r) = 0 for every r ∈ [0,∞).

Remark 4.2. Every comparison function ϕ has the property that ϕ(r) < r for every r ∈ (0,∞).

Definition 4.3. A function ϕ : [0,∞)→ [0,∞) is called a xγ-summable comparison function, where γ > 0, if:
i) ϕ is increasing;

ii) the series
∞∑

n=1
nγϕ[n](r) is convergent for every r ∈ [0,∞).

We denote the family of xγ-summable comparison functions by Γγ.

Remark 4.4. Every ϕ ∈ Γγ, where γ > 0, is a comparison function, so it satisfies conditions a) and b) from the
hypotheses of Theorem 3.3. Hence we are interested in finding sufficient conditions for a comparison function ϕ to
belong to Γγ.

Definition 4.5. Given α > 1, we denote by Γα the family of all comparison functions ϕ for which there exist a > 0
and ε > 0 such that ϕ(x) ≤ x − axα for every x ∈ [0, ε].

Lemma 4.6. Let us consider α > 1, ε > 0 and a > 0 such that x − axα ≥ 0 for every x ∈ [0, ε]. Then the sequence
(xn)n∈N, given by x0 ∈ [0, ε] and xn+1 = xn − axαn for every n ∈N, has the following property:

lim
n→∞

xn

( 1
n )

1
α−1

= (
1

a(α − 1)
)

1
α−1 .

Proof. It is clear that (xn)n∈N is decreasing and lim
n→∞

xn = 0, so (x1−α
n )n∈N is increasing and lim

n→∞
x1−α

n = ∞.

As

lim
n→∞

(n + 1) − n
x1−α

n+1 − x1−α
n

= lim
n→∞

1
x1−α

n (( xn+1
xn

)1−α − 1)
=

= lim
n→∞

1
x1−α

n ((1 − axα−1
n )1−α − 1)

= lim
n→∞

1

−a (1−axα−1
n )1−α−1
−axα−1

n

=
1

a(α − 1)
,

in virtue of Stolz-Cesaro lemma we obtain that lim
n→∞

n
x1−α

n
= 1

a(α−1) , i.e.

lim
n→∞

xn

( 1
n )

1
α−1

= ( 1
a(α−1) )

1
α−1 .

Lemma 4.7. Given α > 1, for every ϕ ∈ Γα and every r ≥ 0, we have

lim
ϕ[n](r)

( 1
n )

1
α−1

∈ [0,∞).
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Proof. Taking into account ii) from the definition of a comparison function, there exists n0 ∈ N such that
ϕ[n0](r) ∈ [0, ε]. Since ϕ ∈ Γα, we infer that ϕ[n+n0](r) ≤ xn for every n ∈ N, where (xn)n∈N is given by
x0 = ϕ[n0](r) ∈ [0, ε] and xn+1 = xn − axαn for every n ∈N. Consequently

lim
ϕ[n+n0](r)

( 1
n+n0

)
1
α−1

= lim
ϕ[n+n0](r)

( 1
n )

1
α−1

1

( n
n+n0

)
1
α−1

≤

≤ lim
n→∞

xn

( 1
n )

1
α−1

(
n + n0

n
)

1
α−1

Lemma 4.6
= (

1
a(α − 1)

)
1
α−1 ,

so lim ϕ[n](r)

( 1
n )

1
α−1
∈ [0,∞).

Our next result provides a sufficient condition for the validity of the inclusion Γα ⊆ Γγ.

Proposition 4.8. For every α ∈ (1, 2) and γ ∈ (0, 2−α
α−1 ), we have Γα ⊆ Γγ.

Proof. It suffices to prove that the series
∞∑

n=1
nγϕ[n](r) is convergent for every r ≥ 0.

In virtue of Lemma 4.7, there exists n0 ∈ N such that ϕ[n](r)

( 1
n )

1
α−1
≤ C := lim ϕ[n](r)

( 1
n )

1
α−1

+ 1 ∈ R, i.e. nγϕ[n](r) =

nγ( 1
n )

1
α−1

ϕ[n](r)

( 1
n )

1
α−1
≤ C 1

n
1
α−1 −γ

for every n ∈ N, n ≥ n0. Since the series
∞∑

n=1

1

n
1
α−1 −γ

is convergent (as 1
α−1 − γ > 1),

based on the comparison test, we conclude that the series
∞∑

n=1
nγϕ[n](r) is convergent.

Now we provide some other sufficient conditions for a comparison function ϕ to belong to Γγ.

Let us suppose that for the comparison function ϕ there exist the sequences (an)n∈N and (bn)n∈N such
that:

i) an ∈ (0, 1) and bn ∈ (0,∞) for every n ∈N;
ii) ϕ[n+1](r) ≤ anϕ[n](r) + bn for every n ∈N and every r ≥ 0.
Then

ϕ[n+1](r) ≤ anan−1...a2a1r + anan−1...a2b1 + anan−1...a3b2 + ... + anan−1bn−2 + anbn−1 + bn,

so, with the convention that b0 = r and
n∏

j=n+1

a j = 1, we have

nγϕ[n+1](r) ≤ nγ
n∑

k=0

bk

n∏
j=k+1

a j,

for every n ∈N, r ≥ 0 and γ > 0.

Consequently, a sufficient condition for ϕ to belong to Γγ is the convergence of the series
∞∑

n=0
(nγ

n∑
k=0

bk

n∏
j=k+1

a j), i.e.

of the series
∞∑

k=0
(bk

∞∑
n=k

nγ
n∏

j=k+1

a j).

Now we are going to take a closer look on this sufficient condition in two particular cases.

The first particular case is the one for which the sequence (an)n∈N is constant (so there exists a ∈ (0, 1)
such that an = a for every n ∈N).
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We claim that, in this case, the series
∞∑

k=0
(bk

∞∑
n=k

nγan−k) is convergent if and only if the series
∞∑

k=0
kγbk is

convergent.

The implication ”⇒” is obvious as kγ ≤
∞∑

n=k
nγan−k for every k ∈N.

For the implication ”⇐” let us note that
∞∑

k=0
(bk

∞∑
n=k

nγan−k) can be rewritten as
∞∑

k=0
(bk

∞∑
j=0

(k + j)γa j) and that

there exists Cγ ∈ R such that (k + j)γ ≤ Cγ(kγ + jγ) for every j, k ∈ N. As the series
∞∑

k=0
kγbk is convergent,

in virtue of the comparison test, we infer that the series
∞∑

k=0
(bk

∞∑
j=0

Cγkγa j) and
∞∑

k=0
(bk

∞∑
j=0

Cγ jγa j) are convergent

(as, with the notation Ca,γ :=
∞∑
j=0

jγa j, we have bk

∞∑
j=0

Cγkγa j
≤ bkkγ Cγ

1−a and bk

∞∑
j=0

Cγ jγa j
≤ bkkγCγCa,γ for every

k ∈N). Consequently
∞∑

k=0
(bk

∞∑
j=0

Cγ(kγ + jγ)a j) is convergent, and, based on the comparison test, we conclude

that
∞∑

k=0
(bk

∞∑
j=0

(k + j)γa j), i.e.
∞∑

k=0
(bk

∞∑
n=k

nγan−k), is convergent. So we proved the following:

Proposition 4.9. A comparison function ϕ for which there exist a ∈ (0, 1) and bn ∈ (0,∞), n ∈ N, such that

ϕ[n+1](r) ≤ aϕ[n](r) + bn for every n ∈N and every r ≥ 0, belongs to Γγ, where γ > 0, provided that the series
∞∑

n=0
nγbn

is convergent.

The second particular case is the one for which there exists an increasing sequence (cn)n∈N converging
to∞ such that an = cn−1

cn
for every n ∈N.

A sufficient condition for the convergence of the series
∞∑

k=0
(bk

∞∑
n=k

nγ ck
cn

), i.e.
∞∑

k=0
(bkck

∞∑
n=k

nγ
cn

), is the convergence

of the series
∞∑

n=0

nγ
cn

and
∞∑

k=0
bkck. This happens, for example, if cn = nε+1+γ for every n ∈ N, where ε > 0 and

the series
∞∑

k=0
bkkε+1+γ is convergent. So we proved the following:

Proposition 4.10. A comparison function ϕ for which there exist ε > 0 and bn ∈ (0,∞), n ∈ N, such that
ϕ[n+1](r) ≤ ( n−1

n )ε+1+γϕ[n](r) + bn for every n ∈ N and every r ≥ 0, belongs to Γγ, where γ > 0, provided that the

series
∞∑

n=0
bnnε+1+γ is convergent.

Let us recall (see [5]) the following:

Definition 4.11. For a given b > 1, by Ψb we understand the class of functions ϕ : [0,∞)→ [0,∞) such that:
i) ϕ is increasing;

ii) there exist a ∈ (0, 1) and a convergent series
∞∑

n=0
bn, where bn ∈ (0,∞) for every n ∈N, such that bn+1ϕ[n+1](r) ≤

abnϕ[n](r) + bn for every n ∈N and every r ≥ 0.

Proposition 4.12. Ψb ⊆ Γγ for every γ > 1.

Proof. If ϕ ∈ Ψb, then, with the notation xn = bn
bn+1 for every n ∈N, we have ϕ[n+1](r) ≤ a

bϕ
[n](r) + xn for every

n ∈ N and the series
∞∑

n=0
nγxn, i.e.

∞∑
n=0

nγ
bn+1 bn, is convergent for every γ > 0. Then, according to Proposition

4.9, we conclude that ϕ ∈ Γγ.
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An example. We present an example of comparison function ϕ which belongs to Γγ for every γ ∈ (0, 2),
but not to Ψb, for every b > 1.

Let us consider the comparison function ϕ : [0,∞)→ [0,∞), given by

ϕ(x) =


x − x

4
3 , x ∈

[
0,

27
64

]
27

256
, x ∈

(27
64
,∞

) .

Claim 4.13. ϕ ∈ Γγ for every γ ∈ (0, 2).

Justification of claim 4.13. Note that ϕ ∈ Γ 4
3

(just take a = 1 and ε = 27
64 in Definition 4.5), so, according to

Proposition 4.8, ϕ ∈ Γγ for every γ ∈ (0, 2).

Claim 4.14. There is no b > 1 such that ϕ ∈ Ψb.

Justification of claim 4.14. If this is not the case, there exist a ∈ (0, 1) and a convergent series
∞∑

n=0
bn, where

bn ∈ (0,∞) for every n ∈N, such that bn+1ϕ[n+1](r) ≤ abnϕ[n](r) + bn for every n ∈N and every r ≥ 0. Hence,
for a fixed r0 ∈ (0, 27

64 ), we have bn+1ϕ[n+1](r0) ≤ abnϕ[n](r0) + bn, and therefore
bn+1

n3 [( n
n+1 )3(n + 1)3ϕ[n+1](r0) − a

b n3ϕ[n](r0)] ≤ bn for every n ∈N. Since lim
n→∞

n3ϕ[n](r0) = 27 (see Lemma 4.6), by

passing to limit as n → ∞ in the previous inequality, we get that lim
n→∞

bn = ∞. This is a contradiction since

the series
∞∑

n=0
bn is convergent.

5. A Fixed Point Theorem for α∗ − ϕ-Contractive Multivalued Operators in b-Metric Spaces

In this section, inspired by the ideas from [9], we present a fixed point theorem for α∗-ϕ-contractive
multivalued operator in b-metric spaces.

First of all let us recall some notions.

Definition 5.1. For T : X → P(X) := {Y | Y ⊆ X} and α : X × X → [0,∞), where (X, d) is a b-metric space, we
say that T is α∗-admissible if, for all x, y ∈ X, the following implication is valid: α(x, y) ≥ 1 ⇒ α∗(T(x),T(y)) :=
inf{α(u, v) | u ∈ T(x), v ∈ T(y)} ≥ 1.

Definition 5.2. For T : X → Pcl(X) := {Y ∈ P(X) | Y is closed}, α : X × X → [0,∞) and ϕ ∈ Γγ, where
(X, d) is a b-metric space and γ > 1, we say that T is an α∗ − ϕ-contractive multivalued operator of type (b) if
α∗(T(x),T(y))h(T(x),T(y)) ≤ ϕ(d(x, y)) for all x, y ∈ X, where h stands for the Hausdorff-Pompeiu metric.

Definition 5.3. For T : X→ Pcl(X), where (X, d) is a b-metric space, we say that T is a multivalued weakly Picard
operator if for every x ∈ X and every y ∈ T(x) there exists a sequence (xn)n∈N of elements from X such that:

a) x0 = x and x1 = y;
b) xn+1 ∈ T(xn) for every n ∈N;
c) (xn)n∈N is convergent and its limit is a fixed point of T.

Now we can state our result.
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Theorem 5.4. Let us consider T : X→ Pcl(X), α : X × X→ [0,∞) and ϕ ∈ Γγ, where (X, d) is a complete b-metric
space with constant s > 1 and γ > log2 s, such that:

a) T is an α∗ − ϕ-contractive multivalued operator of type (b);
b) T is α∗-admissible;
c) there exists x0 ∈ X and x1 ∈ T(x0) satisfying the inequality α(x0, x1) ≥ 1;
d) for every convergent sequence (yn)n∈N of elements from X having limit y, the following implication is valid:

(α(yn, yn+1) ≥ 1 for every n ∈N)⇒ (α(yn, y) ≥ 1 for every n ∈N).
Then T has a fixed point.

Proof. The same line of arguments given in the proof of Theorem 1 from [9] gives us a sequence (xn)n∈N of
elements from X, with x0 , x1, such that:

i) xn+1 ∈ T(xn) for every n ∈N;
ii) α(xn, xn+1) ≥ 1 for every n ∈N;
iii) d(xn, xn+1) ≤ ϕ[n](d(x0, x1)) for every n ∈N.

As ϕ ∈ Γγ, the series
∞∑

n=1
nγϕ[n](d(x0, x1)) is convergent, so, taking into account the comparison test and

iii), we came to the conclusion that
∞∑

n=1
nγd(xn, xn+1) is convergent. Consequently, according to Lemma 2.6,

(xn)n∈N is Cauchy.
The same arguments as the ones used in the proof of Theorem 1 from [9] assure us that the limit of

(xn)n∈N is a fixed point of T.

Remark 5.5. If hypothesis c) is replace by the following condition: α(x0, x1) ≥ 1 for every x0 ∈ X and every
x1 ∈ T(x0), then the conclusion of the above result is that T is a multivalued weakly Picard operator.

Remark 5.6. Using the same technique, one can generalize Theorems 2 and 3 from [9].
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