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Caristi-Kirk Type and Boyd&Wong-Browder-Matkowski-Rus Type
Fixed Point Results in b-Metric Spaces

Radu Miculescu?, Alexandru Mihail?

*University of Bucharest, Faculty of Mathematics and Computer Science, Str. Academiei 14, 010014 Bucharest, Romania

Abstract. In this paper, based on a lemma giving a sufficient condition for a sequence with elements from
a b-metric space to be Cauchy, we obtain Caristi-Kirk type and Boyd&Wong-Browder-Matkowski-Rus type
fixed point results in the framework of b-metric spaces. In addition, we extend Theorems 1, 2 and 3 from
[M. Bota,V. Ilea, E. Karapinar, O. Mlesnite, On a.. — ¢-contractive multi-valued operators in b-metric spaces
and applications, Applied Mathematics & Information Sciences, 9 (2015), 2611-2620].

1. Introduction

The notion of b-metric space was introduced by I. A. Bakhtin [3] and S. Czerwik [14], [15] in connection
with some problems concerning the convergence of measurable functions with respect to measure.

In the last decades a considerable amount of fixed point results in the framework of b-metric spaces
were obtained (see, for example, [1], [2], [6], [7], [8], [13], [17], [20], [21], [22], [23], [24], [25], [27], [28] and
the references therein).

In this paper we present a sufficient condition for a sequence with elements from a b-metric space
to be Cauchy (see Lemma 2.6). Then, using this result, in Section 3, we obtain Caristi-Kirk type and
Boyd&Wong-Browder-Matkowski-Rus type fixed point results in the framework of b-metric spaces (see
Theorems 3.1 and 3.3). Section 4 is devoted to the presentation of a class of comparison functions, denoted
by I, satisfying the hypotheses of the above mentioned Boyd&Wong-Browder-Matkowski-Rus type fixed
point result. We also point out that IV is larger that Berinde’s class ;. In Section 5, we show how to extend,
using Lemma 2.6, the results from [9] concerning a.-@-contractive multivalued operators by considering
comparison functions ¢ from I'” rather than from ;.

2. Preliminaries

In this section we recall some basic facts that will be used in the sequel.

Definition 2.1. Given a nonempty set X and a real number s € [1,00), a function d : X X X — [0, 00) is called
b-metric if it satisfies the following properties:
i)d(x,y) =0ifand only if x = y;
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i) d(x,y) =d(y,x) forall x,y € X;
iii) d(x, y) < s(d(x,z) + d(z,y)) forall x,y,z € X.
The pair (X, d) is called b-metric space (with constant s).

Besides the classical spaces I’(IR) and L?[0, 1], where p € (0,1), more examples of b-metric spaces could
be found in [2], [4], [8], [14] and [15].

Remark 2.2. Every metric space is a b-metric space (with constant 1). There exist b-metric spaces which are not
metric spaces (see, for example, [2], [13] or [21]).

Definition 2.3. A sequence (x,)nen of elements from a b-metric space (X, d) is called:
— convergent if there exists | € X such that lim d(x,,I) = 0;
n—oo
— Cauchy if lim d(x,,x,) = 0i.e. for every € > 0 there exists n. € IN such that d(x,,, x,) < € forall m,n € N,
m,n—oo
m,n = n,.

The b-metric space (X, d) is called complete if every Cauchy sequence of elements from (X, d) is convergent.

Remark 2.4. A b-metric space can be endowed with the topology induced by its convergence.

Using the method of mathematical induction, one can easily establish the following result:

Lemma 2.5. For every sequence (x,)qeN Of elements from a b-metric space (X, d), with constant s, the inequality

k-1

d(xo, xx) < S"Zd(x,',xm)

i=0
is valid for every n € N and every k € {1,2,3,...,2" - 1,2"}.
The following lemma is the key ingredient in the proof of Theorems 3.1, 3.3 and 5.4.

Lemma 2.6. A sequence (x,)nen 0f elements from a b -metric space (X, d), with constant s, is Cauchy provided that

there exists y > log, s such that the series ), n”d(x,, x,4+1) is convergent.
n=1

Proof. With the notation a := ylog, 2 > 1, we have lims""*D0#2-"* = 0 since lim (1 + 1)(n + 2) — an® = —co.
n—oo n—00
s(n+1)(n+2)

Therefore the sequence ("D +2-a7*) ¢ je. ( )neN, is bounded and since sup(x + 1)(x + 2) — ax? =

(2n2>y xeR
2+ ﬁ, we have
(n+1)(n+2)
s
sup——— < ST = M. (1)
nelN (211 )V
We claim that
A, Xom) < MY d(x;, %is1), )

i=n

for all m,n € IN.
Indeed, with the notation I = [ \/log,(m + 1)] (having in mind that 2" — 1 < m < 20+1° — 1), we get

A, Xpam) < 8A(Xp, Xpg1) + 5A(Xn41, Xpam) <

2 2
< 8A(X, 4001, X, 0007 1) FSTAX, 00y, X0 q) +STA(X, o2y, Xngm) S
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it1 I Lemma 2.5
< S d(xmziz,lr X, o1 ,1) +s d(xn+212,1/ Xn+m) <
i=0
-1 20417 _q 20417 1
i+1 ,(i+1)? I+1 ,(1+1)? _
< Y SV N A, ) [+ 8ISV Y o, ) =
i=0 ]':2:’2 j:212
1 26i+1)? _q
i+1 ,(i+1)?
= g+1g(i+1) d(xn+].71,xn+].) <
i=0 j:212
00 iy 26+1% _1
S(l+1)(1+2) 1)
M 4
< Z (21-2)), Z (] +1) d(xn+j—1/ xn+j) <
i=0 ]':21‘2 -1

< M20<i + 1) d(Xpai, Xpain) < Mzom + 0 A, Xnris1) =
1=l 1=

= MY 7 d(xi ).
i=n

As the series ), n”d(x,, x,4+1) is convergent, from (2), we infer that (x,),en is Cauchy. [
n=1

Using the comparison test, from the above lemma, we obtain the following two results.

Corollary 2.7. A sequence (x,)ueN Of elements from a b -metric space (X, d), with constant s, is Cauchy provided
that there exist y > log, s and a sequence (a,)uen of positive real numbers such that:

a) the series ), a,d(Xy, Xp41) is convergent;
n=1
b) lz_mfl—, > 0.

Corollary 2.8. A sequence (x,)nenN 0f elements from a b-metric space (X, d) is Cauchy provided that there exists a > 1
such that the series Y, a"d(x,, Xn+1) is convergent.

n=1

3. Caristi-Kirk Type and Boyd&Wong-Browder-Matkowski-Rus Type Fixed Point Results in b-Metric
Spaces

In this section, using Lemma 2.6, we obtain two fixed point theorems in the framework of b-metric
spaces.

Our first result is a Caristi-Kirk type fixed point result (see [12], [16] and [18]).

Theorem 3.1. Let (X, d) be a complete b-metric space, ¢ : X — [0,00), f : X — X and a > 1 such that:
a) f is continuous;

b) d(x, f(x)) < p(x) — a@(f(x)) for every x € X.
Then, for every xo € X, the sequence (f"l(xo))nen is convergent and its limit is a fixed point of f.
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Proof. With the notation x, := fI"l(x;), according to b), we have d(x,,, X,+1) < @(x) — A@(Xy41), SO

) n+1

a"d(x, Xu11) < @"@(xy P(Xns1),

for every n € IN and consequently the series ): ad(x,, xy41) is convergent, its partial sums being between 0
=1

and a@(x1). According to Corollary 2.8, the sequence (%n)nen is convergent and if we denote by u its limit,
then passing to limit as n — oo in the relation x,+1 = f(x,), based on a), we infer that f(u) = u, i.e. uisa
fixed pointof f. [

Remark 3.2. The above result gives us a sufficient condition for f to be a weakly Picard operator.

Our second result is a Boyd&Wong-Brower-Matkowski-Rus type fixed point result (see [10], [11], [19]
and [26]).

Theorem 3.3. Let (X,d) be a complete b-metric space, with constant s, y > log,s, ¢ : [0,00) — [0, 00) and
f+ X — X such that:
a) o(r) < r for every r > 0;

b) the series Y, n” () is convergent for every r > 0;
-1

c)fisa @—coﬁtmctz’on, ie. d(f(x), f(y) < pd(x,y)) forall x,y € X.
Then f has a unique fixed point u and the sequence (fI"!(x0))nen is convergent to u for every xo € X.

Proof. With the notation x, := fl"l(x;), taking into account c), we have
1 d(xy, xp11) < 179" (d(x1, x0)), 3)

for every n € IN.

Based on (3), b) and the comparison test, we conclude that the series }; n”d(x,, x44+1) is convergent and
n=1
Lemma 2.6 assures us that the sequence (x,),en is convergent. If we denote by u its limit, then passing to

limit as n — oo in the relation x,4+1 = f(x,), since f is continuous (see c)), we infer that f(u) = u,i.e. uisa
fixed point of f.

Now let us prove that u is unique.

Indeed, if there exists v € X\ {u} having the property that f(v) = v, then we get the following contradiction:

d(u,0) = d(f(u), f©) < p(d(,0) < duw,0). O

Remark 3.4. We have

(9]

(2) from the proof of Lemma 2.6 .
d(xn, u) < 8d(Xn, Xnm) + SA(Xpm, U) = SMZIyd(xi/ Xi+1) + SA(Xnm, 1),

i=n

for all m,n € N. By passing to limit as m — oo in the above inequality we get the following estimation of the speed
of convergence for (fI")(x0))nen:

d(x,,u) < sMZin(Xi, Xi+1),

for every n € N.

Remark 3.5. The above result gives us a sufficient condition for f to be a Picard operator.
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4. Some Classes of Comparison Functions Satisfying Conditions a) and b) from the Hypotheses of
Theorem 3.3

In this section we introduce and study the class I of x”-summable comparison functions - which is
larger that Berinde’s class W, - and whose elements satisfy conditions a) and b) from the hypotheses of
Theorem 3.3.

Definition 4.1. A function ¢ : [0, 00) — [0, ) is called a comparison function if:
i) @ is increasing;
ii) lim p["(r) = 0 for every r € [0, ).
n—o0

Remark 4.2. Every comparison function ¢ has the property that o(r) < r for every r € (0, c0).

Definition 4.3. A function ¢ : [0, 00) — [0, 00) is called a x”-summable comparison function, wherey > 0, if:
i) @ is increasing;
ii) the series Y n” o"\(r) is convergent for every r € [0, o).

n=1
We denote the family of x”-summable comparison functions by I'.

Remark 4.4. Every ¢ € IV, where y > 0, is a comparison function, so it satisfies conditions a) and b) from the
hypotheses of Theorem 3.3. Hence we are interested in finding sufficient conditions for a comparison function ¢ to
belong to I'”.

Definition 4.5. Given o > 1, we denote by I, the family of all comparison functions ¢ for which there exist a > 0
and & > 0 such that @(x) < x — ax® for every x € [0, €].

Lemma 4.6. Let us consider « > 1, € > 0 and a > 0 such that x —ax® > 0 for every x € [0, €]. Then the sequence
(Xn)nen, given by xg € [0, €] and x,41 = x, — ax§ for every n € N, has the following property:

Xp 1
a (a(a -1

)

im -
n—»oo(;ll)ﬁ

Proof. 1t is clear that (x,)uen is decreasing and ;}1_1)1010 Xy = 0,50 (X1™) e is increasing and ;}1_1)1010 x1 = co.
As

. (m+1l)-n ) 1
i A = I S S T T
xn+1 — Xy Xn (( Xn ) - 1)
. 1 T 1 1
= lim = lim =
ol (1 —axg e — 1) o _pOeg et g(a - 1)

—axa!
in virtue of Stolz-Cesaro lemma we obtain that lim 2= = ——  i.e.
n—oo0Xp a(a-1)

i Xp 1 V2
fim = = G O

Lemma 4.7. Given a > 1, for every ¢ € T, and every r > 0, we have

o)

1

()&

lim € [0, o).
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Proof. Taking into account ii) from the definition of a comparison function, there exists ny € IN such that
qu”O](r) € [0,¢]. Since ¢ € Iy, we infer that qo[”+”0](r) < x, for every n € IN, where (x,)qen is given by
xo = @I™l(r) € [0, ¢] and x,41 = x,, — ax? for every n € N. Consequently

_ plntnel r _ plntnol r 1
hm(Pl—(l) = limqo N 1( ) — <
G DT GEE
Xy, ,n+ny Lemma46 1 1
< 1 — _  )a-
ng{}o() ( " = (a(a—l)) T,

sohm (r) €[0,00). O

Our next result provides a sufficient condition for the validity of the inclusion I', C I7.

Proposition 4.8. For every a € (1,2) and y € (0, 2 1), we have Iy, CT7.

Proof. It suffices to prove that the series ) n”¢!"}(r) is convergent for every r > 0.
n=1

nl
In virtue of Lemma 4.7, there exists 1y € IN such that ((P) O < C:=Tim (“i) 10 +1eR,ie. n"(p[”]( ) =
a1 =) a- l

[n]
nV( )a 7 L (r) < C—L - for every n € N, n > ng. Since the series Z
)0, na-1" n= 1na a-1

1
- is convergent (as ;=3 —y > 1),

A

"

n

based on the comparison test, we conclude that the series ), nV(p[”](r) is convergent. []
n=1

Now we provide some other sufficient conditions for a comparison function ¢ to belong to I'.

Let us suppose that for the comparison function ¢ there exist the sequences (a,)nen and (b,)nen such
that:

i)a, € (0,1) and b, € (0, ) for every n € IN;

ii) "*1(r) < a,@!"(r) + b, for every n € N and every r > 0.

Then

+1
(p[" ](r) < Aply_1...00017 + ApAy_1...0b1 + apa,_q1..a3by + ... + a,a,_1b,_o + a,b,—1 + by,

n
so, with the convention that by = r and H aj =1, we have
j=n+1

n

}(p[m—l](}’) < n7/ibk H aj,

k=0  j=k+1

foreveryn € N,r>0and y > 0.
n

S n
Consequently, a sufficient condition for ¢ to belong to I is the convergence of the series Y, (n” Y by | | aj), ie.
n=0 k=0
j=k+1

n

of the series Z (b Z n’ H aj).

k=0 n=k j=k+1
Now we are going to take a closer look on this sufficient condition in two particular cases.

The first particular case is the one for which the sequence (a,)nen is constant (so there exists a € (0,1)
such that a, = a for every n € IN).
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We claim that, in this case, the series Y. (by Y, n”a"*) is convergent if and only if the series Y kb is

k=0 n=k k=0
convergent.
The implication "=" is obvious as k¥’ < Y. n”a"* for every k € N.
n=k
For the implication ”<” let us note that Y (b Y n”a"¥) can be rewritten as Y. (b Y. (k + j)”a/) and that
k=0  n=k k=0 j=0

there exists C,, € R such that (k + j) < C,(k” + V) for every j k € IN. As the series ) k”by is convergent,

k=0
in virtue of the comparison test, we infer that the series Y (bc Y. C,k"a’) and Y (bx Y. C, j7a/) are convergent
k=0 j=0 k=0 j=0
(as, with the notation C,,, := Y, j7a/, we have b Y,C,k’a/ < bkkyl% and by Y.,C, j’al < bik?C,C,, for every
j=0 j=0 =0

k € N). Consequently Y. (b Y. C)(k” + j)a’) is convergent, and, based on the comparison test, we conclude
k=0 j=0

that Y (b Y (k + j)val), ie. ¥ (b Y, n7a"¥), is convergent. So we proved the following:
k=0 j=0 k=0 n=k

Proposition 4.9. A comparison function ¢ for which there exist a € (0,1) and b, € (0,00), n € IN, such that

" (r) < apl"l(r) + b, for every n € N and every r > 0, belongs to 7, where y > 0, provided that the series Y, n’b,
n=0
is convergent.

The second particular case is the one for which there exists an increasing sequence (c,),en converging

to co such thata, = ‘:Z—;l for every n € IN.

(o8] (o8] (o] [e]
A sufficient condition for the convergence of the series } (b ) n” E—k), ie. Y, (brer Y, ’;—}), is the convergence
k=0 =k " k=0 n=k "

of the series Y, ZL and ) bxcg. This happens, for example, if ¢, = ne+ 1+ for every n € IN, where ¢ > 0 and
n=0 " k=0
the series Y, bykt*1%7 is convergent. So we proved the following:
k=0

Proposition 4.10. A comparison function @ for which there exist ¢ > 0 and b, € (0,00), n € IN, such that
Pl l(r) < (=) 10l (r) + b, for every n € IN and every r > 0, belongs to I7, where y > 0, provided that the
series Y, byn<™V is convergent.

n=0

Let us recall (see [5]) the following;:

Definition 4.11. For a given b > 1, by WV}, we understand the class of functions ¢ : [0, 00) — [0, o) such that:
i) @ is increasing;
ii) there exist a € (0,1) and a convergent series ), b,,, where b, € (0, o) for every n € IN, such that b”“(p[”“](r) <
n=0

ab""(r) + by, for every n € N and every r > 0.

Proposition 4.12. W, C I” for every y > 1.

Proof. If ¢ € W}, then, with the notation x,, = b% for every n € IN, we have ¢["*1l(r) < £¢l"I(r) + x,, for every

n € N and the series Y, n’x,, ie. Y b’%bn, is convergent for every y > 0. Then, according to Proposition
n=0 n=0
4.9, we conclude that p € IV. O



R. Miculescu, A. Mihail / Filomat 31:14 (2017), 4331-4340 4338

An example. We present an example of comparison function ¢ which belongs to I for every y € (0,2),
but not to ¥}, for every b > 1.
Let us consider the comparison function ¢ : [0, c0) — [0, 0), given by

. 27
X — X3, xe[0,6—4]

PO =1 oy 27 :
we <G

Claim 4.13. ¢ €I for every y € (0,2).

Justification of claim 4.13. Note that ¢ € I's (just takea = 1and ¢ = Z in Definition 4.5), so, according to
Proposition 4.8, ¢ € IV for every y € (0, 2).

Claim 4.14. There is no b > 1 such that ¢ € Wy,

Justification of claim 4.14. If this is not the case, there exist a € (0,1) and a convergent series ). b,, where
n=0
by, € (0, 0) for every n € N, such that b1 @l"*1(r) < ab"l")(r) + b, for every n € N and every r > 0. Hence,
for a fixed g € (0, %), we have b”*l(p[””](ro) < ab”(p["](ro) + b,,, and therefore
bn+1

[(:25)3(n + 13l U (rg) — 213" (r0)] < b, for every n € N. Since limn®l"l(rg) = 27 (see Lemma 4.6), by

n3
passing to limit as n — oo in the previous inequality, we get that limb, = co. This is a contradiction since
n—oo

(oY)
the series ) b, is convergent.
n=0

5. A Fixed Point Theorem for a. — (p-Contractive Multivalued Operators in b-Metric Spaces

In this section, inspired by the ideas from [9], we present a fixed point theorem for a.-@-contractive
multivalued operator in b-metric spaces.

First of all let us recall some notions.

Definition 5.1. For T : X - P(X) :={Y | Y C X} and a : X X X — [0, o0), where (X, d) is a b-metric space, we
say that T is a.-admissible if, for all x,y € X, the following implication is valid: a(x,y) 2 1 = a.(T(x), T(y)) :=
infla(u,v) |u e T(x),veT(y)} = 1.

Definition 5.2. For T : X — Pu(X) := (Y € P(X) | Yisclosed}, a : X X X — [0,00) and ¢ € I7, where
(X,d) is a b-metric space and y > 1, we say that T is an a. — @-contractive multivalued operator of type (b) if
a.(T(x), Ty)h(T(x), T(y)) < p(d(x, y)) for all x, y € X, where h stands for the Hausdorff-Pompeiu metric.

Definition 5.3. For T : X — P.(X), where (X, d) is a b-metric space, we say that T is a multivalued weakly Picard
operator if for every x € X and every y € T(x) there exists a sequence (X, )ueN Of elements from X such that:
a)xo=xand x1 = y;
b) xy41 € T(xy) for every n € IN;
¢) (Xn)nen is convergent and its limit is a fixed point of T.

Now we can state our result.
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Theorem 5.4. Let us consider T : X — Py(X), a : X X X — [0, 0) and ¢ € 7, where (X, d) is a complete b-metric
space with constant s > 1 and y > log, s, such that:

a) T is an a., — @-contractive multivalued operator of type (b);

b) T is a.-admissible;

c) there exists xo € X and x1 € T(xg) satisfying the inequality a(xp,x1) > 1;

d) for every convergent sequence (Yn)neN Of elements from X having limit y, the following implication is valid:
(@(Yn, Yn+1) = 1 for every n € N) = (a(y,, y) = 1 for every n € N).

Then T has a fixed point.

Proof. The same line of arguments given in the proof of Theorem 1 from [9] gives us a sequence (x,),en Of
elements from X, with xy # x1, such that:

i) xp41 € T(x,) for every n € IN;

ii) a(xy, Xp41) = 1 for every n € IN;

iii) d(x,, Xn41) < @ (d(x0,x1)) for every n € N.

As ¢ € I7, the series }, nV(p[”](d(xo,x1)) is convergent, so, taking into account the comparison test and
n=1

iii), we came to the conclusion that ) n”d(x,, x,.1) is convergent. Consequently, according to Lemma 2.6,
n=1
(xn)nen is Cauchy.
The same arguments as the ones used in the proof of Theorem 1 from [9] assure us that the limit of

(Xn)nen is a fixed pointof T. [

Remark 5.5. If hypothesis c) is replace by the following condition: a(xo,x1) = 1 for every xo € X and every
x1 € T(xo), then the conclusion of the above result is that T is a multivalued weakly Picard operator.

Remark 5.6. Using the same technique, one can generalize Theorems 2 and 3 from [9].
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