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Abstract. In this paper, we study the following gradient system on a complete Riemannian manifold M,

—=x'(t) = gradp(x(t))
x(0) = xo,

where ¢ : M - Ris a C' function with Argming # @. We prove that the gradient flow x(f) converges to
a critical point of ¢ if ¢ is pseudo-convex, or if ¢ is quasi-convex and M is Hadamard. As an application
to minimization, we consider a discrete version of the system to approximate a minimum point of a given
pseudo-convex function ¢.

1. Introduction

A gradient system is a first order dynamical system of the form

x(0) = x0, @

{—x’(t) = gradp(x(1)),
where ¢ is a differentiable real-valued function on a Hilbert space. A trajectory of solution to (1) is called
a gradient flow. A well-known result says that if ¢ is convex with Argming # @, then the gradient flow
converges weakly to a minimum point of ¢. This fact, which is valuable in optimization, was extended
by Bruck [2] even for nonsmooth convex functions. In [4] Goudou and Munier studied the asymptotic
behavior of (1), when ¢ is a continuously differentiable quasi-convex function on a Hilbert space H with
Argming # @. They proved the weak convergence of the gradient flow to a critical point of ¢, as well as
the strong convergence with some additional conditions on ¢. When ¢ is a pseudo-convex function, any
critical point becomes a minimum point and so the gradient flow converges weakly to a minimum point of
@ and therefore it solves the unconstrained minimization problem:

Min (). 2)
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Let M be a submanifold of a Hilbert space H. Consider the constrained minimization problem:
1}(@&1 o(x). 3)

In some cases ¢ is not quasi-convex on the whole space H, but it becomes quasi-convex (or even convex)
on the constrained set M along geodesics. Therefore, as a dynamical approach for studying these kinds of
constrained minimization problems, we may consider (1) when ¢ is defined on a Riemannian manifold M.
Munier [7] proved the convergence of the gradient flow of (1) to a minimum point of a convex function ¢
which is defined on a Riemannian manifold M. The authors [1] considered the nonhomogeneous case of
(1) on a Hadamard manifold to study the convergence of the solutions. In this paper, we consider (1) when
@ is a quasi-convex function on a Hadamard manifold with Argming # @. We also prove convergence of
the gradient flow of a pseudo-convex function to a minimum point of ¢ on Riemannian manifolds. Our
results extend the related results of [4] to Riemannian or Hadamard manifolds and the results of [1, 7] to
quasi-convex or pseudo-convex functions.

2. Preliminaries of Riemannian Geometry

In this section, we recall some important background about Riemannian manifolds from [5] and [9]
which is needed in the sequel.

Let M be a smooth manifold of dimension n. For p € M, the tangent space at p is denoted by T,M
and the tangent bundle of M by TM = U,y TyM, which is naturally a manifold. We restrict ourselves to
real manifolds. Since T,M is a linear space and has the same dimension of M, the tangent space T,M is
isomorphic to R". The manifold M is called a Riemannian manifold if it is endowed with a Riemannian
metric g, and in this case, it is denoted by (M, g). In the tangent space T, M, the inner product of two vectors
v and w, is defined by (v, w), := g,(v, w), where g, is the metric at the point p, and the corresponding norm

is defined by || v [|,:= +/(v,v),. Whenever there is no confusion, we use the notation (-,-) = (,-), and
- A1=1
Let [a,b] be a closed interval in R and y : [4,b] — M a smooth curve. The length of y is defined as

L(y) = fa ’ Il (t) || dt and the Riemannian distance d(p, q) is defined by
d(p,q) == inf{L(y)ly : [a,b] = M is a piecewise smooth curve with y(a) = p, y(b) = g},

which induces the original topology on M.

Let V be the Levi-Civita connection on M associated with the Riemannian metric, and y be a smooth
curve in M. A vector field X is said to be parallel along y if V;,X = 0. A smooth curve y is a geodesic if y
itself is parallel along y. A geodesic joining p to g in M is said to be minimal if its length equals d(p, 7).

A Riemannian manifold is complete if for each p € M all geodesics emanating from p are defined on
whole R. If M is complete then by Hopf-Rinow Theorem any pair of points of M can be joined by a minimal
geodesic.

Let M be a complete Riemannian manifold. The exponential map exp, : T,M — M at p is defined
by expp(v) = yu(1) for each v € T,M, where y,(0) is the geodesic with y,(0) = p and y,(0) = v. Then
expp(tv) = y,(t), for each real number ¢.

There is a special type of Riemannian manifolds on which the study of gradient systems yields interesting
results. A Riemannian manifold M is said to be a Hadamard manifold if it is complete, simply connected
and of non-positive sectional curvature. The following result which is a part of Hadamard-Cartan Theorem
from [9, p. 221], shows that any n-dimensional Hadamard manifold has the same topology and differential
structure as the Euclidean space R".

Theorem 2.1. Let M be an Hadamard manifold and x € M. Then exp, : T.M — M is a diffeomorphism, and for
any two points x,y € M there exists a unique normalized geodesic joining x to y, which is in fact, a minimal geodesic
(i.e., distance realizing).
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Hadamard manifolds and Euclidean spaces have some similar geometrical properties. One of them
is described in the following proposition. By definition, a geodesic triangle A(pip2p3) in a Riemannian
manifold is a set consisting of three points p1, p» and p3, and three minimal geodesics joining these points.

Proposition 2.2. ([9, p.223])(Comparison theorem for triangles) Let A(p1p2ps) be a geodesic triangle. Denote by
yi + [0,1;] = M the geodesic joining p; to pis1, and set I; := L(y;), a; := £(7i(0), =yi-1(li=1)), wherei = 1,2,3 (mod 3).
Then

ar+ay+az3 ST,
2,12 2
li + li+1 —2lil;11 cos iy < li—l . 4)

Since
<6Xp;il i, expgil piv2) = d(pi, pis1)d(Ppis1, Pir2) COS iyt ,

so the inequality (4) may be rewritten as follows
@ (pi, pi1) + d(pis, piva) — 2exp, ! piexp,! pisa) < d(piva, pi)- )

Now we recall three kinds of convexity concepts which we use in the paper; quasi, pseudo and 0-weak
convexity. A differentiable function ¢ : M — R is said to be a quasi-convex function if it is quasi-convex
when restricted to any geodesic y : [4,b] € R — M, which means that

@ o y(ta+ (1 -1)b) < Max{p(y(a)), p(y(®)} (6)

holds for any 4,b € R and 0 <t < 1. Let ¢ be a quasi-convex function, x and y be two distinct points in
M, and without loss of generality suppose that Max{¢(x), p(y)} = @(x). Lety : [0,1] — M be a minimal
geodesic connecting x to y. Then

() <(r(0), Vtel[0,1],

which shows that
p(y(t) — p(y(0)
t

By taking limit in the both sides when t — 0%, we get

(grade(x), (0)) < 0, (7)

where grade is the vector field metrically equivalent to the differential do, i.e.,

<0, Vte(0,1].

(gradp, X) = dp(X) = X¢,
where X is also a vector field. If M is a Hadamard manifold then the inequality (7) becomes

(grade(x), exp;' y) <O0. (8)

The function ¢ is called pseudo-convex if the inequality (7) holds strictly. Clearly, any pseudo-convex
function is quasi-convex. For pseudo-convex functions any critical point is a minimum point.

The function ¢ is called 6-weakly convex for 6 > 0 iff for each x,¥ € M and any geodesic segment
y :[0,d(x, y)] = M with y(0) = x and y(d(x, y)) = v and each ¢ €]0, d(x, y)[

PO S gy VO + (1= s 0 V(s )+ OKd(x, ) ~ ).

If ¢ is also differentiable, by a similar computation as above, we derive

(grade(x), exp;' 1) < @(y) — p(x) + Od*(x, y).
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3. Convergence Analysis

Throughout this section, it is assumed that ¢ : M —] — o0, +o0] is a C! quasi-convex function, ¢ # +oo
and M is a Hadamard manifold. First we recall the notion of Fejér convergence and the following related
result from [3].

Definition 3.1. Let X be a complete metric space and K C X be a nonempty set. A sequence {x,} C X is called Fejér
convergent to K if
A(xXps1,y) <d(xy,y), YyeK and n=0,1,2,...

Lemma 3.2. Let X be a complete metric space and K C X be a nonempty set. Let {x,} C X be Fejér convergent to
K and suppose that any cluster point of {x,} belongs to K. If the set of cluster points of {x,} is nonempty, then {x,}
converges to a point of K.

Let Argming denote the following set

Argming = {x e M| p(x) < p(y) ,Yy e M}.

Lemma 3.3. Let M be a Hadamard manifold and x : R — M be a solution to (1). If Argming # @, then d(x(t), p)
is a nonincreasing function, for each p € Argming.

Proof. By (1) and (8), we have (—x'(t), exp;(lt) p) <0, and so

S -1 _ d -1
hlgg} E<eXPx(t) X(t—=h),expyp) = <_£ exPyp) X(S)ls=t, €XP ) P

_ d -
(= expl ) (x(1) (6 =t expi )

(=X'(t), expyy )
< 0

Then, by using the inequality (5) of the comparison theorem for the geodesic triangle A(x(t)x(t — h)p), one
gets that

Tim =), x(t ~ 1) + d(alt), p) — (e = ), ) <O,
which implies that
d .1
230, p) = lim ~(d(x(#),p) — d(x(t - 1), p)) < 0.
|

Lemma 3.4. Let M be a complete Reimannian manifold and ¢ : M —] — oo, +00] be a C' quasi-convex function. Let
x : IR — M satisfy (1). Then @(x(-)) is a nonincreasing function.

Proof. By the definition of grade at x(t), we have

d / /
E@(X(t)) = (grad(x(t)), ¥’ (1)) = —|l¥' (t)II* < 0.
Hence ¢(x(+)) is a nonincreasing function. [

Theorem 3.5. Let M be a Hadamard manifold and ¢ : M —] — oo, +o0] be a C! quasi-convex function. Let
Argming # @ and x : R — M satisfy (1). Then tlim x(t) = pand tlim @(x(t)) = @(p), where p is a critical point of
—+00 —+00

@.
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Proof. First we claim that x(t) converges to some pointp € M as t — +o0. For any positive fixed real number
tand any s € [0, ], we have

P(t)) < P(x(s)),
by Lemma 3.4. Quasi-convexity of ¢ and (1) imply that
(=x'(s), expig X(1)) = (grade(x(s)), expy x(1) < 0.
Hence

.1 -1 -1
hll)%lﬁ@xpﬂs) xX(s — h), exp x(£)) < 0.

This together with the inequality (5) of the comparison theorem for triangles in the geodesic triangle
A(x(s)x(s — h)x(t)) show that

hh%l %(dz(x(s), x(t)) — d*(x(s — h), x())) < 0.

So
%dz(x(s), x(t)) < 0.

Thus the function d?(x(-), x(t)) is nonincreasing on [0, t]. Hence for every sy, s, € [0, ], where s; < s, we have
d*(x(s2), x(1)) < d*(x(s1), x(t)).

Let K be the set of all cluster points of {x(t)| t € R*}, that is nonempty by Lemma 3.3. Suppose that q € K.
Then there exists an increasing sequence {f,} of positive real numbers such that lil}_‘l x(t,) = g. Hence for
n—+o0o

any t, and any sy, s, € [0, f,], where s; < sp, we have
d*(x(52), X(tn)) < d*(x(s1), x(t).
Taking limit from both sides of the above inequality, when n — +o0, we get
d*(x(52),9) < d*(x(51), 9)-

Thus {x(-)} converges to some point p € K by Lemma 3.2, which proves our claim.
Now we show that p is a critical point of ¢.

f I’ (1)t
0

fo (~gradg(x(t), ¥ ())dt

T
= - fo ()t
= P((O) - lim p(x(t)
< +too.

This shows that I%minf |lx’(#)l] = 0. Hence, by (1),
—+00
Tim ()]l = lim [lgradg(x(t,)| =0,
for some increasing sequence {t,} of positive real numbers. Since ¢ is C!, we get
gradp(p) = tlim gradp(x(t,)) = 0.
—+00

Thus p is a critical point of . O
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In the following theorem, we show that the conclusion of Theorem 3.5 remains true when ¢ is a pseudo-
convex function even on a complete Riemannian manifold (not necessarily with nonpositive sectional
curvature). Although the proof of the following theorem is similar to that of Proposition 1 of [7], we
facilitate the reader with the following proof.

Theorem 3.6. Let M be a complete Riemannian manifold and ¢ : M —] — co, +00] be a C! pseudo-convex function.
Let Argming # @ and x : R — M satisfy (1). Then tlir+n x(t) = p and tli{fn @(x(t)) = @(p), where p is a critical
point of ¢.
Proof. Let p be an arbitrary fixed point in Argming. First we show that the function t — d(x(t), p) decreases.
For every t > 0 there is some vector u(t) € Ty»M such that
eXPx(t)(u(t)) =p
d(x(8), p) = llu(®)llxco)-

Consider the geodesic y(s) = exp,,(su(t)). We have y(0) = x(t), y(0) = u(t) and y(1) = p. Since @ oy is
pseudo-convex, we get:
(grade(x(t)), u(t))xr < 0.

As both paths I — x(t + h) and h — expx(t)(—h gradg(x(t))) are C!, and have the same initial condition of
orders 0 and 1, we have

d(x(t + h), exp,, (—h grade(x(£)))) = o(h). )
An argument of the same type gives
d(exp,, (=h gradp(x(t))), exp,, (hAu(t))) = || — h grade(x(t)) — hAu(b)llxe + o(h), (10)

. . . _ ligradg(eIi,
where A is an arbitrary positive real number. Let A = S Gy

Au(t), —grade(x(t)))x¢ = 0. Hence

. Then A > 0, and (—gradg(x(t)) —

I~ grade(x(t) — hAu(®)lxy = B, - ligradgpx(®)IP)?.
Finally,
d(exp,, (hAu(t)), p) = (1 = R u(®)llx- (11)

Now construct a broken minimizing geodesic a joining x(t+h) to expx(t)(—h grade(x(t))), thento exp, (hAu(t))
and then to p. Therefore by combining (9), (10) and (11), we have

L(@) = [lu(®)llxy = Ry = (Allu(®)lley)? — ligradpe(t)I?)2] + o(h).

Since (Al[u(t)llx)? > (Alu(®)llxe)? — ligrade(x(h)II* > 0, so the bracket just above is positive. Thus, for small
enough i, we have
d(x(t + h), p) < L(@) < |[u(®)llxw = d(x(), p),

which shows that the function t — d(x(t), p) decreases. This implies that the set {x(#)| t € R*}is bounded in
M. Hence by Hopf-Rinow Theorem [5, p.26] there exists some real sequence {t;} such that x(fx) — p, when
k — +oco. Then d(x(f),p) — 0, when t — +oc0. [

Remark 3.7. We don't know, whether Theorem 3.6 is true for quasi-convex functions or not. It may be the subject of
future researches.

A well-known result says that any quasi-convex function on a compact Riemannian manifold should
be constant, and so Theorem 3.6 is satisfied for quasi-convex functions on compact Riemannian manifolds.
Here we give a simple example on a non-compact Riemannian manifold for Theorem 3.5.
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Example 3.8. Let H = {(x, y) € R?| y > 0} be the Poincare half plan, which is a Hadamard manifold with constant
sectional curvature —1. The function ¢ : H —> R, ¢(x, y) = x? is a quasi-convex function, since its sublevel sets are
geodesically convex (it is not convex on H). Clearly, Argming = {(0, y)| y > 0}. Consider the natural coordinate
system on H. Then grade(x,y) = Zx%, and x(t) = (e, ¢) is a solution to the system (1), where c is a positive
constant. Hence limy_, .« x(t) = (0,c) € argming, as is predicted by Theorem 3.5.

4. Application to Pseudo-convex Minimization
Consider the following constrained minimization problem
Min,em(x), (12)

where the constraint set M is a Riemannian submanifold of R". Even when ¢ is not pseudo-convex on
R" it may be pseudo-convex on M along geodesics. Therefore the non-pseudoconvex and constrained
problem (12) on R” can be considered as a pseudo-convex and non-constrained one on M. By the results
of the previous section specially Theorem 3.5, and using the fact that any critical point of a pseudo-
convex function is a minimum point, the trajectory of (1) converges to a minimum point of ¢. This gives
us a dynamical approach to pseudo-convex minimization problem (12). Since continuous trajectories
are not defined for computer softwares, it is appropriate to consider discretization of (1) in order to
approximate a minimum point of ¢. There are two ways for discretization of (1), backward and forward
Euler discretizations. Backward Euler discretization has been considered by Quiroz, Quispe and Oliveira
[8]. Here we consider forward Euler discretization of (1) and prove the existence of the generated sequence
as well as its convergence to a minimum point of ¢, with some suitable assumptions on ¢ such as quasi-
convexity (more general than pseudo-convexity) and weak convexity on ¢. Forward discretization of (1) is
in the form

Ak exp;k1 X1 = grade(xy), (13)

where Ay is the step-size. First we show for a 0-weakly convex function ¢ and suitable parameters A, the
sequence xi in (13) exists.

Proposition 4.1. Suppose M is a Hadamard manifold and ¢ : M — R is a O-weakly convex differentiable function.
Then for each k > 1 and a given xj_1 € M and Ay > A > 20, there exists x; satisfying (13).

Proof. For a given xx_1 € M and A > A > 0, define
Ax(x) = grade(x) — Akexp,;lxk_l.
First we prove Ay is strongly monotone (see Definition 3.1 of [6]).
(Arx, exp;1 v +{Ary, exp;1 x)
= (grad(p(x),exp;1 Y- )\k<exp;1 Xk exp;1 Y
+(gradp(y), exp;1 Xy — /\k(exp;1 Xk, exp;1 x)
< p(y) — o(x) + 08 (x, y) + (x) — @(y) + O (x, )
+ 2 3k ) — (3, 0) = P, ) + P 0) = ) = P )
=20d*(x, y) — Md*(x, y) < —(A = 20)d?(x, ).

Therefore Ay is strongly monotone vector field. By Theorem 4.3 of [6], there exists x; such that A(xx) = 0.
Equivalently

Ak exp;k1 X1 = grade(xy).
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Now we verify convergence of the discrete trajectory generated by (13).

Theorem 4.2. Suppose that ¢ is quasi-convex and 6-weakly convex. If Ay > A > 26 is bounded from above, then xj
given by (13) converges to a critical point of .

Proof. Suppose ¢(xx) > ¢(xx-1), then by quasi-convexity of ¢
(gradp(xr), exp;k1 Xk-1) <0,

which is a contradiction by (13). Therefore ¢(xx) is nonincreasing. Let n < m. We have ¢(x,,) < ¢(x,) again
by quasi-convexity of ¢
(gradp(x,), exp;”1 Xy < 0.

By (13), we have
(exp;”1 Xn—1, exp;n1 Xy < 0.
By (5), we get
dz(xn—ll x‘rl) + d2(xm, x‘rl) - dz(xﬂ—lr xm) <0.
It implies that

dz(xm/ xn) < dz(xn—l/ xm)-

Therefore d?(x,, x,,) is nonincreasing for 0 < n < m. For 0 < n < k < m we have
(i, ) < (X, Xom)-

Let K be the set of all cluster points of {x,}. Suppose that x,, = g € K, then for each k,n < n;
(i, %) < A (6, ).

Letting | — +co we get Pl < 20
xk/q S xnzq .

Therefore x, — p as n — +o0. Since A, is bounded, And?(xp, Xn—1) — 0. Hence gradg(xx) — 0. Since grade
is continuous, grade(p) =0. O

Corollary 4.3. In Theorem 4.2, if @ is pseudo-convex and Argming # @, then x; converges to a minimum point of
P.
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