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Abstract. In this paper, we study the following gradient system on a complete Riemannian manifold M,−x′(t) = gradϕ(x(t))
x(0) = x0,

where ϕ : M → R is a C1 function with Argminϕ , ∅. We prove that the gradient flow x(t) converges to
a critical point of ϕ if ϕ is pseudo-convex, or if ϕ is quasi-convex and M is Hadamard. As an application
to minimization, we consider a discrete version of the system to approximate a minimum point of a given
pseudo-convex function ϕ.

1. Introduction

A gradient system is a first order dynamical system of the form−x′(t) = gradϕ(x(t)),
x(0) = x0,

(1)

where ϕ is a differentiable real-valued function on a Hilbert space. A trajectory of solution to (1) is called
a gradient flow. A well-known result says that if ϕ is convex with Argminϕ , ∅, then the gradient flow
converges weakly to a minimum point of ϕ. This fact, which is valuable in optimization, was extended
by Bruck [2] even for nonsmooth convex functions. In [4] Goudou and Munier studied the asymptotic
behavior of (1), when ϕ is a continuously differentiable quasi-convex function on a Hilbert space H with
Argminϕ , ∅. They proved the weak convergence of the gradient flow to a critical point of ϕ, as well as
the strong convergence with some additional conditions on ϕ. When ϕ is a pseudo-convex function, any
critical point becomes a minimum point and so the gradient flow converges weakly to a minimum point of
ϕ and therefore it solves the unconstrained minimization problem:

Min
x∈H

ϕ(x). (2)
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Let M be a submanifold of a Hilbert space H. Consider the constrained minimization problem:

Min
x∈M

ϕ(x). (3)

In some cases ϕ is not quasi-convex on the whole space H, but it becomes quasi-convex (or even convex)
on the constrained set M along geodesics. Therefore, as a dynamical approach for studying these kinds of
constrained minimization problems, we may consider (1) when ϕ is defined on a Riemannian manifold M.
Munier [7] proved the convergence of the gradient flow of (1) to a minimum point of a convex function ϕ
which is defined on a Riemannian manifold M. The authors [1] considered the nonhomogeneous case of
(1) on a Hadamard manifold to study the convergence of the solutions. In this paper, we consider (1) when
ϕ is a quasi-convex function on a Hadamard manifold with Argminϕ , ∅. We also prove convergence of
the gradient flow of a pseudo-convex function to a minimum point of ϕ on Riemannian manifolds. Our
results extend the related results of [4] to Riemannian or Hadamard manifolds and the results of [1, 7] to
quasi-convex or pseudo-convex functions.

2. Preliminaries of Riemannian Geometry

In this section, we recall some important background about Riemannian manifolds from [5] and [9]
which is needed in the sequel.

Let M be a smooth manifold of dimension n. For p ∈ M, the tangent space at p is denoted by TpM
and the tangent bundle of M by TM =

⋃
p∈M TpM, which is naturally a manifold. We restrict ourselves to

real manifolds. Since TpM is a linear space and has the same dimension of M, the tangent space TpM is
isomorphic to Rn. The manifold M is called a Riemannian manifold if it is endowed with a Riemannian
metric 1, and in this case, it is denoted by (M, 1). In the tangent space TpM, the inner product of two vectors
v and w, is defined by 〈v,w〉p := 1p(v,w), where 1p is the metric at the point p, and the corresponding norm
is defined by ‖ v ‖p:=

√
〈v, v〉p. Whenever there is no confusion, we use the notation 〈·, ·〉 = 〈·, ·〉p and

‖ · ‖=‖ · ‖p.
Let [a, b] be a closed interval in R and γ : [a, b] → M a smooth curve. The length of γ is defined as

L(γ) :=
∫ b

a ‖ γ̇(t) ‖ dt and the Riemannian distance d(p, q) is defined by

d(p, q) := in f {L(γ)|γ : [a, b]→M is a piecewise smooth curve with γ(a) = p, γ(b) = q},

which induces the original topology on M.
Let ∇ be the Levi-Civita connection on M associated with the Riemannian metric, and γ be a smooth

curve in M. A vector field X is said to be parallel along γ if ∇γ̇X = 0. A smooth curve γ is a geodesic if γ̇
itself is parallel along γ. A geodesic joining p to q in M is said to be minimal if its length equals d(p, q).

A Riemannian manifold is complete if for each p ∈ M all geodesics emanating from p are defined on
wholeR. If M is complete then by Hopf-Rinow Theorem any pair of points of M can be joined by a minimal
geodesic.

Let M be a complete Riemannian manifold. The exponential map expp : TpM → M at p is defined
by expp(v) = γv(1) for each v ∈ TpM, where γv(0) is the geodesic with γv(0) = p and γ̇v(0) = v. Then
expp(tv) = γv(t), for each real number t.

There is a special type of Riemannian manifolds on which the study of gradient systems yields interesting
results. A Riemannian manifold M is said to be a Hadamard manifold if it is complete, simply connected
and of non-positive sectional curvature. The following result which is a part of Hadamard-Cartan Theorem
from [9, p. 221], shows that any n-dimensional Hadamard manifold has the same topology and differential
structure as the Euclidean space Rn.

Theorem 2.1. Let M be an Hadamard manifold and x ∈ M. Then expx : TxM → M is a diffeomorphism, and for
any two points x, y ∈M there exists a unique normalized geodesic joining x to y, which is in fact, a minimal geodesic
(i.e., distance realizing).



P. Ahmadi, H. Khatibzadeh / Filomat 31:14 (2017), 4571–4578 4573

Hadamard manifolds and Euclidean spaces have some similar geometrical properties. One of them
is described in the following proposition. By definition, a geodesic triangle ∆(p1p2p3) in a Riemannian
manifold is a set consisting of three points p1, p2 and p3, and three minimal geodesics joining these points.

Proposition 2.2. ([9, p.223])(Comparison theorem for triangles) Let ∆(p1p2p3) be a geodesic triangle. Denote by
γi : [0, li]→M the geodesic joining pi to pi+1, and set li := L(γi), αi := ∠(γ̇i(0),−γ̇i−1(li−1)), where i = 1, 2, 3 (mod 3).
Then

α1 + α2 + α3 6 π ,

l2i + l2i+1 − 2lili+1 cosαi+1 6 l2i−1 . (4)

Since
〈exp−1

pi+1
pi, exp−1

pi+1
pi+2〉 = d(pi, pi+1)d(pi+1, pi+2) cosαi+1 ,

so the inequality (4) may be rewritten as follows

d2(pi, pi+1) + d2(pi+1, pi+2) − 2〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 6 d2(pi+2, pi). (5)

Now we recall three kinds of convexity concepts which we use in the paper; quasi, pseudo and θ-weak
convexity. A differentiable function ϕ : M → R is said to be a quasi-convex function if it is quasi-convex
when restricted to any geodesic γ : [a, b] ⊂ R→M, which means that

ϕ ◦ γ(ta + (1 − t)b) 6Max{ϕ(γ(a)), ϕ(γ(b))} (6)

holds for any a, b ∈ R and 0 6 t 6 1. Let ϕ be a quasi-convex function, x and y be two distinct points in
M, and without loss of generality suppose that Max{ϕ(x), ϕ(y)} = ϕ(x). Let γ : [0, 1] → M be a minimal
geodesic connecting x to y. Then

ϕ(γ(t)) 6 ϕ(γ(0)), ∀t ∈ [0, 1],

which shows that
ϕ(γ(t)) − ϕ(γ(0))

t
6 0, ∀t ∈ (0, 1].

By taking limit in the both sides when t→ 0+, we get

〈gradϕ(x), γ̇(0)〉 6 0, (7)

where gradϕ is the vector field metrically equivalent to the differential dϕ, i.e.,

〈gradϕ,X〉 = dϕ(X) = Xϕ,

where X is also a vector field. If M is a Hadamard manifold then the inequality (7) becomes

〈gradϕ(x), exp−1
x y〉 6 0. (8)

The function ϕ is called pseudo-convex if the inequality (7) holds strictly. Clearly, any pseudo-convex
function is quasi-convex. For pseudo-convex functions any critical point is a minimum point.

The function ϕ is called θ-weakly convex for θ > 0 iff for each x, y ∈ M and any geodesic segment
γ : [0, d(x, y)]→M with γ(0) = x and γ(d(x, y)) = y and each t ∈]0, d(x, y)[

ϕ ◦ γ(t) ≤
t

d(x, y)
ϕ ◦ γ(0) + (1 −

t
d(x, y)

)ϕ ◦ γ(d(x, y)) + θt(d(x, y) − t).

If ϕ is also differentiable, by a similar computation as above, we derive

〈gradϕ(x), exp−1
x y〉 ≤ ϕ(y) − ϕ(x) + θd2(x, y).
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3. Convergence Analysis

Throughout this section, it is assumed that ϕ : M →] − ∞,+∞] is a C1 quasi-convex function, ϕ . +∞
and M is a Hadamard manifold. First we recall the notion of Fejér convergence and the following related
result from [3].

Definition 3.1. Let X be a complete metric space and K ⊆ X be a nonempty set. A sequence {xn} ⊂ X is called Fejér
convergent to K if

d(xn+1, y) 6 d(xn, y), ∀y ∈ K and n = 0, 1, 2, ... .

Lemma 3.2. Let X be a complete metric space and K ⊆ X be a nonempty set. Let {xn} ⊂ X be Fejér convergent to
K and suppose that any cluster point of {xn} belongs to K. If the set of cluster points of {xn} is nonempty, then {xn}

converges to a point of K.

Let Argminϕ denote the following set

Argminϕ := {x ∈M | ϕ(x) 6 ϕ(y) ,∀y ∈M}.

Lemma 3.3. Let M be a Hadamard manifold and x : R → M be a solution to (1). If Argminϕ , ∅, then d(x(t), p)
is a nonincreasing function, for each p ∈ Argminϕ.

Proof. By (1) and (8), we have 〈−x′(t), exp−1
x(t) p〉 6 0, and so

lim
h→0+

1
h
〈exp−1

x(t) x(t − h), exp−1
x(t) p〉 = 〈−

d
ds

exp−1
x(t) x(s)|s=t, exp−1

x(t) p〉

= 〈−d exp−1
x(t)(x(t))

d
ds

x(s)|s=t, exp−1
x(t) p〉

= 〈−x′(t), exp−1
x(t) p〉

6 0.

Then, by using the inequality (5) of the comparison theorem for the geodesic triangle 4(x(t)x(t − h)p), one
gets that

lim
h→0+

1
h

(d2(x(t), x(t − h)) + d2(x(t), p) − d2(x(t − h), p)) 6 0,

which implies that
d
dt

d(x(t), p) = lim
h→0+

1
h

(d(x(t), p) − d(x(t − h), p)) 6 0.

Lemma 3.4. Let M be a complete Reimannian manifold and ϕ : M→]−∞,+∞] be a C1 quasi-convex function. Let
x : R→M satisfy (1). Then ϕ(x(·)) is a nonincreasing function.

Proof. By the definition of gradϕ at x(t), we have

d
dt
ϕ(x(t)) = 〈gradϕ(x(t)), x′(t)〉 = −‖x′(t)‖2 6 0.

Hence ϕ(x(·)) is a nonincreasing function.

Theorem 3.5. Let M be a Hadamard manifold and ϕ : M →] − ∞,+∞] be a C1 quasi-convex function. Let
Argminϕ , ∅ and x : R→M satisfy (1). Then lim

t→+∞
x(t) = p and lim

t→+∞
ϕ(x(t)) = ϕ(p), where p is a critical point of

ϕ.
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Proof. First we claim that x(t) converges to some point p ∈M as t→ +∞. For any positive fixed real number
t and any s ∈ [0, t], we have

ϕ(x(t)) 6 ϕ(x(s)),

by Lemma 3.4. Quasi-convexity of ϕ and (1) imply that

〈−x′(s), exp−1
x(s) x(t)〉 = 〈gradϕ(x(s)), exp−1

x(s) x(t)〉 6 0.

Hence

lim
h→0+

1
h
〈exp−1

x(s) x(s − h), exp−1
x(s) x(t)〉 6 0.

This together with the inequality (5) of the comparison theorem for triangles in the geodesic triangle
4(x(s)x(s − h)x(t)) show that

lim
h→0+

1
h

(d2(x(s), x(t)) − d2(x(s − h), x(t))) 6 0.

So
d
ds

d2(x(s), x(t)) 6 0.

Thus the function d2(x(·), x(t)) is nonincreasing on [0, t]. Hence for every s1, s2 ∈ [0, t], where s1 6 s2, we have

d2(x(s2), x(t)) 6 d2(x(s1), x(t)).

Let K be the set of all cluster points of {x(t)| t ∈ R+
}, that is nonempty by Lemma 3.3. Suppose that q ∈ K.

Then there exists an increasing sequence {tn} of positive real numbers such that lim
n→+∞

x(tn) = q. Hence for
any tn and any s1, s2 ∈ [0, tn], where s1 6 s2, we have

d2(x(s2), x(tn)) 6 d2(x(s1), x(tn)).

Taking limit from both sides of the above inequality, when n→ +∞, we get

d2(x(s2), q) 6 d2(x(s1), q).

Thus {x(·)} converges to some point p ∈ K by Lemma 3.2, which proves our claim.
Now we show that p is a critical point of ϕ.∫ +∞

0
‖x′(t)‖2dt =

∫ +∞

0
〈−gradϕ(x(t)), x′(t)〉dt

= −

∫ +∞

0

d
dt
ϕ(x(t))dt

= ϕ(x(0)) − lim
t→+∞

ϕ(x(t))

< +∞.

This shows that liminf
t→+∞

‖x′(t)‖ = 0. Hence, by (1),

lim
n→+∞

‖x′(tn)‖ = lim
n→+∞

‖gradϕ(x(tn))‖ = 0,

for some increasing sequence {tn} of positive real numbers. Since ϕ is C1, we get

gradϕ(p) = lim
t→+∞

gradϕ(x(tn)) = 0.

Thus p is a critical point of ϕ.
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In the following theorem, we show that the conclusion of Theorem 3.5 remains true when ϕ is a pseudo-
convex function even on a complete Riemannian manifold (not necessarily with nonpositive sectional
curvature). Although the proof of the following theorem is similar to that of Proposition 1 of [7], we
facilitate the reader with the following proof.

Theorem 3.6. Let M be a complete Riemannian manifold and ϕ : M→] −∞,+∞] be a C1 pseudo-convex function.
Let Argminϕ , ∅ and x : R → M satisfy (1). Then lim

t→+∞
x(t) = p and lim

t→+∞
ϕ(x(t)) = ϕ(p), where p is a critical

point of ϕ.

Proof. Let p be an arbitrary fixed point in Argminϕ. First we show that the function t 7→ d(x(t), p) decreases.
For every t > 0 there is some vector u(t) ∈ Tx(t)M such that

expx(t)(u(t)) = p

d(x(t), p) = ‖u(t)‖x(t).

Consider the geodesic γ(s) = expx(t)(su(t)). We have γ(0) = x(t), γ̇(0) = u(t) and γ(1) = p. Since ϕ ◦ γ is
pseudo-convex, we get:

〈gradϕ(x(t)),u(t)〉x(t) < 0.

As both paths h 7→ x(t + h) and h 7→ expx(t)(−h gradϕ(x(t))) are C1, and have the same initial condition of
orders 0 and 1, we have

d(x(t + h), expx(t)(−h gradϕ(x(t)))) = o(h). (9)

An argument of the same type gives

d(expx(t)(−h gradϕ(x(t))), expx(t)(hλu(t))) = ‖ − h gradϕ(x(t)) − hλu(t)‖x(t) + o(h), (10)

where λ is an arbitrary positive real number. Let λ =
‖gradϕ(x(t))‖2x(t)

−〈u(t),gradϕ(x(t))〉x(t)
. Then λ > 0, and 〈−gradϕ(x(t)) −

λu(t),−gradϕ(x(t))〉x(t) = 0. Hence

‖ − h gradϕ(x(t)) − hλu(t)‖x(t) = h(λ‖u(t)‖2x(t) − ‖gradϕ(x(t))‖2)
1
2 .

Finally,

d(expx(t)(hλu(t)), p) = (1 − hλ)‖u(t)‖x(t). (11)

Now construct a broken minimizing geodesicα joining x(t+h) to expx(t)(−h gradϕ(x(t))), then to expx(t)(hλu(t))
and then to p. Therefore by combining (9), (10) and (11), we have

L(α) = ‖u(t)‖x(t) − h[λ‖u(t)‖x(t) − ((λ‖u(t)‖x(t))2
− ‖gradϕ(x(t))‖2)

1
2 ] + o(h).

Since (λ‖u(t)‖x(t))2 > (λ‖u(t)‖x(t))2
− ‖gradϕ(x(t))‖2 > 0, so the bracket just above is positive. Thus, for small

enough h, we have
d(x(t + h), p) 6 L(α) 6 ‖u(t)‖x(t) = d(x(t), p),

which shows that the function t 7→ d(x(t), p) decreases. This implies that the set {x(t)| t ∈ R+
} is bounded in

M. Hence by Hopf-Rinow Theorem [5, p.26] there exists some real sequence {tk} such that x(tk)→ p, when
k→ +∞. Then d(x(t), p)→ 0, when t→ +∞.

Remark 3.7. We don’t know, whether Theorem 3.6 is true for quasi-convex functions or not. It may be the subject of
future researches.

A well-known result says that any quasi-convex function on a compact Riemannian manifold should
be constant, and so Theorem 3.6 is satisfied for quasi-convex functions on compact Riemannian manifolds.
Here we give a simple example on a non-compact Riemannian manifold for Theorem 3.5.
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Example 3.8. Let H = {(x, y) ∈ R2
| y > 0} be the Poincare half plan, which is a Hadamard manifold with constant

sectional curvature −1. The function ϕ : H → R, ϕ(x, y) = x2 is a quasi-convex function, since its sublevel sets are
geodesically convex (it is not convex on H). Clearly, Argminϕ = {(0, y)| y > 0}. Consider the natural coordinate
system on H. Then gradϕ(x, y) = 2x ∂

∂x , and x(t) = (e−2t, c) is a solution to the system (1), where c is a positive
constant. Hence limt→+∞ x(t) = (0, c) ∈ argminϕ, as is predicted by Theorem 3.5.

4. Application to Pseudo-convex Minimization

Consider the following constrained minimization problem

Minx∈Mϕ(x), (12)

where the constraint set M is a Riemannian submanifold of Rn. Even when ϕ is not pseudo-convex on
Rn it may be pseudo-convex on M along geodesics. Therefore the non-pseudoconvex and constrained
problem (12) on Rn can be considered as a pseudo-convex and non-constrained one on M. By the results
of the previous section specially Theorem 3.5, and using the fact that any critical point of a pseudo-
convex function is a minimum point, the trajectory of (1) converges to a minimum point of ϕ. This gives
us a dynamical approach to pseudo-convex minimization problem (12). Since continuous trajectories
are not defined for computer softwares, it is appropriate to consider discretization of (1) in order to
approximate a minimum point of ϕ. There are two ways for discretization of (1), backward and forward
Euler discretizations. Backward Euler discretization has been considered by Quiroz, Quispe and Oliveira
[8]. Here we consider forward Euler discretization of (1) and prove the existence of the generated sequence
as well as its convergence to a minimum point of ϕ, with some suitable assumptions on ϕ such as quasi-
convexity (more general than pseudo-convexity) and weak convexity on ϕ. Forward discretization of (1) is
in the form

λk exp−1
xk

xk−1 = gradϕ(xk), (13)

where λk is the step-size. First we show for a θ-weakly convex function ϕ and suitable parameters λk the
sequence xk in (13) exists.

Proposition 4.1. Suppose M is a Hadamard manifold and ϕ : M→ R is a θ-weakly convex differentiable function.
Then for each k ≥ 1 and a given xk−1 ∈M and λk ≥ λ > 2θ, there exists xk satisfying (13).

Proof. For a given xk−1 ∈M and λk > λ > θ, define

Ak(x) = gradϕ(x) − λkexp−1
x xk−1.

First we prove Ak is strongly monotone (see Definition 3.1 of [6]).

〈Akx, exp−1
x y〉 + 〈Aky, exp−1

y x〉

= 〈gradϕ(x), exp−1
x y〉 − λk〈exp−1

x xk, exp−1
x y〉

+〈gradϕ(y), exp−1
y x〉 − λk〈exp−1

y xk, exp−1
y x〉

≤ ϕ(y) − ϕ(x) + θd2(x, y) + ϕ(x) − ϕ(y) + θd2(x, y)

+
λk

2
{d2(xk, y) − d2(xk, x) − d2(x, y) + d2(xk, x) − d2(xk, y) − d2(x, y)}

= 2θd2(x, y) − λkd2(x, y) ≤ −(λ − 2θ)d2(x, y).

Therefore Ak is strongly monotone vector field. By Theorem 4.3 of [6], there exists xk such that Ak(xk) = 0.
Equivalently

λk exp−1
xk

xk−1 = gradϕ(xk).
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Now we verify convergence of the discrete trajectory generated by (13).

Theorem 4.2. Suppose that ϕ is quasi-convex and θ-weakly convex. If λk ≥ λ > 2θ is bounded from above, then xk
given by (13) converges to a critical point of ϕ.

Proof. Suppose ϕ(xk) > ϕ(xk−1), then by quasi-convexity of ϕ

〈gradϕ(xk), exp−1
xk

xk−1〉 ≤ 0,

which is a contradiction by (13). Therefore ϕ(xk) is nonincreasing. Let n ≤ m. We have ϕ(xm) ≤ ϕ(xn) again
by quasi-convexity of ϕ

〈gradϕ(xn), exp−1
xn

xm〉 ≤ 0.

By (13), we have
〈exp−1

xn
xn−1, exp−1

xn
xm〉 ≤ 0.

By (5), we get
d2(xn−1, xn) + d2(xm, xn) − d2(xn−1, xm) ≤ 0.

It implies that
d2(xm, xn) ≤ d2(xn−1, xm).

Therefore d2(xn, xm) is nonincreasing for 0 ≤ n ≤ m. For 0 ≤ n ≤ k ≤ m we have

d2(xk, xm) ≤ d2(xn, xm).

Let K be the set of all cluster points of {xn}. Suppose that xnl → q ∈ K, then for each k,n ≤ nl

d2(xk, xnk ) ≤ d2(xn, xnk ).

Letting l→ +∞we get
d2(xk, q) ≤ d2(xn, q).

Therefore xn → p as n→ +∞. Since λn is bounded, λnd2(xn, xn−1)→ 0. Hence gradϕ(xk)→ 0. Since gradϕ
is continuous, gradϕ(p) = 0.

Corollary 4.3. In Theorem 4.2, if ϕ is pseudo-convex and Ar1minϕ , ∅, then xk converges to a minimum point of
ϕ.
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