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Abstract. This paper extends and generalizes results of Mukheimer [(a« — ) — @)-contractive mappings
in ordered partial b-metric spaces, J. Nonlinear Sci. Appl. 7(2014), 168-179]. A new concept of (8-11-12)-
contractive mapping using two altering distance functions in ordered b-metric-like space is introduced and
basic fixed point results have been studied. Useful examples are illustrated to justify the applicability and
effectiveness of the results presented herein. As an application, the existence of solution of fourth-order
two-point boundary value problems is discussed and rationalized by a numerical example.

1. Introduction and Preliminaries

A number of generalization of metric spaces have been considered by researchers in recent years. For
example, b-metric spaces due to Czerwik in [4, 5] and Bakhtin [3], partial metric spaces due to Matthews
[11], metric-like spaces due to Amini-Harandi [2], etc. Recently, Shukla [18] combined the two notions
of partial metric space and b-metric space to introduce partial b-metric spaces. This concept was further
extended by Alghamdi et al. [1] as b-metric-like space. They established some existence and uniqueness
results in a b-metric-like space and in a partially ordered b-metric-like space.

On the other hand, the concept of a-admissible maps was introduced by Samet et al. [15], and an
interesting class of a-contraction type mappings was suggested to establish the existence and uniqueness of
fixed points. Thereafter a massive growth occurred in fixed point theory using this concept and its variants.
Mukheimer [12] used the notion of a-admissible maps in partial b-metric space and discussed basic fixed
point results.

The purpose of this paper is to introduce two new concepts, namely (8-11-y2)-contractive mapping of
type-I and type-II using altering distance functions in ordered b-metric-like space and to extend certain
results of Mukheimer [12]. Indeed, some new fixed point results for such mappings have been obtained.
Some useful examples are discussed to justify the applicability and effectiveness of our results over the
contractive condition due to Mukheimer [12] as well the usage of factor 8. An application of the derived
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results to fourth-order two-point boundary value problems is presented and justified with a numerical
example.

Before going to results, let us recall some basic concepts and notations.
Definition 1.1. [3-5] Let ¥ be a nonempty set and k > 1 be a given real number. A functiond : F X F — [0, o0)
is called a b-metric if V u,v,z € ¥ the following conditions hold:

(51) d(u,v) = 0ifand only if u = v;
(S2) d(u,v) = d(v,u);
(S3) d(u,v) < kld(u,z) +d(z,v)].

Then (F,d) is said to be a b-metric space and k is the coefficient of (¥, d).

The following notion is given in the paper of Shukla [18].

Definition 1.2. [18] Let k > 1 be a given real number and F be a nonempty set. A function p, : ¥ X F — [0, 00) is
said to be a partial b-metric if V u,v,z € F the following assertions hold:

(i) u = vif and only if py(u, u) = pp(u,v) = pp(v, v);
(ii) Pb(u, M) < Pb(”r U),‘
(iii) py(u,v) = po(v, u);
(iv) py(u,v) < klpp(u, 2) + po(z,0)] = pu(z, 2)-

Then (F, py) is called a partial b-metric space and k is the coefficient of (F, py).
Definition 1.3. [2] Let ¥ be a nonempty set and a mapping o : F X F — R, is such that ¥ u,v,z € F, it satisfies

(01) o(u,v) =0 impliesu = v
(02) o(u,v) = o(v,u);
(03) o(u,v) < a(u,z)+ o(z,v).

Then (F, 0) is said to be a metric-like space.
Examples of metric-like spaces are as follows.
Example 1.4. [16] Let ¥ = IR; then the mappings o; : F X F — R, (i € {2,3,4}), defined by
02(u,v) = lu| + [v| + 4, o3(u,v) =lu—"bl+v—bl, o4(u,v) = u? + 0%, 1)
are metric-like on F, wherea > 0 and b € R.

Definition 1.5. [1] Let F be a nonempty set and k > 1 be a real number. A function op : ¥ X F — Ry is
b-metric-like if V u, v,z € F, the following assertions hold:

(0p1) op(u,v) = 0 impliesu = v
(0p2) op(u,v) = op(v, u)
(GbS) Ob(u/ T)) < k[O'b(Ll, Z) + Ob(z/ U)]

The pair (F, o) is called a b-metric-like space with the coefficient k.

In a b-metric-like space (¥, o) if u,v € ¥ and o,(1,v) = 0, then u = v, but the converse may not be true
and o3(u, u) may be positive for u € F. Clearly, every b-metric and every partial b-metric is a b-metric-like
with the same coefficient k. However, the converses of these facts need not hold [18].

Every b-metric-like 05 on ¥ generates a topology 7, on ¥ whose base is the family of all open o;-balls
{Bs,(u,0) :u € F,0 > 0}, where B,,(11,0) = {v € F : |op(u,v) — op(u, u)| < 6}, Vu € F and 6 > 0.

Definition 1.6. [1, 18] Let (7, 0p) be a b-metric-like space with coefficient k, let {11,,} be a sequence in F and u € 7.
Then
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(i) {uyn} is called convergent to u w.r.t. t,,, if im oy(u,, u) = op(u, u);
(ii) {uy} is called a Cauchy sequence in (F,0p) if im op(up, uy) exists (and is finite).
n,m—c0

(iii) (F, 0p) is called a complete b-metric-like space if for every Cauchy sequence {u,} in F there exists u € ¥ such
that

lim oy(un, ) = im op(uy, u) = op(u, u). 2)
n,m—oo n—oo

It is clear that the limit of a sequence is usually not unique in a b-metric-like space (already partial metric
spaces have this property).

Definition 1.7. [12, 18] A triple (F, <, 0p) is said to be an ordered b-metric-like space if (¥, <) is a partially ordered
set and oy, is a b-metric-like on F .

Lemma 1.8. [6] Let (¥,0) be a b-metric-like space with coefficient k > 1 and assume that u, — u and
v, — v. Then we have

1 1
ﬁob(u, v) — %ab(u, u) — 0p(v,v) < liminf o,(u,, v,,)
n—oo

< lim sup op(uty, vy)
n—oo

< kop(u, u) + K20p(v,v) + K2op(u, v).

In the following proposition we give a proof of the completeness of a b-metric-like space. Similar proof
can be given for other examples used later in the text.

Proposition 1.9. Let ¥ = [0, +00) and op(x, y) = (max{x, y})2 forx,y € . Then (¥, op) is a complete b-metric-like
space.

Proof. Let {x,} be a sequence in ¥ such that lim oy(x,, x,) =t € Ri. Then lim max{x,, x,} = \/Z,
m,n—o0

m,n— o0
ie¥ e>0 3 nyeNVmn>ny maxix,, x,} € (Vi —e, Vi +e).
Putting m = n we obtain

Y n>ngx, € (\/g—e, \/Z+e),
meaning that 31_{1010 X, = Vt (in the usual sense). Then
lim 0y(xy, V1) = lim (max{x,, Vi)? = ¢,
ie. limy—e 0p(Xp, Xy) = 1}1_1)1; op(xy, \/i_f) = op( Vi, \/Z).
This proves that the space (¥, 0p) is o,-complete. []

Definition 1.10. [12] Let ¥ be a nonempty set and suppose P: F — F and p : F X F — [0, 1) are mappings.
Then P is called p-admissible if for all u,v € ¥,

B(u,v) =21 = B(Pu,Pv) > 1.
Also we say that P is Lg-admissible (or Rg-admissible) if for u,v € F,

B(u,v) > 1= p(Pu,v) 21 (or f(u, Pv) > 1).
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Example 1.11. Let ¥ =(0,00). f P: F — F and f: ¥ X F — (0, ) are defined by Px = %, Y xeF and

3, ify>x
0, otherwise

Blx, y) = {

then # is f-admissible.

Definition 1.12. [9] A function ¢ : [0, c0) — [0, o0) is called an altering distance function if it satisfies the following
properties
(i) ¢ is continuous and nondecreasing;

(it) P(t) = 0 iff t = 0.

2. Main Results

In this section, we introduce two new notions in ordered b-metric-like space and derive related fixed
point results.

Result-I. In order to prove our first result we introduce a new type of contractive mapping, named as,
(B-11-1p2)-contractive mapping of type-I in ordered b-metric-like space.

Definition 2.1. Let (¥, o) be a partially ordered b-metric-like space with the coefficient k > 1. A mapping P: F —
F is said to be (B-11-1p)-contractive mapping of type-I, if there exist two altering distance functions Y1, P, and
B: F X F — [0, c0) such that

B, Pu)B(v, Poyipr (kop(Put, Pv)) < 1(A] (1, 0)) = Y2(A (1, 0)), )

for all comparable u,v € F, where

op(u, Po) + ap(v, Pu)

» op(u, 0), 0p(u, Pu), op(v, Po), ?
A (u,0) = max | 5, 1 Pu)oy (v, Po) a1, Pu)ay(o, Po) : 4)
1+0p(u,0) " 1+ 0,(Pu,Po)

The first result of the paper is as follows:
Theorem 2.2. Let (¥, <, 0) be a op-complete ordered b-metric-like space with the coefficient k > 1. Let P: F — F
be a (B-yn-y)-contractive mapping of type-1. Assume that the following assertions hold:

(1) P is p-admissible and Lg-admissible (or Rg-admissible);
(2) There exists u; € F such that uy < Puy and p(u1, Pur) = 1;
(3) P is continuous, nondecreasing with respect to < and if P*uy — z then p(z,z) > 1.

Then P has a fixed point.

Proof. Starting with the point u,, let the sequence {u,} be defined in ¥ by u,+1 = Pu,, ¥V n > 1. We have
1y = Pus < Puy = us since 11 < Puy and P is nondecreasing. Also, uz = Pup < Pus = uy since uy < Puyp and
¥ is nondecreasing. By induction, we get

U Uy Uz LUy S Uy X0

If u, = u,4 for some n € IN, then the fixed point of P is u with u = u, and the proof is completed. So we
may assume u, # U,y for all n € IN. Since P is f-admissible, we deduce

Bur, Pur) = B(ur, uz) > 1 = B(Puy, Pua) = B(uz, uz) > 1.
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By induction on n we get
Buy, tns1) = 1 and B(Uys1, tn2) =1, ¥V nelN. 5)
Hence, by applying (3) we get

1/)1 (Ob(un+11 ”n+2)) < ﬁ(”nr P7/in+1),3(un+lr Pun+2)¢l(sab(¢)um Pun+1))

6
< Y1(AY (1, 1)) = P2(A] (s, Ui1)), (©)

where

Gb(un/ un+1)/ Op (un/ Pu}'l)/ Gb(un+1r Pun+1 )/
P Gb(un/ Pun+1) +0p (un+1/ Pun)
Ak (n, Un+1) = max !
0p(Un, Ptn)op(tne1, Piine1) 0p(tn, Pin)op(tn1, Piin+1)
1+ O'h(Lln, un+1) ! 1+ ah(Pun,Pun+1)

O‘b(un/ un+2) + Gb(un+1/ un+1)

7

Gb(un/ un+1)/ Gb(un+1/ un+2)r 4
0p(Un, Uns1)0p (U1, Un+2) Ub(un/un+1)ab{1(4n+1/un+2) @)
1+ Ub(un/ un+1) ’ 1+ Gb(”m—lr un+2)

Gb(un/ un+1)/ Gb(un+1/ un+2)/
kop(ttn, uns1) + kop(Uns1, Unso) + 2kop(Unia, Uns2)

=max

=max 4

Uh(un/ Mn+1)(7h(1/ln+1, un+2§( Gb(un/ un+1)0b(un+1/ un+2)
1+ 0p(tn, tns1) ’ 1+ op(tns1, Unv2)

<max{op(Un, Un+1), 0p(Un+1, Un+2)}.

From (6) and (7) we get

P1(0p(Unr1, Uns2)) < Pr(maxi{op (i, ps1), 0p(Unt1, Uns2)})
- IPZ(maX{Ub(un/ Uns1), Op(Uns1, Uns2)})-
Suppose that
max{ab(unl Z’ln+1)/ Gb(un+1/ un+2)} = Gb(un+1/ un+2)-

Then (6) implies that

Hbl (Gb(un+1/ un+2)) < ¢1(Gb(un+1/ un+2)) - I;DZ(Gb(urH—l/ un+2))
< Ebl (Gb(un+1/ un+2))})

which is a contradiction. Therefore we have

max{ob(un, un+1)/ Ub(un+l/ un+2)} = Gh(un/ un+1)

and so
¢1(Gb(un+1/ un+2)) < 1#1(0‘11(1’111/ un+1)) - lPZ(Gb(unz un+1))-

Thus the sequence {o}(14y, Uy+1)} is nondecreasing. Since it is bounded from below, there exists y > 0 such
that lim op(1y, un41) = y. Using the properties of functions ¢; and ¢, we get that
n—oo

Y1(y) < iminf 1 (05 (Uns1, Uns2)) < limsup P1(op(Uns1, tns2))
< lim sup[¢1(0p(Un, Un+1)) — Y2(0b(Un, Uns1))]
< lim sup Y1 (0p(un, Un+1)) — iminf o (op (U, Uns1))

<) = $2(y),
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which is not possible for y > 0. Thus,
Y= &g?o op(Un, tns1) = 0. ©9)

Now, we have to show that {u,} is a 0,-Cauchy sequence in (¥, ;). Suppose the contrary; then, there exist
€ > 0 and two subsequences {uh(r)} and {ul(r)} of {u,} such that h(r) > I(r) > k and

op(Un@y, i) = €. (10)
We may also assume

op(Uigr), Ungy-1) < €. (11)
By choosing h(r) to be the smallest index exceeding I(r) for which (10) holds. Then we get

€ < op(Ungy, Uiry) < koy(Uiry, Ungy-1) + kop(Une)-1, Une))

(12)
< ke + kop(un(y-1, tn(r))-
Taking the upper limit in (11) as r — oo, obtain
€ .. . .
% < 11£r_1)ionf op(Uigry, Ungy-1) < limsup op(Uyr), Unr-1) < €. (13)

r—00

Also, from (12), (13), we obtain
€ < lim sup o4 (uy(r), Unry-1) < ke.

r—o0

By (01,3), we deduce

ou(Uir+1, Une) < kop(Uipy1, i) + kop(Uie), Un))
< kop(Uigy+1, i) + k2o, tney-1) + Kop(Une)-1, tne)) (14)

< kop (g1, i) + K€ + K20p (-1, tne),
and applying the upper limit in (14) as ¥ — oo, we obtain

lim sup oy (441, Un()) < Ke.

r—00
Finally,
op(Uiry+1, Un-1) < kow (U1, i) + kop (Ui, tni-1) (15)
< ko (Ui, Uir)) + ke.
Also, applying the upper limit as r — oo in (15), we get
lim sup oy ()41, Un-1) < ke.
r—00
Hence,
€ .. .
% < hir_l);nf op(Uir), Unr-1) < imsup op (1), Une-1) < €. (16)
r—o0
Similarly,
Lim sup o (1), i) < ke, (17)

r—00
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< lim sup ab(ul(r)+1, Mh(r)),

r—o00

=1 |

and

lim sup o (w41, Uny-1) < ke.

r—00

Since P is Lg-admissible, using (5),
By using (3) we get

we obtain ,B(ul(r), ul(r)+1) >1and ‘B(uh(,), uh(r)+1) >1.

P1(kop (U1, Uney)) < B, wiy+1)BUney, Uney+1) Y1 (kop(Puigy, Pungy-1))
< P1(AY (i, niry-1)) — Y2(AF (i), 1)),

where

op (Ui, Unry-1), 0b (Ui, Priir)), op(Uniy-1, Plnry-1),
0p (Ui, Piinery-1) + 0p(Une)-1, Piligr))

k
AP (), ttnr)-1) = max { 9b(tie), 7’”l<r>)0b(4bth<r>—1r Pitnr)-1)

7

op(t), Prbir))op(Unery-1, Piingy-1)

1 + o(uie), tney-1)

vy, Unr)-1), Ob (Ui, Uig+1), b (U1, Uner)),
vy, Unry) + oo (Unery-1, Ui +1)

1+ o(Puyyy, Puny-1)

4k
=max<{0 b(ul(r)/ Uir)+1 )o b(”h(r)—l ’ Mh(r))

4

9 b(”l(r)/ Ml(r)+1)0 b(uh(r)—lr Mh(r))

1+ o(uy, ungy-1)

Applying the upper limit in (21) as

lim sup Akp(uz(r), Up(r)-1) = mMax

r—o0

=maxXx

1+ o(uiys1, tne)

r — o0, and using (9), (16), (17) and (19) we obtain

lim sup oy, (141(), Un(r)-1), im sup oy (1, Uiry+1),

r—o00 r—o0

lim sup op(Un(ry-1, Unr)),

r—00
lim sup op(uir), tn(r) + lim sup op(Uney-1, Uiy +1)

r—o00 r—00

7

) 4k
lim sup oy (1417), Uiry+1) im sup op(Une)-1, i)

r—o00 r—o00

4

1 + lim sup o(uyg), Unry-1)

r—00
lim sup o (i), i) +1) lim sup o4 (Un()-1, Uner)

r—o0 r—00

1 + lim sup o(Us()+1, Unr))

r—00
lim sup o3, (uy(), Un-1), 0,0,

r—00
lim sup o4 (1), Une) + lim sup o4 (Un)-1, Uiry+1)

r—o00 r—o00

4k

,0,0

<max{e E}
< 5

=€.

4593

(18)

(19)

(20)

(21)

(22)
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Next, applying the upper limit in (20) as r — oo, and using (18), (22) we get
€ .
¢1(k%) < 1 Tim sup ko (i1, )

< llh( lim sup A7 (uy), Mh(r)—l)) - 1#2( ligg’lf (Akp(ul(r)r Mh(r)—l)))

r—00

<ii(e) - ¢z( lim inf (Af(uzm/ “h(r)—l)))r

which implies that
l/’z( lim inf (Akp(ul(r)r uh(r)—l))) =0,

i.e.
hmglf Af(uz(r), uh(r)fl) =0.

Therefore by using (20) we obtain
lim inf o4 (uir), n-1) = 0,

which is a contradiction with (16). Thus, {u,} is a 0,-Cauchy sequence in the b-metric-like space (¥, 0p).
Since (F, 0p) is 0p-complete, then there exists z € # such that

lim oy(uy,z) = 0.
Therefore, by using (9), the condition oy (1, t4,) < 03(2, u,) and limy,—,e 05 (U, u,) = 0 we get

lim oy(uy,, z) = lim oy(uy,, u,) = 0p(z,z) = 0.

By (033), we obtain
op(z, Pz) < kop(z, Puy) + kop(Puy,, Pz). (23)
So using the continuity of  and applying the limit in (23) as n — oo, we get

op(z, Pz) < k lim 04(z, Uy11) + k im 04,(Pu,, Pz) = kop(Pz, Pz). (24)
Since f(z,z) = 1 and using (3) we get

Y1 (kop(Pz, Pz)) < Pz, P2)B(z, P2)ih1 (kop(Pz, P2)) < ¥1(A] (z,2)) — Y2(A] (z,2)),
where

0(2,2), 03(z, ), ooz, Pz), L& T oula, P2),

AL(zz) =maxs g o Pz P2) 04z, P2)ow(z, P2)
1+0p(z,2) ~ 1+0,(Pz,P2)

< op(z, Pz).

Therefore

V1(kay(Pz, Pz)) < Bz, P2)B(z, Pz)r (kop(Pz, Pz))
< 17[}1((7;](2, PZ)) - HDZ(O'b(Z/ PZ)))

Since 1) is nondecreasing, koy(Pz, Pz) < 0p(z, Pz) and koy(Pz, Pz) = op(z, Pz), which is possible only that
op(z,Pz) = 0 and Pz = z. Hence, z is a fixed point of . O

(25)
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We note that the previous result may still be valid when # is not necessarily continuous. We have the
following result.

Theorem 2.3. Let (¥, <,0p) be a op,-complete ordered partial b-metric-like space with the coefficient k > 1. Let
P:F — F be a (B-Y1-n)-contractive mapping of type-1. Suppose that the following conditions hold:

(1) P is p-admissible and Lg-admissible (or Rg-admissible);
(2) There exists u; € F such that uy < Puy and p(u1, Pur) = 1;
(3) P is nondecreasing, with respect to <;

(4) If {uy} is a sequence in F such that u, < uy1 and B(uy, Up+1) 21V n e N, and u, - u € F,as n — oo, then
Uy, < uand B(u,,u) 21V nelN.

Then, P has a fixed point.

Proof. Following the lines of proof of Theorem 2.2, the sequence {u,} defined by 1,41 = Pu,,Vn € Nisa
nondecreasing 03-Cauchy sequence in the o;-complete b-metric-like space (¥, 05). From the completeness
of (F,0yp), it follows that there exists z € ¥ such that lim u, = z. By assumption on ¥, we deduce

n—oo

u, <z, ¥ n € NN. So it is enough to show Pz = z. Now, by using (3) and B(u,,z) > 1,V n € N, we have

Y1(kop(ttpar, P2)) < Bluty, Pun)p(z, Pz)ipi1(koy(Pun, Pz))

26
< 1 (AP (1, 2)) — P2(AL (11, 2)), (26)

where
. 04t 2), 0t P, 1, P), PP T Z)
A (Un, 2) = MaxX S 6 1 Py Voy(z, Pz) 0p(thn, Pit)op(z, P2)
1+ op(uy, 2) " 1+ 0p(Puy, Pz)

b (ttn, P2) + 0p(thns1,2)
Gb(un/ Z)/ Gb(unl Mn+1)/ O-h(Z/ PZ)/ = — 7

0p(tn, Unt1)0p(2,2) 0p(tn, Uns1)0p(2, 2)
1+ Ub(un/ Z) ’ 1+ Gh(un+1/Z)

(27)

< max

Applying the limit as 7 — oo in (27) and using Lemma 1.8, we get

Op (Z/ PZ)
k

oy(z, Pz)
4k

e = min [ 0y(z, Pz),

< lim inf AP (n, 2) (28)

< limsup Akp(un, Z)

n—oo
koy(z, Pz)

< max {ab(z, Pz), i

} = op(z, Pz).

Again, by using (26) and taking the upper limit as n — oo,

Y1 (kop(tns1, Pz)) < Blitn, Pun)B(z, Pz)1(kop(Putn, Pz))
< Y1(AF (tn, 2)) = Ya2(A] (un, 2)),



S. K. Padhan et al. / Filomat 31:14 (2017), 4587-4612 4596

and using Lemma 1.8, we get

Y1010z, P2) = 1 ko, P2))

< ¢1(k lim sup oy (1441, 502))

n—oo

< 411( limsup Af(un, z)) — 4)2( lim inf Akp(un, z))

n—oo

< P1(0p(z, P2)) — Pa(op(z, Pz))
< P1(op(z, P2)),

a contradiction. Therefore z = Pz. Hence z is a fixed point of . O

Result-II. In order to prove our second result we introduce the notion of (8-11-y;)-contractive mapping
of type-Il in an ordered b-metric-like space.

Definition 2.4. Let (¥, 0p) be a partially ordered b-metric-like space with coefficient k > 1. The mappingP: ¥ — F
is called a (B-y1-1,)-contractive mapping of type-11, if there exist two altering distance functions yn, P, and
B: F XF — [0, 00) such that

B, Pu)p(o, Po)P1(kop(Pu, Po)) < Yr((An] (1, 0)) = 2((AD] (u,v), (29)
for all comparable u,v € F, where

0ut, 0), 05(0, Po), 0y, Pu), LT+ 00 Pu)

k
op(u, Pu)oy(u, Po) + op(v, Po)o(v, Pu%

1 + k[op(u, Pu) + o3 (v, Po)] !
op(u, Pu)oy(u, Po) + op(v, Po)oy(v, Pu)

1+ op(u, Po) + 0p(v, Pu)

4

(A (1, v) =max (30)

Theorem 2.5. Instead of the (B-i1-yn)-contractive condition of type-l in Theorem 2.2, assume that (B-yn-1-)-
contractive condition of type-11 is satisfied. Then P has a fixed point.

Proof. Following the proof of Theorem 2.2, we can construct the sequence {u,} in ¥ by ;41 = Pu,, Vn>1
which satisfies the following:

U LUy Juz- LUy LUy e
and
By, uns1) = 1 and B(ups1, uns2) 21V n € IN. @31)

Therefore using (29) for u = u,, and v = 1,41, we have

¢1(Gb(un+1/ un+2)) < ﬁ(un/ Pun+1)ﬁ(un+1/ Pun+2)¢1(kgb(Punl Pun+1))

32
< P1((ADY (s 1)) = P2((AD Wy i), 2
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where

(AI)kP(unr Un+1)

0p(Un, Plini1) + op(Une1, Pity)

Gb(unl un+1)/ Gb(unr PZ’ln)/ Oh(un+1/ Pun+1)/
Ub(un; Pun)ab(unr Pun+1) + O'b(Lln-%—l/ Pun+1)0'b(1/ln+1, Pun%

1+ k[ab(un/ Pun) + Gb(un+1/ Pun+1)] ’
Gb(un/ Pun)ab(unr Pun+1) + Gh(un+1/ Pun+l)0b(un+1/ Pun)

1+ op(un, Piins1) + 0p(ne1, Pin)

Oy (U, Unt2) + 0p(Unt1, Uns1)
0p(Un, Un+1), Ob(Un+1, Un+2), LAk ntls nt ,

Ub(un/ un+1)ab(un/ un+2) + Gb(un+1/ un+2)ab(un+1/ un+1)

1 + K[op(un, ttps1) + 03 (s, un+28] ’ (33)
Gb(un/ un+1)‘7b(un/ un+2) + Gb(un+1/ un+2)ab Un+1, un+1)

1+ 0p(Un, Uns2) + 0p(Uns1, Uns1)

Ob(unr Up+1 )/ O'b(un+1, un+2)/
kah(un/ un+1) + kab(un+1r un+2) + 2kab(un+1/ un+2)

7

=maXxX

=max

4k
<max { 0p(Un, Un+1)06(Un, Un+2) + Op(Un1, Uns2)0p(Uns1, Ups1)

1+ k[ob(unl un+1) + O'b(un+1r un+2)]
0p(tn, Unt1)0p (U, Uns2) + Op(Uns1, Uni2)0p(Uns1, Uns1)

1+ Gb(uﬂl un+2) + Gb(un+1/ un+1)
<max{op(Uy, Uns1), Op(Uns1, Uns2)}

7

Repeating the arguments of the proof of Theorem 2.2, we obtain the equation (9).

Now, we have to show that {u,} is a ,-Cauchy sequence in (¥, o). Suppose the contrary; then, using
proof of Theorem 2.2, we obtain relations (10)—(19) between the terms of the sequence {u,}. Since P is
Lg-admissible and using (31), we obtain (), tiy+1) = 1 and B(unp), tng+1) = 1.

On using (29) we get

V1(kow(tiry+1, tney)) < BUiey, i)+ 1) BUne, Unery+1) Y1 (kop (P, Pitni-1))

34
< P1((ADE (i, Unry-1)) — P2((AD ] (i), tnen-1)), 9

where

(ADY (i), tnn-1)

op (Ui, Unr-1), 06 (Ui, Pricr)), 0p(Uniry-1, Pltney-1),
ou(Uigr), Piney-1) + 06 (Uney-1, Piir))

k 7
=max { 06U, Pul(r))abéll(r)/ Punr)-1) + 06Un)-1, Pin)-1)06 Unr)-1, Plii)

1+ k[op (i, Puir) + op(uney-1, Pingy-1)] ’
op (Ui, Pui)ow (Ui, Pungy-1) + op(tny-1, Piney-1)06(Uney-1, Pliig))

1+ op(uip), Piiney-1) + op(Uney-1, Pibigr) (35)

0p(Uir), Unry-1), 0o (i), Uiy +1), Ob(Un)—1, Uner)),
o b(ul(r)/ Mh(r)) +o b(uh(r)—ll Mz(r)+1)

4k !
=max { Tb(Uir), Wiry+1)o (i), Unry) + 0b(Uni)-1, U)o (Unir-1, Uig)+1)

1 + k[op(uir), Uiy +1) + op(Uney-1, Une))]
op (Ui, Ui +1)0u (i), Une) + (U1, Uner))op(Unery-1, Uiy +1)

1+ oy (i), Unery) + op(Unery-1, Uiy +1)

4
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Applying the upper limit as r — oo in (35) and using (9), (16), (17), (19) we get

lim sup (Al)kp(ul(r)/ Un(r)-1)

r—00

lim sup o4 (141r), Un(ry-1), lim sup o4 (i), Uiry+1), limsup op(Un)-1, Une) ),
r—o0 r—00 r—oc0
Lim sup oy (t41), 1n( ) Him sup op (tpry-1,11¢)+1)

4k ’
=max { msup ou(ui),tiry+1) im sup oy (i) i) +1im sup oy (-1, () i sup oy (niry-1, 1 +1)
r—c0 r—00 r—00 r—00

1+k[lim sup o (i) Uiry+1)+Hm sup o3 (Upery -1, )] 4

F—00 r—co
lim sup o (1), iy +1) im sup b (i) i) +Him sup b (Une)-1,4n)) lim sup o4 (tnery-1,40)+1)
r00 Fs00 r—s00 rs00

1+lim sup o (141, nn)+1im sup oy () -1,41)+1)
lim sup oy (1), tnery-1), 0,0,

. r—0o .
=max | lim sup o4 (1), tn)) + lim sup op(Une)-1, Uiy+1)

r—o0 r—o0

4k

,0,0

<max {6 E}
= '3
=€.

Repeating the remaining arguments of the proof of Theorem 2.2, we obtain a contradiction. Thus, {u,} is a
op-Cauchy sequence in b-metric-like space (¥, 03). Since (¥, 0p) is op-complete, it follows that there exists
z € ¥ such that

nlgg op(uy,z) = 0.
Therefore, by using (9), the condition oy (1, t,) < 0(2, u,) and limy,—,c 0p(U, u,) = 0 we get
lim 0414y, 2) = lim 031, 1) = 03(2,2) = 0.

By (01,3), we obtain

op(z, Pz) < kop(z, Puy) + kop(Puy,, Pz). (36)
Therefore by applying the limit as # — oo in (36) and using the continuity of £ we get

op(z,Pz) <k ’}1_1;1;10 op(z, Ups1) + k}g{}o op(Puy, Pz) = kop,(Pz, Pz). (37)
Since f(z,z) > 1 and using (29) we get

P1(koy(Pz, P2)) < Bz, PR, P2 (koy(Pz, P2)) < pr(AT (2, 2) = ¥a(AL (2,2)),

where

op(z, Pz) + 0p(z, Pz)

Ob(Z, Z)/ Op (Zl PZ)/ Ub(Z, PZ)/
0p(z, Pz)op(z, Pz) + 0p(z, Pz)op(z, Pz%

1 + k[oy(z, Pz) + 0p(z, Pz)] !
op(z, Pz)op(z, Pz) + 0p(z, Pz)op(z, Pz)

1+ 0p(z,Pz) + op(z, Pz)

7

Afl(z, Z) = max

< op(z, Pz).
Therefore
Y1(kop(Pz, Pz)) < Bz, P2)(z, Pz)1(kop(Pz, Pz)) < Y1(ow(z, Pz)) — ¥2(0u(z, P2))). (38)

Since ) is nondecreasing, ko,(Pz, Pz) < 0p(z, Pz) and koy(Pz, Pz) = op(z, Pz), which is possible only when
(0b(z,Pz)) = 0 and Pz = z. Thus, z is a fixed pointof P. O
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Similarly to Theorem 2.3, we can be designed a result for (3-y1-1;)-contractive mapping of type-II as
follows:

Theorem 2.6. Let all the conditions of Theorem 2.3 are satisfied, apart from the condition (3) which is replaced by
(29). Then P has a fixed point.

Now we have following consequences from our main results:

Corollary 2.7. Let (7, <, 0p) be a op-complete ordered b-metric-like space with the coefficientk > 1andlet P: F — F
be an increasing map w.r.t. < such that an element uy; € ¥ exists with uy < P™(u1). Let us assume that there exist
altering distance functions 1, P and f: F X F — [0, 00) such that

B, P u)(0, P o)y (kop(P"u, P"0)) < P1(Af (1, 0)) = Pa(AF (1, 0)), (39)
for all comparable u,v € F, where

p(u, P"0) + op(v, P"u)

. 0s(1, ), 04 (1, P"10), 040, P"0), =
AL (1,0) =max { g (1, Py (0, P0) 031, P )0, PO
1+ op(u,0) "1+ 0p(Pu, Po),

7

for some positive integer m. Assume that the following assertions hold:

(1) P is p-admissible and Lg-admissible (or Rg-admissible);
(2) uy € F exists such that uy < Puy and p(u1, Pur) = 1;
(3) P is continuous and if P"u; — z then p(z,z) > 1.

Then P has a fixed point.

Corollary 2.8. Let (7, <, 0p) bea o,-complete ordered b-metric-like space with the coefficientk > 1andlet P: F — F
be a continuous, nondecreasing mapping. Let us assume that there exist altering distance functions yn, ), such that

Y1 (kop(Pu, Po)) < Pi(AT (u,v)) — Pa(A] (u,0)), (40)
for all comparable u,v € F, where

. 0,0, 010, Pu), 4o, Py, T PO,
A (u,v) = max op(u, Pu)op (v, Pv) op(u, Pu)oy(v, Po)

1+o0p(w,0) " 14 0,(Pu,Pv)

If there exists uy € F such that uy < Puy, then P has a fixed point.

Corollary 2.9. Let all the conditions of Corollary 2.8 be satisfied, apart from the condition (40) which is replaced by
Y1 (kap(Pu, P)) < Y1 (A (1, 0)) = Pa((AD)] (1, 0)),

for all comparable u,v € ¥, where

op(u, Po) + ap(v, Pu)

Ob(u/ U), O_b(u/ PM), O-b(v/ PU),
op(u, Pu)oy(u, Po) + op(v, Po)oy(v, Pu%

1 + k[op(u, Pu) + op(v, Po)] ’
op(u, Pu)oy(u, Po) + op(v, Po)oy(v, Pu)

1+ op(u, Po) + op(v, Pu)

7

(A7 (1, v) =max

Then P has a fixed point.
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3. Illustrations

The first two examples demonstrate possible usage of Theorem 2.2. In the first one, the involvement of
rational terms in contractive conditions of type-Iis shown while in the second one we show that contraction
condition considered in the paper [12] is not satisfied in our example. Similar practices are adopted for
Theorem 2.5 in the remaining two examples. In addition, one nontrivial example is given for the usage of
Theorem 2.2.

Example 3.1. Consider ¥ ={a,b,c}. Let 0, : ¥ X F — [0, o0) be defined by

Gam=0,  abb==, oc=2 b =aba)= =
3 2 5
13
O'b(ﬂ, C) = Gb(C,ﬂ) = gr (b C) - Gb(c b)
It is clear that (9’7 , ab) is a b-complete b-metric like space with constant k = 2. Note that ¢,(b,b) # 0, so o}, is not a
metric space and = op(a, b) £ ap(a, c)+op(c, b) — ob(c c) 13309, so it is not a partzal metric space or partial b-metric
space (£ = op(a, b) £ klop(a, ) + op(c, b)] — op(c, ) = Z). Define mappings P : F — F and p: F x F — [0, )
by
Pa=a, Pb=c, Pc=a,

and

_J 1, xyefab,c}
Pl y) = { 0, otherwise.

Then P is continuous and increasing. Take altering distance functions Y1 (t) = 2t and P (t) = 157. We will prove the

following:

+t

i) P:F — F is an (B-y1-yo)-contractive mapping of type-I;
ii) P is p-admissible;
iii) there exists x1 € ¥ such that x; < Pxq and B(x1, Px1) > 1;
iv) If a sequence {x,} , in F is such that B(x,, Xp+1) = 1 and x, — x, as n — oo, then f(x,,x) > 1, for alln € N.

Proof. i) Clearly, o,(Pa, Pc) = 0p(Pa, Pa) = 0,(Pc, Pc) = 0. In order to prove that P is a (B-11-1»)-contractive
mapping the following three cases have to be considered:
Case I: x = b and y = b (this case shows the reason for involvement of rational terms).

We have 14 (%ah(Pb, Pb)) =1y ( op(c, c)) 2 and
) (b, b), (b, ), (b, ), 220D )
Ay (b, b) = max op(b, c)op(b,c) op(b, c)ob(lg) c)
1+0pb,b) ~ 1+0p(c,c)
{E E E % E 338} 338
37373715" 37 63 63"

7

Then

B(b, P)B(b, P) wl( 01(c,0)) = v (?1 (g)) _ 2(%) LB 5

IA

63 401
'1[’ (338) ¥, (338)

Casell: x =band y =c.
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Itis 1 ($04(PD, P0)) = ¢1 (30u(c,a)) = 7 and
b
ou(b,0), 04(b, 0), ap(c, a), LD E GO,
op(b, c)op(c,a) op(b,c)oy(c,a)
1+oub,c) * 1+0u(c,a)
{13 13 14 117 91 182} 13

373'5'50°40° 57 ) 3

Af(b, €) = max

Then

B(b, PO, Pc)gbl( oy(c, a)) npl( (14)) U

Caselll: x =band y = a.
We have ¢1( op(Pb, Pa)) ¢1( ay(c, a)) Uy (g(%)) =7and
4(b,0), 34(b,0), 3y, ), 2D AL,
Gb(b/ C)O‘b(ll, Cl) Gb(b/ C)Gh (lZ, a)
1+ ab(b a) 7 1+ oap(c,a)

16 13 16
ma{530 00} =

Af(b, a) = max

Then

B(b, PH)B(, Pb)¢1( ou(c, C)) 4}1( (14)) e % ) 451_?

46 46
-ui(5)-0(3)
Therefore, P is a (8-11-12)-contractive mapping of type-L
ii) Let (x, y) € ¥ X F be such that f(x,y) > 1. From the definition of  and  we have Px, Py € {a,b,c},

so we have B(Px,Py) =1 > 1. Hence, P is f-admissible.
iii) Taking x; = a € ¥, we have

B(x1,Px1) = pa,Pa) = f(a,a) =1 > 1.
iv) Let {x,} be a sequence in F such that f(x,, x4+1) > 1,¥n € Nand x, — x € ¥ asn — oo. By using the
definiiton of g we have x,, € {a,b,c}, VY n € N and x € {,b,c}. Then f(x,,x) =1 > 1.
Now, all the hypothesis of Theorem 2.3 are satisfied. Therefore, # has a fixed point (the pointa). O
Example 3.2. Let ¥ = [0, o0) be equipped with the partial order < defined by

Xyesxy

and with the functional o,: F X F — Ry defined by oy(x,y) = (max{x, y})?, for all x,y € F. Clearly, (¥, o) is an
ordered b-metric-like space with k = 2. Define a mapping P: ¥ — F by

X
ifxel0,2],
P(x) = 3Vx3 +2x

— otherwise ,
2
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and B: F X F — [0, ) by

1 ifx,y€e]0,2],
Pl y) = {0 otherwise .

Consider control functions 1 (t) = t and

2 VE+1)
Pa(t) = § 2VE+3

Then P is continuous and increasing, 0 < P0.
We will prove the following:

ift €10,2],

i) P:F — F is a (B-1-12)-contractive mapping of type-I;
ii) P is B-admissible;
iii) x1 € ¥ exists such that x; < Pxq and B(x1,Px1) > 1;
iv) If a sequence {x,},. | in F such that f(x,, xn4+1) = 1 and x, — x, as n — oo, then f(x,,x) =2 1, forall n € N.

Proof. i) For all comparable x, y € ¥ we have

B(x, Px)B(y, Py)1(kos(Px, Py)) = Yn zob( \/3%’ \/3]/+—2y)]

=11 Z(max{\/;:__zx, \/C%}i—Zy}))

Without loss of generality we can consider 0 < y < x < 2. Then

P, PPy, Py kop(Px, Py)) = 1 2(”’( Ve% \/3y+—2y )]

X 2
-n ([l
lPl( 3+ 2x
o
T34+ 2x
and
>+ (maxfy =)
x% + | max{vy,
AP = baZ 2 12 "Ewn) @y @ |
s(x/]/)—maxx/x/]// 2 2 = X".
4 1+ x2 1+( X )
V3 + 2x
Then

2x? ,  2x%+
B(x, Px)B(y, Py)yn (kop(Px, Py)) = i <Y T3

< Y1) = Pa(x?)
= 1A (x, ) — Ya(AL (x, ).

2x

ii) Let (x, y) € ¥ X F be such that B(x, y) > 1. From the definition of  and 8 we have both Px = ,
y pix,y p Ny

and Py =

are in [0, 2], so we have B(Px,Py) = 1 > 1. Then P is f-admissible.

2y
\3 +2y
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iii) Taking x; = 0 € ¥, we have
B(x1,Px1) = p0,P0) =p(0,0) =1>1.

iv) Let {x,} be a sequence in ¥ such that B(x,, x4+1) =1, Vn € Nand x, = x € ¥ as n — oo. By using
the definition of 8, we have x,, € [0,2], V n € N and x € [0,2]. Then B(x,,x) =1> 1.

Thus all the hypotheses of Theorem 2.3 are fulfilled. Therefore, # has a fixed point in ¥ (which is 0).

It can be remarked that the contraction condition (3) is not true without taking f term into account. For
example at x = 0 and y = 4, we get

1(205(P0, P4)) = P1(204(0,6)) = P1(2(36)) =72 £9 =36 — 27
= 11(36) — 12(36)
= 1(AF(0,4)) - Y2(AT(0,4)).

Now, in this problem, we check the contraction condition due to Mukheimer [12, Definition 2.1] for
comparable x, y € 7 and p,(x, y) = (maxix, y})*. If we take x = land y = 1, then

(5:3) 0 (P (5) 2 G)) - 0 o (5:3)) - 1 (35 -5

11 11113 1
M) =M (5, 7) =max{3 5555 = 5

0 (53))-wa(5.3)) - (3) - 5) -0 <

Therefore contraction condition due to Mukheimer [12] is not satisfied in this example. O

and

Example 3.3. Let ¥ = [0, o0) be equipped with the partial order < defined by
X2yexy
and with the functional o,: F X F — R, defined by oy(x,y) = x> + y* + |x — y[?, for all x,y € F. Clearly, (F, )
is an ordered b-metric-like space with k = 2.
Define a mapping P: F — F by P(x) = ln(l + |1—Y6|) and B: F X F — [0, 00) by

1 ifx,y€e]0,2],
Pl y) = {0 otherwise .

Consider control functions 1 (t) = 3 and ¢(t) = §. Then P is continuous and increasing, 0 < P0.
We will prove the following:
i) P: F — F is a (B-1-y)-contractive mapping of type-I, with Y (t) = % forall t > 0;
it) P is B-admissible;
iii) x1 € F exists such that x; < Pxq and B(x1,Px1) > 1;
iv) If a sequence {x,}," | in F such that f(x,, xn+1) = 1 and x, — x, asn — oo, then f(x,,x) =2 1, foralln € N.
Proof. i) Clearly, 0,(#0,%P0) = 0,(0,0) = 0. Further, the following five cases can be distinguished:
Case I: x = 2 and y = 1 (this case shows the reason for involvement of rational terms). We have
1 204(P2,P1)) = 1 (204 (2, 3)) = 2% = 0.0202 and
op(2, % +0p(1, %
» Gb(z,l),Ob (2/ %)/Ob (1/ %)/ ( ) 8 ( )/
Ak (2,1) = max Op (2, %)Ob (1, %) Op (2, %)Ob (1, %)

1+0,(2,1) " 14 Uh(%,%)

1776

= max {6,7.6817,1.8872,1.1951,2.0709, 14.2019} = 14.2019 = 5
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Then
59 3 59 3
e F2pL, gDl)”bl(m’ (20” (500 50))) = (Z(ﬁ’ %))
101
= 2509 = 0.0202
_ 2131 _ 888
100 125

1776 1776
1’[’1( 125 ) ¢2( 125 )

Casell: Forx =1and y =0, itis
1 (20,(P1,P0)) = v (204 ($,0)) = &5 = 0.0216 and

op(1,0) + 03, (0, =
04(1,0),04(0,0), 04 (1, 5 ), : & ),
04(0,0)05 (1, 3) 04(0,0)0 (1, 3)

3

Op
1+0,(1,00 " 1 +Gb(% 0)
=max{2,0,1.8872,0.2509,0,0} =

Akp(l, 0) = max

Then
s 0790 o (3,0 = L)
1;;0 =0.0216

<2=11(2) - ¢2(2).

CaseIll: x = 1 and y = 1 (this case also shows the reason for involvement of rational terms). We have
1 204(PLPY) = ¢ (204 (2, 3)) = 2 = 0.0216 and

1,3 1,3
P os(1,1),05(1,3), 04 (1, 3), % 50);“"( 50)’
A; (1,1) = max op (1, 50) (1, 530) Op (1, 50) (1, 530)

1+0p(1,1) 1+ab(@,§)

442
= max {2,1.8872,1.8872,0.4718,1.1872,3.5361} = 3.5361 = 5

Then

B(L, P, 701)%(‘717 (2%(530 530))) =y (2(53_0%))

27
= 1250 = 0.0216

< 663 221
125 125

:1’01(1;;0)_"”2(1;;0)'
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CaseIV:Forx =2and y =0, itis
1 (20,(P2,P0)) = 1 (20, (5,0)) = & = 0.0816 and

04(2,0) + 0 (0, &%)

Gb(zl 0)/ Op (2/ %) 7 Gb(ol 0)/ 8 7
P —
A (2,0) = max 01 (2 25)01(0,0) 03(2, 2)04,(0,0)
1+0p(2,00 " 14 G (%/0)
= max {8,7.6817,0,1.0034,0, 0} = 8.

Then
s o o ) oS5
= % =0.0816

< Y1(8) — a2(8).

Case V: For x =2 and y = 2, we have
1 (20,(P2,9P2)) = 1 (20, (35, 35)) = 4 = 0.0822 and

ab(2, 555) + 00 (2, 555
Gh(zl 2)/ Op (2/ %) ’ Gb(o, 0)/ ( )/

Af(Z,Z) = max Op (2, %)Gb (2, %) Op (2, %)O‘b (2, %)

1+05(2,2) 1+ab(%,%)

11487

= max {8,7.6817,7.6817,1.9204, 6.5565,57.4348} = 57.4348 = 00

Then

permne o o ) (52
411

= —— =0.0822
5000 0.08

11487 11487
< T\ 7
_1,01( 200 ) ¢2( 200 )

Similarly, we can consider other cases. Therefore, P is a (8-11-1»)-contractive mapping of type-I.
ii) Let(x,y) € ¥ X7 be such that f(x, y) = 1. From the definition of # and  we have both x = In (1 + %),
and Py =In (1 + %)) are in [0, 2], so we have f(Px, Py) = 1 > 1. Then P is f-admissible.
iii) Taking x; =0 € ¥, we have
p(x1,Px1) = p(0,#0) = f(0,In(2)) =1 = 1.

iv) Let {x,} be a sequence in ¥ be such that p(x,,x,+1) 21, Vn € Nand x, — x € ¥ asn — oo. Since
B(xn, xp41) 2 1, ¥ n € N and by using the § definition, we have x, € [0,2], Y n € N and x € [0, 2]. Then
Blxy,x)=12>1.

Now, all the hypotheses of Theorem 2.3 are satisfied. 0 is the fixed point of . [
Example 3.4. Consider ¥ ={0,1,2} and let 5, : F X F — [0, 00) be defined by

04(0,0) =0, op(1,1) =3, o0p(2,2) = % 0p(0,1) = 05(1,0) = 13,
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Gb(ol 2) = Gb(zl 0) =1, Gb(ll 2) = Gb(zl 1) =8
It is clear that (¥, op) is a b-complete b-metric like space with constant k = 2. Note that o,(1,1) # 0, so ¢, is not

a metric and 13 = 0,(0,1) £ 04(0,2) + 0,(2,1) — ob(Z 2) = 2, so it is not a partlal metric, nor a partial b-metric
(13 = 05(0,1) £ 2[04(0,2) + 0p(2, 1)] - 05(2,2) = Deﬁne mappings P : F — F and p: F x F — [0, 0) by

P0 =0, P1=2, P2 =0,
and

x,y €1[0,2]
otherwise.

s ={ 5

Then P is continuous and increasing. Consider the altering distance functions P1(t) = t and o(t) = &. We will
prove the following:

i) P:F — F is a (B-11-12)-contractive mapping of type-II;
ii) P is f-admissible;
iii) x1 € F exists such that x; < Pxq and (x1,Px1) =2 1;
iv) If a sequence {x,}, | in F such that f(x,, Xn+1) = 1 and x, — x, asn — oo, then f(x,,x) = 1, forall n € N.

Proof. i) Observe that 0,(P0,P2) = 0,(P0,P0) = 0,(P2,P2) = 0, Therefore, in order to prove that P is a
(B-11-Y2)-contractive mapping, the following three cases have to be considered:
Case I: x = 1 and y = 2 (this case shows the reason for involvement of rational terms).

We have i1 (204(P1,P2)) = ¢1 (30,(2,0)) = § and

Gb(zl 2) + Ob(lr 0)

7

0p(1,2),05(2,0),05(1,2),

S Gb(l 2)0p(1,0) + 06(2,0)05(2, 2)
(A (1,2) = max 2o L,2) + 02,01
Gb(l 2)61,(1 0) + O‘b(z 0)01,(2 2)

1+ 0p(1,0) + 04(2,2)
29 844 211} _ %

9789’ 31 89 "

—max{S 1,8, —

Then

B(1, P12, P2)yn (gab(z, 0)) = z < % - % =1 (%) - 4’2(%)'

Casell: Forx =0and y = 1, itis Y, ( op(P0, Pl)) ¢1( ay(0, 2)) 2 and
Gb(ol 2) + Ob(lr 0)

7

Ob(or 1)/ Gb(lr 2)/ Gb(o, 0)/
Ob(ol O)Ub(of 2) + O_b(ll 2)0_17(1/ 0)

+ 2[0(0,0) + 0(1,2)]
ab(O, O)O'b(o, 2) + Gb(l, 2)O'b(1, 0)
1+ Ub(O 2) + O‘b(l,O)

(AP (0,1) = max

28 104 104
—max{1380 510" 15} 1
Then
9 13
B0, PO)B(L, 7>1)¢1( 26,0, 7>1)) oS-

= 11(13) — y»(13).
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Case III: For x = 1 and y = 1, we have ¢1(30,(P1,P1)) = ¢ (%ab(Z, 2)) =1 (% (%)) =2 and
1,2) + o0p(1,2

01,1, 41,2, 01,2), P2 ALE),

op(1,2)ap(1,2) + 0p(1, 2)0p(1, 2)

1+ %[Ob(lrz) + Ob(l/ 2)]

CTb(l/ 2)0}7(1/ 2) + ab(ll 2)617(1/ 2)

1+ Gb(l,Z) + O'b(l,Z)
32 128 128}

= max {3' 88 5 017

7

(AnF(1,1) = max

=8.

Then

B(L, PLB(L PPy (goh(Z, 2)) - i‘—z <8-2

= 1(8) — 12(8).

Thus in all cases P satisfies (5-11-12)-contractive condition of type-IL

ii) Let (x, y) € ¥ X F be such that f(x, y) > 1. From the definition of # and § we have Px, Py are in [0,2],
so we have 3(Px,Py) =1 > 1. Hence, P is f-admissible.

iii) Taking x; = 0 € ¥, we have

Blx1, Px1) = B(0,P0) = B(0,0) =1 > 1.

iv) Let {x,} be a sequence in F such that f(x,, x4+1) 21,V n € Nand x, — x € ¥ asn — oo. By using the
definition of , we have x, € [0,2], Vn € N and x € [0,2]. Then f(x,,x) =1 > 1.
Thus, all the conditions of Theorem 2.6 are satisfied. Therefore, # has a fixed point (which is 0). O

Example 3.5. Let F = [0, 00) be equipped with the partial order < defined by
X2y xy

and with the functional o,: F X F — R, defined by oy(x,y) = (max{x, y})? for all x,y € F. Clearly, (¥, 0) is an
ordered b-metric-like space with k = 2. Define the mapping P: F — F by

X
ifx €[0,3],
pw =1 Vire |
2x+3 ifx>3,
and B: F X F — [0, ) by

|1 ifx,y€l0,3],
Pl y) = {0 otherwise.

Then P is continuous and increasing, 0 < P0. Consider control functions . (t) = 2t and

2t(t+ 1)

ift €[0,3],

t) = t+
v 3(t; D ift > 3.

We will prove the following:
i) P:F — F is a (B-1-1p)-contractive mapping of type-II,
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ii) P is f-admissible;
iii) There exists x1 = 0 € ¥ such that x; < Pxy and B(x1, Px1) 2 1;
iv) If a sequence {x,}, in F is such that B(x,, Xp+1) = 1 and x, — x, as n — oo, then f(x,,x) > 1, for alln € N.

Proof. 1) We have

B(x, Px)B(y, Py)ip1(kow(Px, Py)) = ¢ (2‘717( \/;i—xz \/3y+—y2)]

=1 (2( max

=)

Without loss of generality, we can take 0 < y < x < 3. Then

Blx, Px)B(y, Py)ir (kon(Px, Py)) = Y1 (zab ( \/3x+—xz ' \/;:_—yz ))

2
B ¢1(23 + xz)
_( 4x? )
342
and
2
x
x% + (max , )
2 .2 .2 {y m}
X ,y , X5, 2 4
2
x2)(x?) + 2(rnax{ ,—= })
AP(x, y) =max () + ) Y V3422 =%
1+ 1(x% + 42) ’
x
@)+ ) max v, —==})
! " Vrae
1+x2 + 12
Then
4x2 5 2xt+2x?
Bx, PX)B(y, Py)1(kap(Px, Py)) = 13- T 213

< Y1) = Pa(x?)
= 1A (x, ) — Ya(AL (x, ).

X

‘V3+x2’

ii) Let (x, y) € F X ¥ be such that f(x, y) > 1. From the definition of  and f we have Px =

Y
Py =
Y V3 + 12
iiif) Taking x; = 0 € ¥, we have

are in [0, 3], so we have B(Px,Py) = 1 > 1. Hence, P is f-admissible.

Blx1, Px1) = B(0,P0) = B(0,0) =1 > 1.

iv) Let {x,} be a sequence in F such that f(x,,x,+1) 21, Vn € Nand x, = x € ¥ as n — oo. Then we
have x, € [0,3], YV n € N and x € [0,3]. Hence, f(x,,x) =1 > 1.
Now, all the hypotheses of Theorem 2.6 are satisfied. Therefore, ¥ has a fixed point (which is 0).
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For checking the contraction condition (30) (without  term) for comparable x, y € ¥, we take x = 1 and
y =5, and then
U1(0p(P1, P5)) = Uy (ab (% 13)) — 1 (169) = 338 £ 83 = 338 — 255
= $1(169) — 12(169)
= 1(A7(L,5)) - ¥2(A7(1,5)).

Now consider the same problem and check the contraction condition due to Mukheimer [12, Definition 2.1]
for comparable x, y € ¥ and p;(x, ) = (max{x, y})>. Take x = 1 and y = 2, and then

B(L 291 2pu(PL, P2)) = (Zpb (% %)) SGE

and

M(x, y) = M(1,2) = max{4, 1,4, Z} =4,

P1(M(1L,2) - Y2(M(1,2) = 1(4) - §o(d) =8 -6 =2 < =7

Therefore the contraction condition due to Mukheimer [12, Definition 2.1] is not satisfied in this example,
too. O

4. An Application to Fourth-order Two-point Boundary Value Problem

Consider the fourth-order two-point boundary value problem

u”"’(t) = h(t,u®), 0<t<T; )
u(0) =u'(0) =u”(1) =u""(1) =0,
with I =[0,1] and h € C(I X R, R).
This problem is equivalent to the integral equation
1
u(t) = f K(t, r)h(r,u(r))dr, ¥ t € I = [0,1], (42)
0

where 1 : I XR — Rand K : [0,1] X [0, 1] — [0, o) is the Green function given by

1 r@t-1, 0<r<t<1
K(t'r)‘é{tz(?)r—t), 0<t<r<l.

Consider the space ¥ = C(I,R) := {x : I — R | xis continuous on I} and define a b-metric-like o} :
XXX —= R"by

op(x, y) = sup max{[x(t)l, [y(O)* ¥ x,y € F.
te[0,1]

From Proposition 1.9, (¥, 03, 2) is a op-complete b-metric like space. Define an order relation < on ¥ by
u=<v iff u(t) <o), vtel

Then (¥, <) is a partially ordered set. Therefore, (¥, 04,2, X) is a o,-complete ordered b-metric like space.
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Theorem 4.1. Consider the mapping P : ¥ X F defined by

1
Pu(t) = f K(t, r)h(r,u(r))dr ¥ t € [0, 1].
0

Assume that the following assertions hold:

(i) h:IxR — R is continuous;

(ii) Forall k € [0, 1], there exists a nondecreasing function h(k, -) i.e.,
u,veR, u<v = h(r,u) < hr,v);
such that
max{h(r, u)|, |h(r,v)} < O(u,v),

where

(max{u, v})?, (max{u, Pu})?, (max{v, Pv})?,
(max{u, Pv})? + (max{v, Pv})?
O (1, v) = max ’

(max{u, Pu})zélrl;ax{v, Po})? (max{u, Pu})*(max{v, Po})?

1 + (max{u, v})? ! 1 + (max{Pu, Pv})?

forallu,v € ¥ withu <vand forall r € [0,1];

(iii) there exists uy € C(I,R) such that

1
ul(t)ﬁf K(t, r)h(t, ur(r))dr, tel;
0

NI~

1
(iv) sup f K(t,r)dr <
0

te[0,1]

Then there exists a solution of the integral equation (42), and hence, there exists a solution of the problem (41).

[T

4610

(43)

Proof. From (i)-(ii), it follows immediately that # is a continuous and non-decreasing mapping w.r.t. <.

Also, from (iii), there exists u; € ¥ such that u; < Pu;.
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J

1
{ K(t,r) |h(r, u(r))ldrf K(t,r) Ih(r,v(r))ldr})

For all f € [0, 1], from the conditions (ii) and (iv), we get
2

K(t, r)h(r, u(r))dr|,

1
op(Pu, Po) = max{ f K(t, r)h(r, o(r))dr
0

|
s
.|
s |

2

IA

[ ]
2

I [ ] K(t 7) max(lh(r u()|, |h(r, v(r))l)dr)

2

IN

I [ ] K(t (O (1, v)(r))dr)
(max{u(r), v(r)})?, (max{u(r), Pu(r)})?, ’
(max{o(r), Po(r)})?,

(max{u(r), Po(r)})? + (max{ov(r), Po(r)})?

1
4k ’
“h?ﬁfo Kt maxs o aqu(r), Pu))(maxto), Po)? - {7

1 + (max{u(r), v(r)})?
(max{u(r), Pu(r)})*(max{o(r), Po(r)})*
1 + (max{Pu(r), Pou(r)})?

0o, 0), 0311, P, oy, Py, LT+ au(@ o).

max op(u, Pu)oy(v, Po) oy(u, Pu)oy(v, Po)
1+o0p(u,0) " 1+ 0p(Pu,Po)

Now, by considering the control functions 1, ¢, : [0, +o0) — [0 +00) given by:

IN

7

IN
NI

Yi()=t, and Po(t) = 5, fort >0,
we get
op(u,0), 0 (1, Pu), 0p(v, Po), ap(u, Pv) -'I'{ as(, PU),
Yrlkoy(Pu, P0)) < Y1 |max gy, Pu)oy(v, Po) 041, Pu)oy(v, Po)
1+0p(w,v) 1+ 0,(Pu,Po)

0o, 0), 0311, P, oy (o, Po), LT+ au(@ o).

k
—Y2(max | g, (u, Pu)oy(v, Po) op(u, Pui)oy(v, Po)
1+o0p(w,0) " 1+ 0,(Pu,Pv)

Thus all the hypotheses of Corollary 2.8 are fulfilled for k = 2. Therefore, there exists a fixed point of P,
which is equivalent to the existence of a solution of the equation (41). [J

Finally we present the following numerical example.

Example 4.2. Let us consider the problem

1" _ 1 .
{M (t)—l—m,0<t<1,

(44)
u(0)=u'(0)=u"1)=u""(1)=0

In this case h(t,u(t)) = 1 — H(I}w Consider ¥ = C(I,[0,1]). Then it is easily seen that h(t,u(t)) satisfies all
conditions of Theorem 4.1. Indeed h(t, u(t)) is continuous (as differentiable), nondecreasing, u; = 0 and the inequality
(43) is satisfied on F. Thus from Theorem 4.1, the problem (44) has a solution in F .
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5. Conclusion

Our results extend and generalize the results of Mukheimer [12] in partially ordered b-metric-like spaces.
Two new concepts of (8-11-1;)-contractive mapping are introduced using two altering distance functions
in ordered b-metric-like spaces and the respective fixed point results are studied. Numerical examples are
presented to illustrate our work in an appropriate manner. An immediate application of our investigation
towards the solution of a boundary-value problem for a fourth-order ODE is discussed and rationalized by
a numerical example.
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