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Abstract. In this note, we prove a conjecture of Shang about the sum of a random number Nn of m-
dependent random variables. The random number Nn is supposed to converge in probability toward a
positive random variable.

1. Introduction

In a number of applications we have to deal with random sums of dependent random variables. In
order to study such random sums it is useful to have the possibility to rely on Central Limit results. Studies
on random central limit theorems have a long tradition and the applicability of such results varies from
random walk problems to Monte Carlo methods, passing through sequential analysis. The works of Rényi
[10] and Blum et. al. [4] focused on central limit problems for the sum of a random number of independent
random variables. More recent studies can be found in e.g. [6, 7, 9, 15], most of which, nevertheless, deal
with independent cases. The case of dependent random variable has been the base of the work of Y. Shang
[13]. In this note we prove the conjecture on the convergence of the random sum to a positive random
variable instead of a constant.
In this article we will indicate with Cov(X,Y) the covariance between two jointly distributed real-valued
random variables X and Y with finite second moments. Var(X) is the variance of a random variable X. Let
{Xn} be a sequence of random variable. We write

Xn
P
−→ X

to indicate that the sequence of random variable Xn converges in probability towards the random variable
X, i.e. for all ε > 0

lim
n→∞

P
(
|Xn − X| ≥ ε

)
= 0.

Let Fn and F be the cumulative distribution functions of the random variables Xn and X, respectively. We
write

Xn
L
−→ X
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if the sequence of random variable {Xn} converges towards X in distribution, i.e.

lim
n→∞

Fn(x) = F(x),

for every number x ∈ R at which F is continuous. In what follows we will indicate with Φ(x) the cumulative
distribution of a standard normal random variable.

The result relies on the following hypothesis

• (A1) there exist some k0 ≥ 0 and c > 0 such that for any λ > 0 and n > k0 we have

P
(

max
k0<k1≤k2≤n

|Sk2 − Sk1 − (k2 − k1)µ| ≥ ε
)
≤

c · Var(Sn − Sk0 )
ε2 ,

and

• (A2) Cov(X1,Xi) ≥ 0 for i = 2, . . . ,m + 1.

We report here the new central limit theorem for randomly indexed m-dependent random variables proved
in [13]:

Theorem 1.1. Let {X j} j∈N be a stationary m-dependent sequence of random variables. Let E[X j] = µ, 0 <
Var[Xi] = σ2 < ∞ and Sn =

∑n
i=1 Xi be the partial sum. Let {Nn}n∈N denote a sequence of positive integer-valued

random variables such that
Nn

zn

P
−→ λ

as n goes to infinity, where {zn}n∈N is an arbitrary positive sequence tending to +∞ and λ constant. If (A1) and (A2)
hold, then

√
Nn

τ

(SNn

Nn
− µ

) L
−→ N(0, 1)

as n→∞, where τ2 = σ2 +
∑m+1

i=2 Cov(Xi,X1).

The rest of the note is organized as follows: In Section 2 we present the main result and prove it. The
section 3 is dedicated to an example while in the last one we outline some line of research.

2. Main Result

The main purpose of this section is to prove the following generalization of Theorem 1.1 [13].

Theorem 2.1. Let {X j} j∈N be a stationary m-dependent sequence of random variables. LetE[X j] = µ, 0 < Var[Xi] =
σ2 < ∞ and Sn =

∑n
i=1 Xi the partial sum. Let {Nn}n∈N denote a positive sequence of positive integer-valued random

variables such that
Nn

zn

P
−→ λ

as n goes to infinity, where {zn}n∈N is an increasing positive sequence tending to +∞ and λ is a positive random
variable. If (A1) and (A2) hold, then

√
Nn

τ

(SNn

Nn
− µ

) L
−→ N(0, 1)

as n→∞, where τ2 = σ2 +
∑m+1

i=2 Cov(Xi,X1).

Remark 2.2. As in [13] we can stress here that (A1) is related to the Anscomb condition [1] and may be regarded as
a relaxed Kolmogorov inequality. The Condition (A2) says that each pair Xi, X j is positively correlated.
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Remark 2.3. In order to prove this theorem we follow the same steps as in [10] and [4]. We notice that while in their
results the random variables are independent, here we suppose m-dependence. We further notice that the sequences
Nn and Xn are not supposed to be independent, we in fact underline that the limit theorem used here is Theorem 1.1
[13], where such an hypotheses is not required. Last we point out that for clarity of the main proof we assume the
sequence zn is an increasing sequence.

We begin by prooving the following result, which generalizes Theorem 4 in [11]:

Lemma 2.4. Let (ξ j) j∈N be a sequence of m-dependent and stationary random variables. We assume that there exist
two divergent sequences of real numbers Cn, Dn and a distribution function F(x) such that with

σn =

∑n
j=1 ξ j − Cn

Dn

we have
lim
n→∞

P
(
σn < x

)
= F(x)

for every point of continuity x of F(x).
Then for every probability measure Q on (Ω,F ) absolutely continuous with respect to P we have

lim
n→∞

Q
(
σn < x

)
= F(x)

for every point of continuity x of F(x).

Proof. Let x be a continuity point for F(x) such that F(x) > 0. For n ≥ n0, for n0 big enough, we have
P(σn < x) > 0. Let us consider the sets A0 = Ω and An := {ω ∈ Ω : σn+n0 (ω) < x}, n ∈ N. By following
Theorem 1 and Theorem 2 in [11] we can simply prove that for all k > n0

lim
n→∞

P(σn < x | σk < x) = F(x).

The original proof uses the following

Lemma 2.5. Let θn and εn be random variables such that limn→∞ P(θn < x) = F(x) for every x, which is a point of
continuity for F(x) and limn→∞ P(|εn| ≥ δ) = 0 for every δ > 0. Then limn→∞ P(θn + εn < x) = F(x) for every x,
which is a point of continuity for F(x).

We apply this lemma with θn = σn and εn = −
σ∗k+m
Dn

, where σ∗n =
∑n

j=1 ξ j. Since limn→∞ P(σn < x) = F(x)
and Dn →∞, it follows that

lim
n→∞

P
(
σn −

σ∗k+m

Dn
< x

)
= F(x).

For the hypothesis that the random variables are m-dependent, σn−
σ∗k+m
Dn

=
σ∗n−σ

∗

k+m−Cn

Dn
and σk are independent.

It easily follows that

P
(
σn −

σ∗k+m

Dn
< x

∣∣∣∣σk < x
)

= P
(
σn −

σ∗k+m

Dn
< x

)
,

which in turn implies

lim
n→∞

P
(
σn −

σ∗k+m

Dn
< x

∣∣∣∣σk < x
)

= F(x).

We can apply the lemma again with θ = σn −
σ∗k+m
Dn

and ε =
σ∗k+m
Dn

on the probability space (Ω,F , µ) where
µ(A) = P(A | σk < x). It follows that

lim
n→∞

µ(σn < x) = lim
n→∞

P(σn < x | σk < x) = F(x).
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We will make use of the following lemma:

Lemma 2.6. Under the same hypothesis of Theorem 2.1, let νn = [znλ] where λ is a positive random variable having
a discrete distribution, then it holds

lim
n→∞

P
{ √νn

τ

(Sνn

νn
− µ

)
< x

}
= Φ(x).

Proof. For the proof we refer to [10], by using Lemma 2.4 instead of Theorem 4 in [10].

We can now prove the theorem when λ is a positive and discrete-value random variable.

Proof. [Proof of the discrete version] It is possible to follow the proof in [10]. Without loosing generality let

µ = 0, Nn
zn

P
−→ λ : (Ω,F )→ R and νn = [znλ]. We can rearrange the random variable

√
Nn
τ

( SNn
Nn

)
as follows:

SNn

τ
√

Nn
=

Sνn

τ
√
νn

+

√
νn

Nn

(SNn − Sνn

τ
√
νn

)
+

Sνn

τ
√
νn

(√ νn

Nn
− 1

)
.

We have Nn
νn

P
−→ 1, and then the convergence (in probability)

Sνn

τ
√
νn

(√ νn

Nn
− 1

) P
−→ 0.

It is sufficient to prove that √
νn

Nn

(SNn − Sνn

τ
√
νn

) P
−→ 0.

Let Bn(ρ) := {ω ∈ Ω : |Nn − νn|(ω) < ρzn}, with ρ > 0 and nk = [znlk]; Pick ε > 0 (arbitrarily) and let us

consider Cnk := {ω ∈ Ω :
|SNn−Snk |

τ
√

nk
> ε}; By the theorem of total probability we have

P
(∣∣∣∣SNn − Sνk

τ
√
νn

∣∣∣∣ > ε) ≤ ∞∑
k=1

P(Ak ∩ Bn(ρ) ∩ Cnk) + P(Bn(ρ)C).

From Hypothesis (A1)

P(Ak ∩ Bn(ρ) ∩ Cnk) ≤ P
(

max
|l−nk |≤ρn

|Sl − Snk |
√

nk
> ε

)
≤

2cρτ2

lkε2 .

We have now to control the tail of λ.

Let DM := {ω ∈ Ω : λ(ω) ≥ lM}. We have

P
(∣∣∣∣SNn − Sνk

τ
√
νn

∣∣∣∣ > ε) ≤ P(DM) +
2cρτ2

ε2

M−1∑
k=1

1
lk

+ P(Bn(ρ)C).

Exactly as in [10] let δ > 0 (arbitrary) and M big enough in order to have P(DM) < δ
3 . By fixing M we can

find ρ > 0 such that
2ρτ
ε2

M−1∑
k=1

1
lk
<
δ
3
.

By the hypothesis Nn
zn

P
−→ λ, we can choose n0 = n0(ε, δ) so that for n ≥ n0 it holds P(Bn(ρ)C) < δ

3 . From this
follows the desired convergence for the sequence of stationary and m-dependent random variables.
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The proof of Theorem 2.1 is based on the following result in [4]:

Lemma 2.7. [4] Let Wn, Xm,n,Y( j)
m,n and Z( j)

m,n be random variables. Suppose that

Wn = Xm,n +

k∑
j=1

Y( j)
m,nZ( j)

m,n,

and
1. For every ε > 0 and j = 1, . . . , k;

lim
m→∞

lim sup
n→∞

P(|Y( j)
m,n| > ε) = 0

2. j = 1, . . . , k;
lim

M→∞
lim

m→∞
lim sup

n→∞
P(|Z( j)

m,n| > M) = 0

3. For every fixed m
lim
n→∞

P(Xm,n < x) = F(x).

It follows that
lim
n→∞

P(Wn < x) = F(x).

Proof. [Sketch of the proof] For a complete proof of the Lemma we refer to [4], Lemma 2.
The idea is to control the quantity

R(x) :=
∣∣∣∣P(Wn ≤ x) − F(x)

∣∣∣∣ (1)

for every continuity point x of F(x). Let m,n be positive natural numbers and δ > 0. We can control R(x) as
follows:

R(x) ≤ max
i±1

∣∣∣∣P(Xm,n ≤ x + i · δ) − F(x)
∣∣∣∣ + P

( k∑
j=1

Y( j)
m,nZ( j)

m,n > δ
)
.

This follows from

Lemma 2.8 (Lemma 1 in [4]). If X and Y are random variables and δ ≥ 0, then∣∣∣∣P(X ≤ a) − P(X + Y ≤ a + δ)
∣∣∣∣ ≤ P(|Y| > δ).

For the first addend holds:

|P(Xm,n ≤ x + iδ) − F(x)
∣∣∣∣ ≤max

i±1
|P(Xm,n ≤ x + iδ) − F(x + iδ)

∣∣∣∣
+ max

i±1
|F(x) − F(x + i · δ)

∣∣∣∣. (2)

The second term can be controlled as follows

P
(∣∣∣∣ k∑

j=1

Y( j)
m,nZ( j)

m,n

∣∣∣∣ > δ) ≥ k∑
j=1

P
(
|Y( j)

m,n| > M
)

+

k∑
j=1

P
(
|Z( j)

m,n| >
δ

k ·M

)
. (3)

Let ε > 0. We can find δ > 0 such that

max
i±1
|P(F(x) − F(x + iδ)

∣∣∣∣ < ε
4
,

and use the hypotheses (1), (2) and (3) to identify an n0 such that for all n > n0 holds

R(x) < ε.

This concludes the proof.
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We can now proof the main result of this article.

Proof. [Proof of Theorem 2.1] We follow the proof in [4].
Let µm = k

2m when λ ∈ [ k−1
2m , k

2m [
µm,n = Nn + [zn(µn − λ)].

We notice that µm is discrete for every m, 0 < µm − λ ≤ 1
2m and that µm,n

zn

P
−→ µm > λ.

We can rewrite the quantity SNn
√

Nn
as

SNn
√

Nn
= Xm,n + Y(1)

m,nZ(2)
m,n + Y(2)

m,nZ(2)
m,n

=
Sµm,n
√
µm,n

+
(SNn − Sµm,n
√

znµm

)√znµm

Nn
+

( √µm,n −
√

Nn
√

Nn

) Sµm,n
√
µm,n

.

From the proof of the discrete version we have the convergence of the law of the random variables

Sµm,n
√
µm,n

= Xm,n = Z(2)
m,n

towards Φ for every m. If follows that

lim sup
n→∞

P
(∣∣∣∣ Sµm,n
√
µm,n

∣∣∣∣ > M
)

= 1 −Φ(M) + Φ(−M).

For every fixed m we have that
lim

M→∞
lim

m→∞
lim sup

n→∞
P(|Z(2)

m,n| > M) = 0.

For the quantity m
2m ≤ N, it holds

lim
n→∞

∣∣∣∣ √µm,n −
√

Nn
√

Nn

∣∣∣∣ =

√
µm

Nn
− 1 ≤

√
1 +

1
m
− 1

so that the random variable Y(2)
m,n satisfies the hypothesis of Lemma 2.7, i.e. for every ε > 0 and j = 1, . . . , k;

lim
m→∞

lim sup
n→∞

P(|Y( j)
m,n| > ε) = 0.

We can follow the proof of the last step as in [4], i.e. we have to prove that for every ε > 0 and j = 1, . . . , k;

L
ε = lim

m→∞
lim sup

n→∞
P
(∣∣∣∣SNn − Sµm,n
√

znµm

∣∣∣∣ > ε) = 0.

In order to calculate the limit, we will divide the event{∣∣∣∣SNn − Sµm,n
√

znµm

∣∣∣∣ > ε}
in the union of simpler sets. With the help of the theorem of total probability we have the following
estimation:

L
ε
≤ lim sup

m→∞
lim sup

n→∞
P
(∣∣∣∣SNn − Sµm,n
√

znµm

∣∣∣∣ > ε, ∣∣∣∣Nn

zn
− λ

∣∣∣∣ < 1
2m ,

∣∣∣∣µm,n

zn
− µm

∣∣∣∣ < 1
2m

)
+ lim sup

m→∞
lim sup

n→∞
P
(∣∣∣∣Nn

zn
− λ

∣∣∣∣ ≥ 1
2m

)
+ lim sup

m→∞
lim sup

n→∞
P
(∣∣∣∣µm,n

zn
− µm

∣∣∣∣ ≥ 1
2m

)
.
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By the hypothesis and observation on Nn
zn

e µm,n

zn
, these last two lim sup are equal to zero.

We can now concentrate on the following limit

L
ε
1 = lim sup

m→∞
lim sup

n→∞
P
(

max
|

i
n−λ|<

1
2m ,|

j
n−µn |< 1

2m

∣∣∣∣ Si − S j
√

znµm

∣∣∣∣ > ε).
An application of the theorem of the total probability leads us to the following inequality

L
ε
1 ≤ lim sup

m→∞
lim sup

n→∞

m2m∑
k=m

P
(k − 1

2m ≤ λ <
m
2m , max

|
i

zn
−λ|< 1

2m

|
j

zn
−λ|< 1

2m−1

∣∣∣∣ Si − S j
√

znµm

∣∣∣∣ > ε)

+ lim sup
m→∞

lim sup
n→∞

P(λ <
m − 1

2m or m ≤ λ).

Let t = [zn(k − 3)s−m]. We can estimate Lε1 by the quantity

L
ε
2 = lim sup

m→∞
lim sup

n→∞

m2m∑
k=m

P
(k − 1

2m ≤ λ <
m
2m , max

|
i

zn
−λ|< 1

2m

|
j

zn
−λ|< 1

2m−1

|Si − St| + |St − S j|
√

nµm
> ε

)
.

We write now Aλ
k,m = { k−1

2m ≤ λ < k
2m }. We have Lε2 ≤ L

ε
3, where

L
ε
3 = lim sup

m→∞

m2m∑
k=m

lim sup
n→∞

2P
(

max
zn(k−3)2−m<r<zn(k+3)2−m

|Sr − St| >
ε
2

√
znk
2m

∣∣∣∣Aλ
k,m

)
P(Aλ

k,m).

By an application of (A2) we obtain

Var
(
Szn(k+3)2−m − Szn(k−3)2−m

)
≤

(zn(k + 3)
2m −

zn(k − 3)
2m + 1

)
τ2 = (6zn2−m + 1)τ2.

We can use this last expression to estimate Lε3:

P
(

max
zn(k−3)2−m<r<zn(k+3)2−m

|Sr − St| >
ε
2

√
znk
2m

)
≤ c

2m+2

ε2znk
Var

(
Sn(k+3)2−m − Sn(k−3)2−m

)
≤ c

2m+2

ε2znk
(6n2−m + 1)τ2

= cτ2 24n + 2m+2

ε2znk
.

For k ≥ m holds

lim sup
n→∞

24n + 2m+2

ε2znk
cτ2
≤

24
ε2m

cτ2.

The proof of the theorem is a consequence of the following Lemma:

Lemma 2.9. Let {kn} and {mn} be two divergent sequences and An ∈ σ(ξkm , . . . , ξmn ). For every set A we have

lim sup
n→∞

P(An|A) = lim sup
n→∞

P(An).

We have in fact that

0 ≤ Lε ≤ lim sup
m→∞

m2m∑
k=m

48cτ
ε2m

P(AN
k,m) = lim sup

m→∞

48
ε2m

cτ2 = 0.
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3. Example

Let us consider the example in [13]. Let Nn be a geometric sum with parameter 1
n so that in probability

Nn
n → λ, where λ is an exponential random variable.

lim
n→∞

P
(∣∣∣∣Nn

n
− λ

∣∣∣∣ > δ) = lim
n→∞

∞∑
k=1

P
(∣∣∣∣ k

n
− λ

∣∣∣∣ > δ ∣∣∣∣Nn = k
)
P(Nn = k)

= lim
n→∞

∞∑
k=1

[
(1 − eδ−

k
n ) + e−δ−

k
n

](
1 −

1
n

)n k
n 1

n
.

Since for every k ≤ 1
e−

k
n e±δ ≤ e−

1
n e±δ = e−

1
n±δ

lim
n→∞

∑
k∈N

(
1 −

1
n

)n k
n 1

n
= 2

∫
∞

0
e−xdx ≤ 2.

By the relation P(λ < 0) = 0, for δ−1
≤ n

P
(∣∣∣∣Nn

n
− λ

∣∣∣∣ > δ) ≤ 1 − eδ−
1
n + e−δ−

1
n 1δ−1>n

P
(∣∣∣∣Nn

n
− λ

∣∣∣∣ > δ) ≤ 1 − eδ−
1
n .

Let δ > 0. For every ε > 0 solving 1− eδ−
1
n < εwith respect to n we obtain an n0(ε) such that for every n ≥ n0,

holds limn→∞ P
(∣∣∣∣Nn

n − λ
∣∣∣∣ > δ) = 0.

Applying the result
√

Nn

τ

(SNn

Nn
− µ

) L
−→ N(0, 1)

as n→∞, where τ2 = σ2 +
∑m+1

i=2 Cov(Xi,X1).

4. Concluding Remarks

In this section we would like to point out a possible extension of the invariance principle for randomly
indexed m-dependent random variables. It would be desirable, in the framework of the previous sections,
to prove the following

Theorem 4.1. Let {Xn}n∈N be a stationary m-dependent sequence of random variables with zero means and finite
variance. Let {Nn}n∈N denote a positive sequence of positive integer-valued random variables such that

Nn

zn

P
−→ λ

as n goes to infinity, where {zn}n∈N is an arbitrary positive sequence tending to +∞ and λ is a positive random
variable. If

• (A1) there exist some k0 ≥ 0 and c > 0 such that, for any λ > 0 and n > k0 we have

P
(

max
k0<k1≤k2≤n

|Sk2 − Sk1 − (k2 − k1)µ| ≥ ε
)
≤

c · Var(Sn − Sk0 )
ε2

and
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• (A2) Cov(X1,Xi) ≥ 0 for i = 2, . . . ,m + 1,

then ∑[ Nn
t ]

i=1 Xi + (Nn · t − [ Nn
t ])X[ Nn

t ]+1
√

Nnτ

L
−→W(t)

as n→∞, where τ2 = σ2 +
∑m+1

i=2 Cov(Xi,X1).

Proof. [Idea of the Proof] To prove this result one might follow Theorem 3.1. in [3]. Form previous proofs
we know that with τ

√
Nn := an the condition (i) in the theorem holds. It has to be checked if:

For each c ∈N and each set (αi, βi : i = 1, . . . , c) ∈ R2c and each ε > 0, set n j := [ jn
c ] and

En,r := {ω ∈ Ω : α j ≤
SNi

an
(ω) ≤ β j : n j−1 < i ≤ n j, i < r and i , r}

holds

lim
N→∞

lim sup
n→∞

n∑
r=1

P(En,r ∩ {|Sr′ − Sr| ≥ εan}) = 0

where r 7→ r′ via r′ = [n(N( j − 1) + u)c−1N−1] := n j,u such that n j,u < r ≤ n j,u+1.

This result may be useful in many practical situations where we are interested in random sums of a
random number of objects: in these situations this result guarantees that we can still approximate the
sample distribution with a normal random variable, independently of the convergence (in probability) of
the normalized counting process.
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