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Abstract. In this paper, we consider the relationships between the number of perfect matchings (1-factors)
for some certain types of bipartite graphs and Fibonacci and Lucas numbers.

1. Introduction

The permanent of an n × n matrix A =
(
ai j

)
is defined by

per (A) =
∑
σεSn

n∏
i=1

aiσ(i)

where the summation extends over all permutations σ of the symmetric group Sn. The permanent of a
matrix is analogous to the determinant, where all of the signs used in the Laplace expansion of minors are
positive [1].

Let A be an n × n matrix, then Brualdi and Cvetkovic show that

per (PAQ) = per (A) (1)

for all permutation matrices P and Q of order n [2]. They also show that if

A =

(
B 0
X C

)
,

where B and C are square matrices, then

per (A) = per (B) per (C) [2]. (2)

Permanents have many applications in physics, chemistry and electrical engineering. One can find the
basic properties and more applications of permanents [1-5]. Some of the most important applications of
permanents are via graph theory. A more difficult problem with many applications is the enumeration

2010 Mathematics Subject Classification. 05C50, 15A15, 11B39.
Keywords. Perfect matching, Bipartite graph, Permanent, Fibonacci number, Lucas number.
Received: 27 June 2016; Accepted: 09 December 2016
Communicated by Dijana Mosić
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of perfect matchings of a graph. It is clearly known that bipartite graphs have an important place in
graph theory. The enumeration or actual construction of perfect matching of a bipartite graph has many
applications, for example, in maximal flow problems and in assignment and scheduling problems arising
in operational research [1]. The number of perfect matchings of bipartite graphs also plays a significant
role in organic chemistry [3].

A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V1 and V2 such
that every edge of G joins a vertex in V1 and a vertex in V2. A perfect matching (or 1-factor ) of a graph
with 2n vertices is a spanning subgraph of G in which every vertex has degree 1. Let A(G) be adjacency
matrix of the bipartite graph G, and let µ(G) denote the number of perfect matchings of G. Then, one can
find the following fact in [1]: µ(G) =

√
per (A(G)).

Let G be a bipartite graph whose vertex set V is partitioned into two subsets V1 and V2 such that
|V1| = |V2| = n. We construct the bipartite adjacent matrix B(G) =

(
bi j

)
of G as following: bi j = 1 if and only

if G contains an edge from vi ∈ V1 to v j ∈ V2, and otherwise bi j = 0. Then, the number of perfect matchings
of bipartite graph G is equal to the permanent of its bipartite adjacency matrix [1].

Fibonacci and Lucas numbers belong to a large family of positive integers. They have many interesting
properties and applications to almost every field of science and art. They continue to provide invaluable
opportunities for exploration, and contribute handsomely to the beauty of mathematics, especially number
theory [6-7].

The well-known Fibonacci sequence {F (n)}∞n=0 and Lucas sequence {L (n)}∞n=0 are defined by the recurrence
relation

F (n) = F (n − 1) + F (n − 2) , F (0) = 0 and F (1) = 1,
L (n) = L (n − 1) + L (n − 2) , L (0) = 2 and L (1) = 1.

for n ≥ 2. These sequences are respectively named as A000045 and A000032 in [8].
The following well-known identity gives the relationship between Lucas numbers and Fibonacci

numbers. For n ≥ 1,

L (n) = F (n − 1) + F (n + 1) = F (n) + 2F (n − 1) . (3)

The relationships between perfect matchings (1-factors) of bipartite graphs and Fibonacci, Lucas
numbers and their generalizations have been extensively discussed by many researchers. For example,
In [9], Lee et al. consider a bipartite graph G

(
An =

(
ai, j

))
with bipartite adjacency matrix is the n × n

tridiagonal matrix of the form

An =



1 1 0 · · · · · · 0

1 1 1
. . .

...

0 1
. . .

. . .
. . .

...
...

. . .
. . .

. . . 1 0
...

. . . 1 1 1
0 · · · · · · 0 1 1


, (4)

with entries are

ai, j =

 1, if
∣∣∣ j − i

∣∣∣ ≤ 1,

0, otherwise.

Then they obtain the number of perfect matchings of G (An) as

per (An) = F (n + 1) , (5)
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where F (n) is the nth Fibonacci number. They also consider a bipartite graph G
(
F

k
n

)
with bipartite adjacency

matrix F k
n =

(
fi, j

)
such that fi, j = 1 if −1 ≤ j− i ≤ k− 1 and fi, j = 0 otherwise, for k ≤ n + 1. Then the number

of perfect matchings of G
(
F

k
n

)
is 1k (n + k − 1) where 1k (n) is the nth k-Fibonacci number.

In [10], Lee considers a bipartite graph G
(
Cn =

(
ci, j

))
with bipartite adjacency matrix is the n× n matrix

of the form

Cn =



1 0 1 0 · · · 0

1 1 1 0
...

0 1
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · · · · 0 1 1


, (6)

with entries are

ci, j =


1, if i = 1 and j = 1, j = 3,

1, if
∣∣∣ j − i

∣∣∣
2≤i≤n ≤ 1,

0, otherwise.

Then for n ≥ 3, they obtain the number of perfect matchings of G (Cn) as

per (Cn) = L (n − 1) , (7)

where L (n) is the nth Lucas number. He also considers a bipartite graph G
(
L

k
n

)
with bipartite adjacency

matrixLk
n = F k

n + E1,k+1 −
∑k

j=2 E1, j for n ≥ 3, where Ei, j denotes the n× n matrix with 1 at the
(
i, j

)
-entry and

zeros elsewhere. Then the number of perfect matchings of G
(
L

k
n

)
is lk (n − 1) , where lk (n) is the nth k-Lucas

number.
In [11], Shiu et al. firstly define the (k, α)-sequences as: For k ≥ 2, n ≥ 1 and α = (a1, a2, . . . am) ∈ Rm,

where R is a ring. The k-sequence
{
sk
α (n)

}
is

sk
α (n) = a1 f k (n + k − 2) + a2 f k (n + k − 3) + . . . + am f k (n + k −m − 1)

=

m∑
i=1

ai f k (n − 1 + k − i) .

The number sk
α (n) is called nth (k, α)-number. Then they give the following result:

For a fixed m ≥ 1, suppose n, k ≥ 2 and n ≥ m. Let G
(
B

k
n (α)

)
a bipartite graph with bipartite adjacency

matrix has the form

B
k
n (α) =


a1 a2 . . . am 0 . . . 0
1
0 F

k
n−1

...
0


.

Then the number of perfect matching of G
(
B

k
n (α)

)
is nth (k, α)-number sk

α (n) .

In [12], Kılıç et al. consider a bipartite graph G (Rn) with bipartite adjacency matrix Rn =
(
ri, j

)
such that

ri, j = 1 if −1 ≤ j − i ≤ 1 or i = 1 and ri, j = 0 otherwise. Then the number of perfect matchings of G (Rn)
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is
∑n

i=0 F (i) = F (n + 2) − 1, where F (n) is the nth Fibonacci number. They also consider a bipartite graph
G (Wn) with bipartite adjacency matrix Wn = Rn + Sn, where Sn denotes the n × n matrix with −1 at the
(1, 2)-entry, 1 at the (2, 4)-entry and zeros elsewhere. Then for n ≥ 4, the number of perfect matchings of
G (Wn) is

∑n−2
i=0 L (i) = L (n) − 1, where L (n) is the nth Lucas number.

One can find more applications related with the number of perfect matchings of bipartite graphs and
the well-known integer sequences [13-20].

In this paper, we consider the relationships between the number of perfect matchings for some certain
types of bipartite graphs and Fibonacci and Lucas numbers.

Let us give the following lemma that will be needed later.

Lemma 1.1. [14] Let {Tn, n = 1, 2, . . .} be sequence of tridiagonal matrices of type n × n in the following form

Tn =



t1,1 t1,2 0 · · · · · · 0

t2,1 t2,2 t2,3
. . .

...

0 t3,2 t3,3
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . tn−1,n
0 · · · · · · 0 tn,n−1 tn,n


.

Then the succesive permanents of Tn are given by the recursive formula:

per (T1) = t1,1,

per (T2) = t1,1t2,2 + t1,2t2,1,

per (Tn) = tn,nper (Tn−1) + tn−1,ntn,n−1per (Tn−2) .

2. Main Results

In this section, we firstly consider some certain types of bipartite graphs. Then we show that the
numbers of perfect matchings for these graphs are equal to the well-known integer sequences.

Lee studies on the bipartite adjacent matrix An in (4), where its main diagonal is in the form of
(1, 1, . . . , 1). Then we wonder what the result would be if the main diagonal is in the form of
(1, 0, 1, 0, . . . , 1, 0, . . .) . We interestingly obtain the following results.

Theorem 2.1. Let G
(
Hn =

(
hi, j

))
(n = 2t, t ∈N) be a bipartite graph with bipartite adjacency matrix is the n × n

tridiagonal matrix of the form

Hn =



1 1 0 · · · · · · · · · 0

1 0 1
. . .

...

0 1 1 1
. . .

...
...

. . . 1 0 1
. . .

...
...

. . . 1
. . . 1 0

...
. . .

. . . 1
0 · · · · · · · · · 0 1


, (8)

where

hi, j =


1, if

∣∣∣ j − i
∣∣∣ = 1,

1, if i = j = 2m − 1 (m ∈N) ,
0, otherwise.
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Then the number of perfect matchings of G (Hn) is 1.

Proof. We prove the theorem by strong induction on t. The claim holds for t = 1 (n = 2) as

per (H2) = per
(

1 1
1 0

)
= 1.

Assume that the claim holds for every k, 2 ≤ k ≤ t. That is, per(H2t) = 1. Then we must show that the claim
is true for t + 1. From Lemma 1.1 we get

per (H2t+2) = h2t+2,2t+2per (H2t+1) + h2t+2,2t+1h2t+1,2t+2per (H2t)
= 0 · per (H2t+1) + 1·1
= 1.

So, the proof is completed.

Theorem 2.2. Let G (Hn) (n = 2t + 1, t ∈N) be a bipartite graph whose with bipartite adjacency matrix Hn given
by (8). Then the number of perfect matchings of G (Hn) is n+1

2 .

Proof. We prove the theorem by strong induction on t. The claim holds for t = 1 (n = 3) as

per (H3) = per

 1 1 0
1 0 1
0 1 1

 = 2.

Assume that the claim holds for every k, 2 ≤ k ≤ t. That is, per(H2t+1) = t + 1. Then we must show that the
claim is true for t + 1. From Lemma 1.1 we get

per (H2t+3) = h2t+3,2t+3per (H2t+2) + h2t+3,2t+2h2t+2,2t+3per (H2t+1) (9)

Since per (H2t+2) = 1 from Theorem 2.1 and per(H2t+1) = t + 1, we get (9) as

per (H2t+3) = 1 · 1 + 1 · (t + 1)
= t + 2,

which is desired.

Considering the main diagonal of the matrix An is (1, 0, 1, 0, 1, . . . , 1) ,we obtain a different result. Let us
give it.

Theorem 2.3. Let G
(
Kn =

(
ki, j

))
be a bipartite graph with bipartite adjacency matrix is the n× n tridiagonal matrix

of the form

Kn =



1 1 0 · · · · · · · · · 0

1 0 1
. . .

...

0 1 1 1
. . .

...
...

. . . 1 0 1
. . .

...
...

. . . 1 1 1 0
...

. . .
. . .

. . . 1
0 · · · · · · · · · 0 1 1


,

where k2,2 = k4,4 = 0, all other terms on the main diagonal are 1, all terms on the subdiagonal and superdiagonal are
1 and otherwise ki, j = 0. Then for n ≥ 3, the number of perfect matchings of G (Kn) is the (n − 3)rd Lucas number
L (n − 3) .
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Proof. By applying the Laplace expansion for permanent according to 4th row of Kn, we get

per (Kn) = per
(

X3 03×(n−1)
∗ An−4

)
+ per

(
Y4 ∗

0(n−5)×4 An−5

)
(10)

where X3,Y4 are respectively the matrices of order of 3 and 4 as

X3 =

 1 1 0
1 0 0
0 1 1

 , Y4 =


1 1 0 0
1 0 1 0
0 1 1 1
0 0 0 1

 ,
0m×n is the m × n null matrix and An is the matrix given by (4). By using (2), we can write (10) as

per (Kn) = per (X3) per (An−4) + per (Y4) per (An−5) . (11)

Taking into account per (X3) = 1, per (Y4) = 2 and (5), we get (11) as

per (Kn) = F (n − 3) + 2F (n − 4) .

The result follows by using (3).

Next, we study bipartite graphs whose adjacency matrices have anti-diagonal forms.

Theorem 2.4. Let G
(
Bn =

(
bi, j

))
be a bipartite graph with bipartite adjacency matrix is n×n anti-tridiagonal matrix

Bn =



0 · · · · · · 0 1 1
... . . . 1 1 1
... . . . . . . . . . 1 0

0 . . . . . . . . . . . .
...

1 1 . . . . . .
...

1 1 0 · · · · · · 0


, (12)

where

bi, j =

 1, if
∣∣∣i + j mod (n + 1)

∣∣∣ ≤ 1,

0, otherwise.

Then for n ≥ 2, the number of perfect matchings of G (Bn) is the (n + 1)st Fibonacci number F (n + 1).

Proof. Let Jn be the n × n backward identity matrix (see e.g. [21])

Jn =



0 · · · · · · 0 0 1
... . . . 0 1 0
... . . . . . . . . . 0 0

0 . . . . . . . . . . . .
...

0 1 . . . . . .
...

1 0 0 · · · · · · 0


. (13)

With the help of the matrix Jn, we can write

Bn = JnAn (14)
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where An is the matrix given by (4). Taking into account per(Jn) = 1 and (1), we get (14) as

per (Bn) = per (An) .

The result now follows by taking into account (5).

Theorem 2.5. Let G
(
Dn =

(
di, j

))
be a bipartite graph with bipartite adjacency matrix is

Dn =



0 · · · 0 1 0 1
... 0 1 1 1
... . . . . . . . . . 1 0

0 . . . . . . . . . . . .
...

1 1 1 . . .
...

1 1 0 · · · · · · 0


where

di, j =


1, if i = 1 and j = n − 2, j = n,

1, if
∣∣∣i + j mod (n + 1)

∣∣∣
2≤i≤n ≤ 1,

0, otherwise.

Then for n ≥ 3, the number of perfect matchings of G (Dn) is the (n − 1)st Lucas number L (n − 1).

Proof. With the help of the matrix Jn in (13), we have

Dn = Cn Jn,

where Cn is the matrix given by (6). Taking into account per(Jn) = 1 and (1), we get the last equation as

per (Dn) = per (Cn) .

The result follows by taking into account (7).

Theorem 2.6. Let G
(
Un =

(
ui, j

))
be a bipartite graph with bipartite adjacency matrix is

Un =



1 1 · · · · · · 1 1 1
0 · · · · · · 0 1 1 1
... . . . 1 1 1 0
... . . . . . . . . . 1 . . .

0 1 . . . . . . . . .
...

1 1 1 . . . 0
1 1 0 · · · · · · 0 0


(15)

where

ui, j =


1, if i = 1 and 1 ≤ j ≤ n,

1, if
∣∣∣i + j mod (n + 1)

∣∣∣
2≤i≤n ≤ 1,

0, otherwise.

Then for n ≥ 2, the number of perfect matchings of G (Un) is F (n + 2) − 1.
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Proof. By applying the Laplace expansion for permanent according to the last column of Un, we get

per (Un) = per (Bn−1) + per (Un−1) ,

where is Bn is the matrix given by (12). By using Theorem 2.4 we get the last equation as

per (Un) − per (Un−1) = F (n) . (16)

The result follows by solving the difference equation (16).

Theorem 2.7. Let G
(
Vn =

(
vi, j

))
be a bipartite graph with bipartite adjacency matrix is

Vn =



1 1 · · · · · · 1 1 0 1
0 · · · · · · 0 1 1 1 1
... . . . 0 1 1 1 0
... . . . . . . . . . 1 1 0 0

0 . . . . . . . . . 1 . . . . . .
...

0 1 1 . . . . . . . . .
...

1 1 1 0 0 · · · · · · 0
1 1 0 0 · · · · · · 0 0


where

vi, j =


1, if i = 1 and 1 ≤ j ≤ n − 2, j = n,
1, if i = 2 and j = n − 3,

1, if
∣∣∣i + j mod (n + 1)

∣∣∣
2≤i≤n ≤ 1,

0, otherwise.

Then for n ≥ 3, the number of perfect matchings of G (Vn) is L (n) − 1.

Proof. By applying the Laplace expansion for permanent according to penultimate column of Vn, we get

per (Vn) = per (Bn−2) + per (Un−1) ,

where Bn and Un−1 are respectively the matrices given by (12) and (15). Taking into account Theorem 2.4
and Theorem 2.6, we get

per (Vn) = F (n − 1) + F (n + 1) − 1

The result follows by using (3).

Rimas considers a pentadiagonal matrix Pn =
(
pi, j

)
(This matrix is Dn (α) for α = 1 in [22] and [23]) as

Pn =



1 0 1 0 · · · · · · 0

0 1 0 1
. . .

...

1 0 1
. . .

. . .
. . .

...

0 1
. . .

. . .
. . . 1 0

...
. . .

. . .
. . .

. . . 0 1
...

. . . 1 0 1 0
0 · · · · · · 0 1 0 1


. (17)
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with the entries are

pi, j =


1, if i = j,

1, if
∣∣∣ j − i

∣∣∣ = 2,

0, otherwise.

Then, he gives a connection between the determinant of Pn and the determinant of An given by (4) by using
Laplace expansion as

det (Pn) =


det

(
A n−1

2

)
det

(
A n+1

2

)
, if n is odd,(

det
(
A n

2

))2
, if n is even

[22, 23].
By the similar way, we have the following result for the permanent of Pn with the help of Laplace

expansion for permanent.

Corollary 2.8. Let Pn be the n × n pentadiagonal matrix given by (17). Then,

per (Pn) =


per

(
A n−1

2

)
per

(
A n+1

2

)
, if n is odd,(

per
(
A n

2

))2
, if n is even,

where An is given by (4).

Now we can present the following theorem related to bipartite graph with bipartite adjacency matrix Pn
given by (17).

Theorem 2.9. Let G (Pn) be a bipartite graph with bipartite adjacency matrix is Pn given by (17). Then the number
of perfect matchings of G (Pn) is

per (Pn) =


F
(

n+1
2

)
F
(

n+3
2

)
, if n is odd,(

F
(

n
2 + 1

))2
, if n is even.

Proof. The proof is obtained by taking into account (5) and Corollary 2.8.

3. Conclusion

The results show that there is a strong connection between graph theory and number theory such that
the bipartite graphs studied in the manuscript whose the numbers of perfect matchings correspond to some
of the well-known integer sequences.

Acknowledgements. The author thanks the anonymous referees for their careful reading of the paper and
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