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On Some Exact Distributions in Ranked Set Sampling
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Abstract. In this article we obtain the exact joint distribution of a ranked set sample. We show that this
distribution belongs to the family of unified multivariate skew normal distributions. We also investigate
a multivariate skew-t distribution 62J12 using ranked set samples as an application of our results. A
numerical example is also provided to illustrate our results.

1. Preliminary

The theory of ranked set sampling (RSS) has been studied extensively in recent decades and is applicable
when the observations are easier ranked than measured. The concept of ranked set sampling was first
suggested by McIntyre (1952) who noted that it is much superior to the standard simple random sampling
(SRS) for the estimation of the population mean.

Suppose m random samples with m units in each sample are selected from a normal population with
mean µ and variance σ2 and the following sets of m items are obtained.

X11, X12, ...,X1m
X21, X22, ...,X2m
...

Xm1, Xm2, ..., Xmm.
McIntyre’s concept of RSS depends on measuring the first ordered unit from the first set, the second

ordered unit from the second set and so on, until we reach the maximum unit from the last set. In other
words, the items in the first set X11, X12, ...,X1m are ranked by judgment and smallest is quantified. Then
the items in the set X21, X22, ...,X2m are ranked by judgment and the second smallest is quantified. The
procedure is repeated until in the last set Xm1, Xm2, ..., Xmm, the largest item is quantified. This completes a
one sampling cycle and the set X(1)1, X(2)1, ...,X(m)1 is called a ranked set sample in the first cycle. If the cycle
is repeated r times, we obtain a RSS of size rm units. Let X(i) j denote the i−th minimum of the i−th sample
of size m in the j−th cycle, i = 1, 2, ...,m, j = 1, 2, ..., r. An unbiased estimator of the population mean in the
j−th cycle is

X̄RSS, j = 1
m

∑m
i=1 X(i) j , j = 1, 2, ..., r.

Another unbiased estimator of the population mean is
X̄RSS = 1

mr
∑r

j=1
∑m

i=1 X(i) j .
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Al-Saleh and Al-Kadiri (2000) provided an explicit formula for obtaining the probability of all possible
orderings of the elements of the RSS. The distribution of XORSS

(r:k) in an ordered ranked set sample scheme was
obtained by Balakrishnan and Li (2005). The results of these two papers were used by Li and Balakrishnan
(2008) to obtain an exact null distribution for use in some non-parametric tests in RSS. There are large
number of important papers in this direction and one may refer to Stokes (1977), Chen and Shen (2002)
and Al-Saleh and Ananbeh (2005) for more details. Chen et al. (2003) provides a comprehensive review on
various developments on RSS and its variates.

The skew normal distribution was first introduced by Azzalini (1985). Some extensions to the multi-
variate setting has been proposed by several authors, e.g., Azzalini and Dalla Valle (1996), Arellano-Valle
and Azzalini (2006) and Genton (2004), etc. Following Arellano-Valle and Azzalini (2006) we say that the
random vector Y has a unified multivariate skew normal distribution, if its density can be written as

fY
(
y
)

= φd
(
y;ξ, Ω

) Φm

(
γ + ΛTΩ−1 (

y − ξ
)

; Γ −ΛTΩ−1Λ
)

Φm

(
γ; Γ

) y ∈ Rd (1)

where ϕd( ., ξ, Ω) is the density function of a d-dimensional normal with mean vector ξ and covariance
matrix Ω and Φm(.;

∑
) is the multivariate normal cumulative function with the covariance matrix

∑
. We

write Y ∼ SUNd,m

(
ξ, γ, Ω, Γ, Λ

)
.

In this paper we derive the distribution of the random vector X(m) = (X(1) j, X(2) j, ...., X(m) j)T,
j = 1, 2, ..., r and use this distribution to present a statistic test based on these ranked set samples. We use
the connection of order statistics and skew normal distribution (see e.g., Loperfido, 2008 and Sheikhi et al.,
2013 ) to show that this distribution belongs to the unified multivariate skew normal family.

Arellano-Valle and Azzalini (2006) introduced three types of a singular skew normal distribution. We
say that Y has a singular unified skew normal distribution and write Y ∼ SSUNd,m(ξ, δ,Ω, Γ, Λ), if both

the matrices Γ and Ω are of full ranks (rank(Γ) =m and rank(Ω) =d ) but Σ∗ =

(
Γ ΛT

Λ Ω

)
is a singular matrix

with rank(Σ∗) <m+d . For more details, see Arellano-Valle and Azzalini (2006) and Sheikhi and Jamalizadeh
(2011).

Besides the skew normal distribution, the skew-t distribution has also received much attention. Similar
to (1), the density of a unified multivariate skew-t random vector W, denoted by W ∼ SUTd,m

(
ξ, γ, Ω, Γ, Λ, v

)
,

is

1W (w) = td (w;ξ, Ω, v)
Tm

(
γ + ΛTΩ−1 (w − ξ) ; (w−ξ)TΩ−1(w−ξ)

v+d (Γ −ΛTΩ−1Λ), v + d
)

Tm

(
γ; Γ, v

) w ∈ Rd (2)

where tk( ., ξ, Ω, v) is the pdf of a k-dimensional t-distribution with mean ξ, covariance matrix Ω and
degree of freedom v. Also, Tm (.; Ω, v) is the cdf of a centred k-dimensional t-distribution.

Now, let X be a random vector in Rn follows a multivariate normal distribution such that

X ∼ Nn

(
µ1n, Σ = σ2

{(
1 − ρ

)
In + ρ1n1T

n

})
, (3)

where ρ is the correlation coefficient between any two components of X , 1n = (1, ..., 1)T has n components
and In is the identity matrix of dimension n. In other words, the random vector X has an exchangeable
multivariate normal distribution.

The aim of this section is to give a new proof of the independence between the mean and variance
of random variables X1,X2, ...,Xn when the corresponding joint distribution is multivariate exchangeable
normal. The independence of the sample mean X̄ and the sample variance S2 when X1,X2, ...,Xn is a
random sample from a normal distribution has been proved by many authors (e.g., Basu, 1955). Arnold
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(1973) has discussed the independence of squared order statistics, Azzalini and Capitanio (1999) have used
the properties of skew normal distributions to prove the Cochran theorem, while Gupta and Huang (2002)
have proved the independence of linear and quadratic forms of skew normal variables. Bathachria (1974)
has established that given the value of order statistics, the concomitant variables are independent. In
Asymptotic independence and limit theorem, Suresh (1993) has shown that the central concomitants and
extreme concomitants are asymptotically independent.

In 2002, Loperfido first showed that ordered statistics and skew normal distributions are intimately
connected. In this section we use this connection to present a new proof of the independence of X̄ and S2.

The following lemma is useful in what follows and is similar to the Proposition 6 in Azzalini and
Capitanio (2001).

Lemma 1: If Y ∼ SSUNd,m(ξ,δ,Γ,Λ,Ω) where Ω = (ωi j), i, j = 1, 2, ..., d and Λ = (λT
1 , λ

T
2 , ..., λ

T
d )T. Then the

k-th component of Y is independent of the other components if the following two conditions hold:
1) ωkj = 0 ∀ j , k
2)λk = 0

Proof: Let

y =

(
y−k
yk

)
, ξ =

(
ξ1k−1
ξ

)
, Ω =

(
Ω−k−k 0T

0 ωkk

)
,Λ = (Λ−k, 0)T

where y−k is the vector y which its k−th component is removed and Ω−k−k is the covariance matrix of y−k. If
the conditions (1) and (2) hold, we have

ϕd
(
y − ξ; Ω

)
= ϕ

(
yk − ξ; σ2

)
ϕd−1

(
y−k − ξ−k; Ω−k

)
,

Φm

(
δ + ΛTΩ−1 (

y − ξ
)

; Γ −ΛTΩ−1Λ
)

= Φm

(
δ + ΛT

−kΩ
−1
−k

(
y − ξ

)
; Γ −ΛT

−kΩ
−1
−kΛ−k

)
= Φm

(
δ + ΛT

−kΩ
−1
−k

(
y−k − ξ−k

)
; Γ −ΛT

−kΩ
−1
−kΛ−k

)
.

Hence,

fY
(
y
)

= ϕ
(
yk − ξ; σ2

)
ϕd−1

(
y−k − ξ−k; Ω−k

)
×

Φm

(
δ + ΛT

−kΩ
−1
−k

(
y−k − ξ−k

)
; Γ −ΛT

−kΩ
−1
−kΛ−k

)
Φm (δ; Γ)

,

which implies the assertion. �

Suppose S(X) = {X(i) = PiX; i = 1, 2, ...,n!}where Pi is an n×n permutation matrix. Let ∆ be the difference
matrix of dimension (2n − 3) × n such that its first n − 1 rows are of the form eT

n, i− eT
n, 1, i = 2, ...,n, and its

last n − 2 rows are of the form eT
n, i− eT

n, 2, i = 3, ...,n where en,1, en,2, ..., en,n are n-dimensional standard unit
vectors. Then ∆X = (X2 − X1, X3 − X1, ..., Xn − X1, X3 − X2, X4 − X2..., Xn − X2)T.

We now have the following theorem.

Theorem 1: Let the random vector X = (X1,X2, ...,Xn)T have a multivariate exchangeable normal distribution, then
X̄ and S2 are independent.
Proof: Since X̄ = 1

n
∑n

i=1 Xi:n and S2 = 1
2n(n−1)

∑n
i=1

∑n
j=1(Xi:n − X j:n)2, it is sufficient to show that

∑n
i=1 Xi:n and

Xi:n −X j:n are independent for all i and j. WLOG the proof reduces to showing that
∑n

i=1 Xi:n is independent
of X1:n − X2:n.

Let a = (1, 1, ..., 1)T and b = (1,−1, 0, 0, ..., 0)T be two n-dimensional vectors and X(n) = (X1:n, X2:n, ...,Xn:n)T

denotes the vector of order statistics of X,
is, then aTX(n) =

∑n
i=1 Xi:n and bTX(n) = X1:n − X2:n. The joint

distribution of aTX(n) and bTX(n) is

FaTX(n),bTX(n)

(
y1, y2

)
= P

(
aTX(n) ≤ y1,bTX(n) ≤ y2

)
=

n!∑
i=1

P
(
aTX(i)

≤ y1,bTX(i)
≤ y2|∆X(i)

≥ 0
)

P
(
∆X(i)

≥ 0
)
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where X(i) stands for the i-th permutation of X. By the exchangeability assumption, we have P
(
∆X(i)

≥ 0
)

=(
1
n!

)
, i = 1, 2, ...,n!. Hence,

FaTX(n),bTX(n)

(
y1, y2

)
= P

(
aTX ≤ y1,bTX ≤ y2|∆X ≥ 0

)
.

Moreover ∆X
aTX
bTX

 ∼ N2n−1


 0

nµ
0

 ,
 ∆Σ∆T ∆Σa ∆Σb

aTΣa aTΣb
bTΣb




Since both ∆X and (aTX, bTX)T are of full rank but

 ∆X
aTX
bTX

 is not, according to the Case (3) of Arellano-

Valle and Azzalini (2006) we conclude that (aTX, bTX)T
|∆X > 0 ∼ SSUN2,2n−3(ξ , 0, Ω, ∆Σ∆T, Λ) where

ξ =

(
nµ
0

)
, Ω =

(
aTΣa aTΣb

bTΣb

)
, Λ =

(
∆Σa
∆Σb

)
.

We then easily obtain aTΣb =0 and ∆Σa = 02n−3, So Lemma 1 finishes the proof. �
The following two corollaries are now a direct consequence of Theorem 1.
Corollary 1. Let the random vector X = (X1,X2, ...,Xn)T have a multivariate exchangeable normal distribution,

then X̄ and range W = X(n) − X(1) are independent.
Corollary 2. If X1,X2, ...,Xn is a random sample form N

(
µ, σ2

)
, then X̄ and S2 are independent.

The rest of this paper is organized as follows. In Section 2, we obtain the the exact distribution of the
random vector X(m) = (X(1) j, X(2) j, ...., X(m) j)T in a ranked set sample. In Section 3, by constructing an unified
skew-t distribution, in a special case, we present an application of our results. Finally we illustrate our
results by a numerical example.

2. Distribution of Ranked Set Samples

Let the random vectors X j = (X j1, X j2, ...., X jm)T for j = 1, 2, ...,m, be iid Nm(µ = µ1m,
∑

= σ2Im).
For k = 1, 2, ...,m, define the difference matrices ∆k of dimension m − 1 ×m such that the first k − 1 rows

of ∆k are eT
m, 1− eT

m, i, i = 2, 3, ..., k, and the last m − k are eT
m, i− eT

m, 1, i = k + 1, k + 2, ...,m − 1, where eT
m, i is the

unit basis vector of dimension m. For example, for m = 3 we have

∆1=

(
−1 1 0
−1 0 1

)
, ∆2=

(
1 −1 0
−1 0 1

)
, ∆3=

(
1 −1 0
1 0 −1

)
.

Further let X(i)
j be the permutation of the random vectors X j, such that its i−th element is located in the

first place.

Theorem 2: Under the ranked set sample setting,

X(m) ∼ SUNm, m(m−1)(µ1m, 0m(m−1), σ2Im, Γ, Λ).

where

Γ =σ2


∆1∆

T
1 ∆1∆

T
2 ... ∆1∆

T
m

∆2∆
T
2 ... ∆2∆

T
m

...
...

...
.. . ∆m∆T

m

 , Λ =σ2


δ1
δ2
...
δm


and for k = 1, 2, ...,m,δk is an m − 1 ×m matrix which its k−th column is equal to the first column of ∆k and
all other components are zero.
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Proof: WLOG we consider j = 1. By the theorem of total probability we have

FX(m) (x) = P
(
X(1)1 ≤ x1, X(2)1 ≤ x2, ...., X(m)1 ≤ xm

)
=

m∑
k1=1

m∑
k2=1

...
m∑

km=1

P
(
X1k1 ≤ x1, X2k2 ≤ x2, .... + Xmkm ≤ xm|Ak1, k2, ...,km

)
P
(
Ak1, k2, ...,km

)
where Ak1, k2, ...,km = {∆1X(k1)

1 ≥ 0, ∆2X(k2)
2 ≥ 0, .... ∆mX(km)

m ≥ 0} . We note that for i, j = 1, 2, ...,m, X(i)
j are iid

Nm

(
µ,

∑)
and by their independence we have

P
(
Ak1, k2, ...,km

)
= P(∆1X(k1)

1 ≥ 0, ∆2X(k2)
2 ≥ 0, .... ∆mX(km)

m ≥ 0)

= P(∆1X(k1)
1 ≥ 0)P(∆2X(k2)

2 ≥ 0)...P(∆mX(km)
m ≥ 0)

=
(m − 1)!

m!
×

(m − 1)!
m!

× ... ×
(m − 1)!

m!

= (
1
m

)m

Also, for k = 1, 2, ...,m the joint distribution of
(
∆1X(k1)

1 , ∆2X(k2)
2 , ..., ∆mX(km)

m

)T
and X(m) follows a m2

dimensional multivariate normal distribution with

µ =


0m−1
0m−1
...

0m−1
µ1m


and

∑
= σ2


∆1∆

T
1 ∆1∆

T
2 ... ∆1∆

T
m δ1

∆2∆
T
2 ... ∆2∆

T
m δ2

...
...

...
...

... ∆m∆T
m δm

Im


.

Now, Similar to Sheikhi et al. (2013 ) we immediately conclude that the distribution of X(m) is the same
as

(X1k1 , X2k2 , ....,Xmkm )T
|Ak1, k2, ...,km ∼ SUNm, m(m−1)(µ1m, 0m(m−1), σ2Im, Γ, Λ)

where the parameters are as in the theorem. Since the terms in the summations do not depend on k1, k2, ..., km
we readily obtain

FX(m) (x) = mm
× FSUN( x ;µ1m, 0m(m−1), σ

2Im, Γ, Λ)(
1
m

)m

= FSUN( x ;µ1m, 0m(m−1), σ
2Im, Γ, Λ) .

This proves the assertion. �

3. An Application

In this section we present an application of our results which relies on the relation between skew normal
and skew-t distribution. We first state the following lemma (See, e.g., Arellano Valle and Azzallini, 2006)

Lemma 2: If Y ∼ SUNd,m

(
ξ, γ, Ω, Γ, Λ

)
and b is an arbitray vector in Rd then

a) bTY ∼ SUNd,m

(
bTξ, γ, bTΩb , Γ, Λ

)
b)M(

Y−ξ
)T

A−1
(
Y−ξ

)(t) =
∣∣∣Ip − 2tAΩ

∣∣∣−1/2 Φm

(
γ; 0, Γ+2tΛT(Ip−2tAΩ)−1

AΛ
)

Φm(γ; 0,Γ) .

We now consider m = 2 and show that the distribution of X̄RSS−ξ

SRSS/
√

2
is skew-t, where X̄RSS is the mean of

X(1)1 and X(2)1 and SRSS is their standard deviation. Since X̄RSS and S2
RSS are independent via Lemma 1, we

can readily deduce the following corollary
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Corollary 3: If m = 2, the following results hold:
a) X̄RSS ∼ SUN1,2

(
µ, 02, σ2,Γ, Λ

)
b) U = S2

RSS/σ
2
∼ χ2

2

c) T = X̄RSS−ξ

SRSS/
√

2
∼ SUT1,2

(
0, 02, 1, 2σ2I2,, M, 1

)
.

Proof: Part (a) is a direct consequence of Theorem 2 and we only prove parts (b) and (c).

Let X(2) =
(
X(1), X(2)

)T
then by Theorem 2 we have X(2) ∼ SUN2, 2(µ12, 02, σ2I2, 2σ2I2, Λ) where

Λ =σ2dia1(−1, 1) and U =
(
X(2)−ξ

)T
Ω−1

(
X(2)−ξ

)
. Using lemma 2 we have A = σ−2I2 and

MU(t) = |I2 − 2tI2|
−1/2

Φm

(
0; 0, Γ + 2tΛT

(
Ip − 2tAΩ

)−1
AΛ

)
Φm (0; 0, Γ)

= (1 − 2t)−1
Φm

(
0; 0, 2σ2I2 + 2tσ2(1 − 2t)−2I2

)
Φm (0; 0, 2σ2I2)

= (1 − 2t)−1,

which is the moment generating function of χ2
2. Note that the last equality holds since both covariance

matrices in the numerator and dominator are diagonal.
c) Using parts (a) and (b) we have
Z = X̄RSS−ξ

σ ∼ SUN1,2

(
0, 02, 1 , 2σ2I2, Λ

)
and after some algebra we obtain

fT(t) =
1

√
π(1 + x2

2 )3/2

∫
∞

0

y3/2e−tΦ2

(
σ2

2 ( 2t
1+ t2

2

)1/2(−1, 1)T; M
)

Φ2(0; 2σ2I)
dy

= 4t(0, 1, 2)T2

σ2

2
(

2t
1 + t2

2

)1/2(−1, 1)T; M, 3

 ,
where M = 1

8

(
7 1
1 7

)
, which is the distribution of SUT1,2

(
0, 02, 1, 2σ2I2, M, 1

)
. This ends the proof. �

4. Numerical Study

In this section we present a numerical application of our results. Suppose a manufacturer of cable wire
wants to assess if the diameter of the cable meets specifications. A cable wire must be 0.55 ± 0.05 cm in
diameter to meet engineering specifications. Analyst evaluate the capability of the process to ensure it is
meeting reliability requirements. Once every hour, for two hours, he samples two consecutive cable wires
from the production line and records their diameters. He then repeats this cycle r times, for an arbitrary
j = 1, 2, . . . , r. An example of such data is available in Minitab Statistical Software. For this purpose, we
consider the data of the first five cycles, are collected as

First sample Second sample
Cycle 1 0.529, 0.550 0.555, 0.541
Cycle 2 0.543, 0.557 0.559, 0.581
Cycle 3 0.493, 0.534 0.527, 0.511
Cycle 4 0.559, 0.519 0.562, 0.551
Cycle 5 0.545, 0.588 0.544, 0.561.
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If we apply the ranked set sampling scheme to this data, we may estimate the distribution of mean of
the ranked set sampling estimator in each cycle, i.e. X̄RSS, j, j = 1, 2, ..., 5.

We assume that the diameter of these wires follows a normal distribution and the maximum likelihood
estimators of mean and variance are obtained as µ̂ = 0.54748 and σ̂2 = 0.00046. By part (a) of Corollary
3, we obtain the density of mean of the ranked set samples as X̄RSS ∼ SUN1,2

(
µ, 02, σ2,Γ, Λ

)
, where

Γ = 0.00046
(

∆1∆
T
1 ∆1∆

T
2

∆2∆
T
2

)
and Λ = 0.00046

(
δ1
δ2

)
. Therefore, the distribution of T = X̄RSS−ξ

SRSS/
√

2
follows a

unified skew-t, i.e., SUT1,2

(
0, 02, 1, 2σ2I2,, M, 1

)
.

As can be seen, this distribution only depends on the variance of population and enables the analyst to
identity which product exceeds the control limits.

5. Conclusion

In this work we obtain the exact distribution of ranked set samples as well as the distribution of their
mean. We model these distributions based on the unified multivariate normal distributions. The results
can possibly be extended to double RSS, multistage RSS and (moving) extreme RSS schemes. For more
information, see Al-Saleh and Al-Omari (2002), Al-Saleh and Samawi (2010) and Salehi and Jafari (2015).
We hope to generalize our work to obtain the exact distribution of X̄RSS = 1

mr
∑r

j=1
∑m

i=1 X(i) j in the both
balanced and unbalanced cases. We also trying to obtain a test statistic from the ranked set samples when
m > 2.
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