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On Perturbed Monomials on 2-adic Spheres Around 1
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Abstract. We provide a complete description of ergodic perturbed monomials on 2-adic spheres around
the unity.

1. Introduction

As it was mentioned in [4], non-expanding dynamics on the ring of p-adic integers Zp have been
explicitly studied in many papers like [3], [2], [8] and [7]. Recently, some results on dynamical systems
were considered on spheres [4] and on general compact sets [9]. First results on ergodicity for monomial
dynamical systems on p-adic spheres were obtained in [6]. Later, ergodicity criteria for locally analytic
dynamical systems on p-adic spheres were studied in [1].

LetZ2 denote the ring of 2-adic integers endowed with its ultra-metric norm | · | and natural probability
measure µ. It is known that each element x from Z2 has the form x =

∑
∞

i=0 xi2i, where xi ∈ {0, 1}.
Let S consist of a collection of 2nZ2-cosets and for arbitrary x ∈ S let the elements x, f (x), . . . , f k−1(x) be

representatives of distinct classes of 2nZ2-cosets, where k = 2nµ(S).
An isometric function f : Z2 → Z2 is said to be transitive modulo 2n on S if the set {x, f (x), . . . , f k−1(x)}

is composed of only one cycle. In other words, f k(x) = x (mod 2n), but f r(x) , x (mod 2n), for all r < k.
We recall that in [2, Theorem 1.1.] and [3, Proposition 4.35.] we find that an isometric function

f : Z2 → Z2 is ergodic on S if and only if it is transitive modulo 2n on the set S for every positive integer
n. Moreover, [4, Section 4.] is about perturbed monomials on spheres S2r (1) centered at 1 with radius 2−r.
These are functions of the form f (x) = xs + 2r+1u(x), where the function u is 1-Lipschitz. Our attempt is to
study these functions with arbitrary functions u defined on the ring Z2. We describe all ergodic perturbed
monomials of this form on S2r (1) for different values of integers s and r. Then, [4, Theorem 4.1.] is obtained
as a direct consequence of this description. Our results are based on some reformulation of [7, Lemma 3.12.]
on a compact set of Z2 which consists of two disjoint balls of the same measure.

2. Main Results

Lemma 2.1. Let a and b be different nonnegative integers. Let a, b < 2k, where k is some positive integer. Set
S = (a + 2kZ2)] (b + 2kZ2). Let f : S→ S be isometric. Then, f is ergodic on S if and only if the following conditions
are satisfied
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(1) f (a) − b = 0 (mod 2k),
(2) f (a) + f (b) = a + b + 2k (mod 2k+1),

(3)
∑

εk ,...,εk+n∈{0,1}

(
f (a +

k+n∑
i=k
εi2i) + f (b +

k+n∑
i=k
εi2i)

)
=

∑
εk ,...,εk+n∈{0,1}

(
a +

k+n∑
i=k
εi2i + b +

k+n∑
i=k
εi2i

)
+ 2k+n+1 (mod 2k+n+2),∀n ≥ 0.

Proof. Recall that according to [7, Lemma 3.12.], an isometric function 1 is transitive modulo 2n+1, n ≥ 1, if
and only if it is transitive modulo 2n and Sn is odd, where

Sn =
∑

0≤m≤2n−1

1mn , 1(m) =

∞∑
i=0

1mi 2
i, 1mi ∈ {0, 1},∀i ≥ 0.

This can be expressed as

2n
−1∑

m=0

1(m) =

2n
−1∑

m=0

m + 2n (mod 2n+1). (2.1)

Let ψ : Z2 → S defined by ψ(x) =

{
2k−1x + a, x ∈ 2Z2;
2k−1(x − 1) + b, x ∈ 1 + 2Z2.

It is clear that 1 := ψ−1
◦ f ◦ ψ is ergodic on Z2 if and only if f is ergodic on S. For n ≥ 2 (2.1) can be

written as

(2.1)⇔
2n
−1∑

m=0

ψ−1
◦ f ◦ ψ(m) = 2n−1(2n

− 1) + 2n (mod 2n+1)

⇔

∑
0≤m≤2n−1, m even

ψ−1
◦ f (2k−1m + a) +

∑
0≤m≤2n−1, m odd

ψ−1
◦ f (2k−1(m − 1) + b) = 2n−1 (mod 2n+1)

⇔

∑
0≤m≤2n−1, m even

(
f (2k−1m + a) − b

2k−1
+ 1 +

f (2k−1m + b) − a
2k−1

)
= 2n−1 (mod 2n+1)

⇔

∑
0≤m≤2n−1, m even

(
f (2k−1m + a) + f (2k−1m + b)

)
= 2n−1(a + b) (mod 2n+k)

⇔

∑
εk ,...,εk+n−2∈{0,1}

 f (a +

k+n−2∑
i=k

εi2i) + f (b +

k+n−2∑
i=k

εi2i)

 =
∑

εk ,...,εk+n−2∈{0,1}

a +

k+n−2∑
i=k

εi2i + b +

k+n−2∑
i=k

εi2i

+2n+k−1 (mod 2n+k).

On the other hand it is clear that f is transitive modulo 2k on S if and only if Condition (1) is satisfied and
Condition (2) is equivalent to (2.1) for n = 1.

Theorem 2.2. Let s and r be positive integers. Assume that s = 1 (mod 4). Let the functions f and u be defined on
Z2 such that f (x) = xs + 2r+1u(x). Denote by S2r (1) the sphere of radius 2−r centered at 1. Then, f is ergodic on S2r (1)
if and only if u satisfies the following conditions:

(1) |u(x) − u(y)| < 2r+1
|x − y|,∀x, y ∈ S2r (1),

(2)
∑

εr+1,...,εl∈{0,1}
u(1 + 2r +

l∑
i=r+1

εi2i) = 2l−r (mod 2l−r+1),∀l ≥ r.
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Proof. It is clear that 1(x) = xs is isometric on S2r (1). Then, f is also isometric on this set if and only if
Condition (1) is satisfied. On the other hand, applying Lemma 2.1 if f is isometric on S2r (1) then it is also
ergodic on this set if and only the following formula holds:

∑
εr+1,...,εl∈{0,1}

f (1 + 2r +

l∑
i=r+1

εi2i) =
∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) + 2l+1 (mod 2l+2),∀l ≥ r. (2.2)

The main idea of the proof is based on the fact that the function 1 is ergodic on some specific subsets
depending on the values of r and l. Lemma 2.1 is then applied on 1 which yields that f is ergodic if and
only if u satisfies statement (2) of this theorem.

Set s = 1 + 2k (mod 2k+1), for some k ≥ 2. We first consider the case when r = 1.
For every positive even integer m and all x ∈ S2(1), we have xm + 1 = 2 (mod 4).
For every positive odd integer m and all |x| = 1, we have

|xm + 1| = |x + 1| · |xm−1
− xm−2 + . . . + x2

− x + 1| = |x + 1|, (2.3)

and

|xm
− 1| = |x − 1| · |xm−1 + xm−2 + . . . + x2 + x + 1| = |x − 1|. (2.4)

It follows that for x ∈ S2(1),

|xs
− x| = |xs−1

− 1| = |x
s−1

2 − 1| · |x
s−1

2 + 1| =
1
2
|x

s−1
2 + 1| = . . . =

=
1

2k−1
|x

s−1
2k − 1| · |x

s−1
2k + 1| =

1
2k−1
|x − 1| · |x + 1| =

1
2k
|x + 1|.

(2.5)

Moreover,

|xs2
− x| = |xs2

−1
− 1| = |x(s−1) s+1

2 − 1| · |x(s−1) s+1
2 + 1| = |xs−1

− 1| · |xs−1 + 1| =
1
2
|xs−1

− 1|. (2.6)

By means of [9, Lemma 3.1.] and [5, Proposition 9] (see also [9, Lemma 3.3.] as a modified version of [5,
Proposition 9]), we get that 1 is ergodic on each set of the form x + 2k

|x+1|Z2, where x ∈ S2(1).
Now we verify that (2.2) is equivalent to Condition (2) for all l ≥ 1. First, for l ≤ k and x ∈ S2(1) we have

from (2.5)

|xs
− x| =

1
2k
|x + 1| ≤

1
2l
|x + 1| ≤

1
2l+2

.

It follows immediately that Condition (2) is equivalent to (2.2). Now, let l ≥ k + 1. We have

xs = x (mod 2l+2),∀x ∈ {|x + 1| ≤ 2−l−2+k
}. (2.7)

Moreover, from Lemma 2.1, since as mentioned above 1 is ergodic on each set of the form x + 2k

|x+1|Z2,

∀t ≤ l − k,∀x ∈ {|x + 1| = 2−t
},∀εt+1, . . . , εt+k−1 ∈ {0, 1} :∑

εt+k ,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s =
∑

εt+k,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) + 2l+1 (mod 2l+2),
(2.8)

and

t = l − k + 1,∀x ∈ {|x + 1| = 2−t
} :

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s = (3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) + 2l+1 (mod 2l+2).
(2.9)



N. Memić, Z. Šabanac / Filomat 31:15 (2017), 4905–4913 4908

It follows from (2.5) and (2.9) that

∀t ≤ l − k + 1,∀x ∈ {|x + 1| = 2−t
} :∑

εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s =
∑

εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) +
∑

εt+1,...,εt+k−1∈{0,1}

2l+1 (mod 2l+2)

=
∑

εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) (mod 2l+2).

(2.10)

We obtain from (2.7) and (2.10)∑
ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i)s =

l+1−k∑
t=2

∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s +
∑

εl+2−k ,...,εl∈{0,1}

(3 +

l+1−k∑
i=2

2i +

l∑
i=l+2−k

εi2i)s

=

l+1−k∑
t=2

∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) +
∑

εl+2−k,...,εl∈{0,1}

(3 +

l+1−k∑
i=2

2i +

l∑
i=l+2−k

εi2i) (mod 2l+2)

=
∑

ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i) (mod 2l+2),

(2.11)

which completes the proof for the case when r = 1.
Now, let r ≥ 2. We have from (2.4) for x ∈ S2r (1)

|xs
− x| = |xs−1

− 1| = |x
s−1

2 + 1| · |x
s−1

2 − 1| =
1
2
|x

s−1
2 − 1| = . . . =

1
2k
|x

s−1
2k − 1| =

1
2k
|x − 1|. (2.12)

Also,

|xs2
− x| = |xs2

−1
− 1| = |x(s−1) s+1

2 − 1| · |x(s−1) s+1
2 + 1| = |xs−1

− 1| · |xs−1 + 1| =
1
2
|xs−1

− 1|. (2.13)

Hence, 1 is ergodic on each set of the form x + 2r+kZ2, where x ∈ S2r (1). In order to see that Condition (2) is
equivalent to (2.2), first consider the case when l ≤ r + k − 2. From (2.12)

|xs
− x| =

1
2k
|x − 1| =

1
2k+r
≤

1
2l+2

,

which gives immediately that Condition (2) is equivalent to (2.2).
Besides, when l ≥ r + k, for all εr+1, . . . , εr+k−1 ∈ {0, 1} we have from ergodicity of function 1 on the set

1 + 2r +
r+k−1∑
i=r+1

εi2i + 2r+kZ2:

∑
εr+k ,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i)s =
∑

εr+k ,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) + 2l+1 (mod 2l+2).

Also, for l = r + k − 1 and all εr+1, . . . , εr+k−1 ∈ {0, 1}

(1 + 2r +

l∑
i=r+1

εi2i)s = (1 + 2r +

l∑
i=r+1

εi2i) + 2l+1 (mod 2l+2).

This yields for l ≥ r + k − 1,∑
εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i)s =
∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) +
∑

εr+1,...,εr+k−1∈{0,1}

2l+1 (mod 2l+2)
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=
∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) (mod 2l+2).

Theorem 2.3. Let s and r be positive integers. Assume that s = 3 (mod 4) and r ≥ 2. Let the functions f and u
be defined on Z2 such that f (x) = xs + 2r+1u(x). Then, f is ergodic on S2r (1) if and only if u satisfies the following
conditions:

(1) |u(x) − u(y)| < 2r+1
|x − y|,∀x, y ∈ S2r (1),

(2) u(x) = 0 (mod 2),∀x ∈ S2r (1),

(3)
∑

εr+1,...,εl∈{0,1}
u(1 + 2r +

l∑
i=r+1

εi2i) = 2l−r (mod 2l−r+1),∀l ≥ r + 1.

Proof. Arguing as in the previous theorem, it suffices to prove that an isometric function f is ergodic on
S2r (1) if and only if Conditions (2) and (3) are simultaneously satisfied. The sphere S2r (1) can be expressed
as (x + 2r+2Z2) ∪ (x + 2r+1 + 2r+2Z2), for all x ∈ S2r (1). Notice that from Condition (1) of Lemma 2.1 f is
transitive modulo 2r+2 if and only if f (x) = x + 2r+1 (mod 2r+2), for all x ∈ S2r (1). Namely,

xs
− x + 2r+1u(x) = 2r+1 (mod 2r+2),∀x ∈ S2r (1).

From (2.3) and (2.4)

|xs
− x| = |xs−1

− 1| = |x
s−1

2 + 1| · |x
s−1

2 − 1| = |x + 1| · |x − 1| = 2−r−1. (2.14)

Hence, f is transitive modulo 2r+2 if and only if Condition (2) is true. It remains to prove that f is transitive
modulo 2l+2 for all l ≥ r + 1 if and only if Condition (3) is valid.

If s = 2k
− 1 (mod 2k+1), let l ∈ {r + 1, . . . , k + r − 1}. Notice that from (2.3) and (2.4) we also have

|xs2
− x| = |xs2

−1
− 1| = |x

s+1
2 (s−1) + 1| · |x

s+1
2 (s−1)

− 1| =
1
2
|x

s+1
2 (s−1)

− 1| = . . . =

=
1
2k
|x

s+1
2k (s−1)

− 1| =
1
2k
|x

s+1
2k

s−1
2 + 1| · |x

s+1
2k

s−1
2 − 1| =

1
2k
|x + 1| · |x − 1| = 2−k−r−1.

(2.15)

From (2.14) and (2.15) we conclude that the function 1 is ergodic on each set of the form (x + 2k+r+1Z2) ∪
(xs + 2k+r+1Z2), where x ∈ S2r (1). Hence, ∀x ∈ S2r (1) : 12(x + 2k+r+1Z2) = x + 2k+r+1Z2. It follows that
∀l ∈ {r+1, . . . , k+r−1}, ∀x ∈ S2r (1) : 12(x+2l+2Z2) = x+2l+2Z2. Therefore, ∀l ∈ {r+1, . . . , k+r−1}, ∀x ∈ S2r (1)
function 1 is transitive modulo 2l+1 on the set (x + 2l+1Z2)∪ (xs + 2l+1Z2), but it is not transitive modulo 2l+2.
According to Lemma 2.1, for a = x, b = xs (mod 2l+1) and k = l + 1, Condition (1) is verified, but Condition
(2) which gives transitivity of 1modulo 2l+2 is not verified.

We get 1(a) + 1(b) = a + b (mod 2l+2). Namely, if x has the form x = a = 1 + 2r +
l∑

i=r+2
εi2i and xs = b (mod 2l+1),

where b = 1 + 2r + 2r+1 +
l∑

i=r+2
ε′i 2

i, we must have

(1 + 2r +

l∑
i=r+2

εi2i)s + (1 + 2r + 2r+1 +

l∑
i=r+2

ε′i 2
i)s = (1 + 2r +

l∑
i=r+2

εi2i) + (1 + 2r + 2r+1 +

l∑
i=r+2

ε′i 2
i) (mod 2l+2).

This yields ∑
εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i)s =
∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) (mod 2l+2),

which implies that Condition (3) is equivalent to the transitivity of f modulo 2l+2.
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Besides, for l ≥ k + r, since function 1 is ergodic on each set of the form (x + 2k+r+1Z2) ∪ (xs + 2k+r+1Z2),
we get for all fixed εr+2, . . . , εk+r ∈ {0, 1}, if ε′r+2, . . . , ε

′

k+r ∈ {0, 1} are such that

(1 + 2r +

k+r∑
i=r+2

εi2i)s
∈ 1 + 2r + 2r+1 +

k+r∑
i=r+2

ε′i 2
i + 2k+r+1Z2,

according to Lemma 2.1 (3) we must have for l ≥ k + r + 1:

∑
εk+r+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+2

εi2i)s + (1 + 2r + 2r+1 +

k+r∑
i=r+2

ε′i 2
i +

l∑
i=r+k+1

εi2i)s


=

∑
εk+r+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+2

εi2i) + (1 + 2r + 2r+1 +

k+r∑
i=r+2

ε′i 2
i +

l∑
i=r+k+1

εi2i)

 + 2l+1 (mod 2l+2),

and for l = r + k, by Lemma 2.1 (2), we have:

(1 + 2r +

r+k∑
i=r+2

εi2i)s + (1 + 2r + 2r+1 +

k+r∑
i=r+2

ε′i 2
i)s

= (1 + 2r +

r+k∑
i=r+2

εi2i) + (1 + 2r + 2r+1 +

k+r∑
i=r+2

ε′i 2
i) + 2l+1 (mod 2l+2).

Therefore, for every l ≥ k + r, we also get that f is transitive modulo 2l+2 if and only if Condition (3) is
true because ∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i)s =
∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) +
∑

εr+2,...,εr+k∈{0,1}

2l+1 (mod 2l+2)

=
∑

εr+1,...,εl∈{0,1}

(1 + 2r +

l∑
i=r+1

εi2i) (mod 2l+2).

Theorem 2.4. Let s = 3 (mod 4). Let the functions f and u be defined onZ2 such that f (x) = xs + 4u(x). Then, f is
ergodic on S2(1) if and only if u satisfies the following conditions:

(1) |u(x) − u(y)| < 4|x − y|,∀x, y ∈ S2(1),
(2) u(x) = 1 (mod 2),∀x ∈ S2(1),

(3)
∑

ε2,...,εl∈{0,1}
u(3 +

l∑
i=2
εi2i) = 0 (mod 2l+2),∀l ≥ 2.

Proof. As seen above, f is isometric if and only if Condition (1) is true. Assume that Condition (1) is
satisfied. As seen in (2.14) we have that

|xs
− x| = |x + 1| · |x − 1| =

1
2
|x + 1| ≤

1
8
,∀x ∈ S2(1). (2.16)

Therefore, f is transitive modulo 8 if and only if 4u(x) = 4 (mod 8), which is equivalent to Condition (2).
Recall that for s = 2k

− 1 (mod 2k+1), from (2.15) we have

|xs2
− x| =

1
2k
|x + 1| · |x − 1| =

1
2k+1
|x + 1|. (2.17)
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This means that 1 is ergodic on each set of the form (x + 2k+1

|x+1|Z2) ∪ (xs + 2k+1

|x+1|Z2), where x ∈ S2(1).
In order to prove that f is transitive modulo 2l+2, for all l ≥ 2 if and only if Condition (3) is satisfied it

suffices to verify that

∑
ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i)s =
∑

ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i) + 2l+1 (mod 2l+2). (2.18)

Indeed, take first l ≤ k + 1. For all t ≥ 2 and x ∈ {|x + 1| = 2−t
}, the function 1 is not transitive modulo 2l+2 on

(x + 2l+1Z2) ∪ (xs + 2l+1Z2).
Then, from Lemma 2.1, if t ≤ l − 1, for all fixed εt+2, . . . , εl ∈ {0, 1}, if ε′t+2, . . . , ε

′

l ∈ {0, 1} are such that

(3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i)s
∈ 3 +

t−1∑
i=2

2i + 2t+1 +

l∑
i=t+2

ε′i 2
i + 2l+1Z2,

we must have

(3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i)s + (3 +

t−1∑
i=2

2i + 2t+1 +

l∑
i=t+2

ε′i 2
i)s =

3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i + 3 +

t−1∑
i=2

2i + 2t+1 +

l∑
i=t+2

ε′i 2
i (mod 2l+2).

(2.19)

Besides, for t = l, we have

(3 +

l−1∑
i=2

2i)s = 3 +

l−1∑
i=2

2i + 2l+1 (mod 2l+2). (2.20)

While, when t ≥ l + 1, we have from (2.16),

xs = x (mod 2l+2),∀x ∈ {|x + 1| = 2−t
}. (2.21)

Using (2.19), (2.20) and (2.21), we get

∑
ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i)s =

l−1∑
t=2

∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s + (3 +

l−1∑
i=2

2i)s + (3 +

l∑
i=2

2i)s

=

l−1∑
t=2

∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) + (3 +

l−1∑
i=2

2i) + 2l+1 + (3 +

l∑
i=2

2i) (mod 2l+2)

=
∑

ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i) + 2l+1 (mod 2l+2).

This proves (2.18) for l ∈ {2, . . . , k + 1}.
In a similar way, if l ≥ k + 2 and t ∈ {2, . . . , l− k}, then since 1 is ergodic on (x + 2t+k+1Z2)∪ (xs + 2t+k+1Z2),

for x ∈ {|x + 1| = 2−t
}, we get for all fixed εt+2, . . . , εt+k ∈ {0, 1}, if ε′t+2, . . . , ε

′

t+k ∈ {0, 1} are such that

(3 +

t−1∑
i=2

2i +

t+k∑
i=t+2

εi2i)s
∈ 3 +

t−1∑
i=2

2i + 2t+1 +

t+k∑
i=t+2

ε′i 2
i + 2t+k+1Z2,
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we have from Lemma 2.1∑
εt+k+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i)s + (3 +

t−1∑
i=2

2i + 2t+1 +

t+k∑
i=t+2

ε′i 2
i +

l∑
i=t+k+1

εi2i)s


=

∑
εt+k+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i) + (3 +

t−1∑
i=2

2i + 2t+1 +

t+k∑
i=t+2

ε′i 2
i +

l∑
i=t+k+1

εi2i)

 + 2l+1 (mod 2l+2),

where if t = l − k, the sum over εt+k+1, . . . , εl ∈ {0, 1} contains only one term and
l∑

i=t+k+1
εi2i = 0.

Therefore,∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s =
∑

εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) +
∑

εt+2,...,εt+k∈{0,1}

2l+1 (mod 2l+2)

=
∑

εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) (mod 2l+2).

(2.22)

Meanwhile, for t ∈ {l − k + 1, . . . , l − 1}, as seen above function 1 is not transitive modulo 2l+2 on the set
(x + 2l+1Z2) ∪ (xs + 2l+1Z2), for x ∈ {|x + 1| = 2−t

}. Hence, for all fixed εt+2, . . . , εl ∈ {0, 1}, if ε′t+2, . . . , ε
′

l ∈ {0, 1}
are such that

(3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i)s
∈ 3 +

t−1∑
i=2

2i + 2t+1 +

l∑
i=t+2

ε′i 2
i + 2l+1Z2,

where
l∑

i=t+2
εi2i =

l∑
i=t+2

ε′i 2
i = 0, for t = l − 1, we have

(3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i)s + (3 +

t−1∑
i=2

2i + 2t+1 +

l∑
i=t+2

ε′i 2
i)s

= (3 +

t−1∑
i=2

2i +

l∑
i=t+2

εi2i) + (3 +

t−1∑
i=2

2i + 2t+1 +

l∑
i=t+2

ε′i 2
i) (mod 2l+2).

(2.23)

For t = l, we get

(3 +

l−1∑
i=2

2i)s = 3 +

l−1∑
i=2

2i + 2l+1 (mod 2l+2). (2.24)

Finally, when t ≥ l + 1, we have from (2.16)

(3 +

t−1∑
i=2

2i)s = 3 +

t−1∑
i=2

2i (mod 2l+2). (2.25)

We conclude from (2.22), (2.23), (2.24) and (2.25)

∑
ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i)s =

l−1∑
t=2

∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i)s + (3 +

l−1∑
i=2

2i)s + (3 +

l∑
i=2

2i)s =

=

l−1∑
t=2

∑
εt+1,...,εl∈{0,1}

(3 +

t−1∑
i=2

2i +

l∑
i=t+1

εi2i) + (3 +

l−1∑
i=2

2i) + 2l+1 + (3 +

l∑
i=2

2i) (mod 2l+2)
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=
∑

ε2,...,εl∈{0,1}

(3 +

l∑
i=2

εi2i) + 2l+1 (mod 2l+2).

Corollary 2.5. [4, Theorem 4.1.] Let u be a 1-Lipschitz function defined onZ2. Let s and r be positive integers, then
the function f (x) = xs + 2r+1u(x) is ergodic on S2r (1) if and only if s = 1 (mod 4) and u(1) = 1 (mod 2).

Proof. Assume first that f is ergodic and u(1) = 0 (mod 2). It is clear that in this case u does not satisfy the
conditions of Theorems 2.2 and 2.4. It follows that s = 3 (mod 4) and r ≥ 2. Meanwhile, we prove that u
does not verify Condition (3) of Theorem 2.3. Indeed, since u is 1-Lipschitz

u(1 + 2r) + u(1 + 2r + 2r+1) = 2u(1 + 2r) (mod 4) = 0 (mod 4),

which contradicts Condition (3) of Theorem 2.3 for l = r + 1.
In this part we assume that f is ergodic and u(1) = 1 (mod 2) and s = 3 (mod 4). By means of Theorem

2.3, we get that r = 1. By Theorem 2.4 u satisfies Conditions (1), (2) and (3). Meanwhile,

u(3) + u(7) = 2u(3) (mod 4) = 2 (mod 4),

which contradicts Condition (3) of Theorem 2.4.
On the other hand, if s = 1 (mod 4) and u(1) = 1 (mod 2), then we claim that u satisfies all conditions of

Theorem 2.2. Indeed, for l = r Condition (2) of Theorem 2.2 is equivalent to u(1 + 2r) = 1 (mod 2), which is
true by assumption.

Suppose that Condition (2) of Theorem 2.2 is satisfied for all l ∈ {r, . . . , l0}, for some l0 ≥ r.∑
εr+1,...,εl0+1∈{0,1}

u(1 + 2r +

l0+1∑
i=r+1

εi2i) =
∑

εr+1,...,εl0∈{0,1}

u(1 + 2r +

l0∑
i=r+1

εi2i) + u(1 + 2r +

l0∑
i=r+1

εi2i + 2l0+1)


= 2

∑
εr+1,...,εl0∈{0,1}

u(1 + 2r +

l0∑
i=r+1

εi2i) (mod 2l0+1) = 2l0+1−r (mod 2l0+1−r+1),

because

u(1 + 2r +

l0∑
i=r+1

εi2i + 2l0+1) − u(1 + 2r +

l0∑
i=r+1

εi2i) = 0 (mod 2l0+1).

This proves Condition (2) for all l ≥ r.
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