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On Perturbed Monomials on 2-adic Spheres Around 1
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Abstract. We provide a complete description of ergodic perturbed monomials on 2-adic spheres around
the unity.

1. Introduction

As it was mentioned in [4], non-expanding dynamics on the ring of p-adic integers Z, have been
explicitly studied in many papers like [3], [2], [8] and [7]. Recently, some results on dynamical systems
were considered on spheres [4] and on general compact sets [9]. First results on ergodicity for monomial
dynamical systems on p-adic spheres were obtained in [6]. Later, ergodicity criteria for locally analytic
dynamical systems on p-adic spheres were studied in [1].

Let Z, denote the ring of 2-adic integers endowed with its ultra-metric norm | - | and natural probability
measure . It is known that each element x from Z; has the form x = Y77 x;2!, where x; € {0, 1}.

Let S consist of a collection of 2"Z;-cosets and for arbitrary x € S let the elements x, f(x),..., f"}(x) be
representatives of distinct classes of 2"Z,-cosets, where k = 2" u(S).

An isometric function f : Z, — Z, is said to be transitive modulo 2" on S if the set {x, f(x),..., fk‘1 (x)}
is composed of only one cycle. In other words, f*(x) = x (mod 2"), but f'(x) # x (mod 2"), for all r < k.

We recall that in [2, Theorem 1.1.] and [3, Proposition 4.35.] we find that an isometric function
f 12, = Z, is ergodic on S if and only if it is transitive modulo 2" on the set S for every positive integer
n. Moreover, [4, Section 4.] is about perturbed monomials on spheres S»-(1) centered at 1 with radius 27.
These are functions of the form f(x) = x° + 2"*1u(x), where the function u is 1-Lipschitz. Our attempt is to
study these functions with arbitrary functions u defined on the ring Z,. We describe all ergodic perturbed
monomials of this form on S,-(1) for different values of integers s and r. Then, [4, Theorem 4.1.] is obtained
as a direct consequence of this description. Our results are based on some reformulation of [7, Lemma 3.12.]
on a compact set of Z, which consists of two disjoint balls of the same measure.

2. Main Results

LemMma 2.1. Let a and b be different nonnegative integers. Let a,b < 2%, where k is some positive integer. Set
S = (@+2¥Z,) W (b+2°Z,). Let f : S — S be isometric. Then, f is ergodic on S if and only if the following conditions
are satisfied
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(1) f(a)—b =0 (mod 2),
(2) @)+ f(b) = a+b+ 2% (mod 21,

k+n . k+n .
(3) Y (f(lZ +Ye2)+fb+ L 6:‘21))
€kyeEkin€{0,1} i=k i=k

= X

€kyrEx4n€{0,1}

( k+n k+n
i=k i=k

a+ Y €2l +b+ Y, eiZi) + 2841+ 1 (mod 284m+2) Vi > 0.

Proof. Recall that according to [7, Lemma 3.12.], an isometric function g is transitive modulo o+l > 1, if
and only if it is transitive modulo 2" and S, is odd, where

Su= Y. Guy g0m) =) gn2’ gw € (0,1, ¥i>0.
0<m<21-1 i=0
This can be expressed as
21 21
Z g(m) = Z m+ 2" (mod 2. .1)
m=0 m=0
2k-1y 4 g, x €2Zy;

2 x=1)+b, xe€1+27,.
It is clear that g := ¢! o f o ¢ is ergodic on Z, if and only if f is ergodic on S. For n > 2 (2.1) can be
written as

Let ¢ : Z, — S defined by ¢ (x) = {

2"-1

Q1) e Z Yo fo(m) = 212" — 1) + 2" (mod 2"*)
m=0

& Z Yl o FQm +a) + Z Vo Fm = 1) + b) = 271 (mod 2*)

0<m<2"-1, m even 0<m<2"-1, m odd

k-1 _ k-1 _
f2'm+a) b+1+f(2 m+b)—a

< 2k-1 2k-1

( ) — 2n—l (mod 2n+l)
0<m<2"-1, m even

& Z (F@1m +a) + FQ 1 + b)) = 2" (a + b) (mod 2*F)

0<m<2"-1, m even

k+n-2 k+n-2 ' k+n-2 ' k+n-2
e ), ( fa+ Y e+ flo+ Y eiZZ)] = ) [a+ Y e2i+b+ Y e,-2"]+2"+’<-1 (mod 2"+%).
€k }

€k Cran2€10,1) i=k i=k ) e Cren2€l0,1 i=k i=k
On the other hand it is clear that f is transitive modulo 2 on S if and only if Condition (1) is satisfied and

Condition (2) is equivalent to (2.1) forn =1. O

Theorem 2.2. Let s and r be positive integers. Assume that s =1 (mod 4). Let the functions f and u be defined on
Z; such that f(x) = x° + 2"+ u(x). Denote by Sor(1) the sphere of radius 27" centered at 1. Then, f is ergodic on Sy (1)
if and only if u satisfies the following conditions:

(1) |u(x) — u(y)| < 2" x — y|, Yx, y € Sy (1),

1
2) Y u(l+2+ Y &2) =2 (mod 27,V 2 .

€r41,--,€1€{0,1} i=r+1



N. Memié, Z. Sabanac / Filomat 31:15 (2017), 4905-4913 4907

Proof. 1t is clear that g(x) = x° is isometric on Sy(1). Then, f is also isometric on this set if and only if
Condition (1) is satisfied. On the other hand, applying Lemma 2.1 if f is isometric on Sy (1) then it is also
ergodic on this set if and only the following formula holds:

1
Z FA+2+ Z €2') = Z 1+2" + Z €:2') + 21 (mod 21*2), V1 > . 2.2)

€r41,---,€1€{0,1} i=r+1 €r41,---,€1€{0,1} i=r+1

The main idea of the proof is based on the fact that the function g is ergodic on some specific subsets
depending on the values of r and I. Lemma 2.1 is then applied on g which yields that f is ergodic if and
only if u satisfies statement (2) of this theorem.

Sets = 1 + 2X (mod 2°1), for some k > 2. We first consider the case when r = 1.

For every positive even integer m and all x € S;(1), we have x + 1 = 2 (mod 4).

For every positive odd integer m and all |x| = 1, we have

"+ 1= +1 - " ="+ —x 41 =+ 1], (2.3)
and
X" =1 = =1 " A"+ A x+ 1 = -1 (2.4)

It follows that for x € S»(1),

5= s— 1 5=
e —x = =1 =T —1]-|xT +1] = Elel +1=... =
1 o« - (2.5)
:szk—1|.|xzk +1| = 2k1|x—1| lx+1| = k|x+1|.
Moreover,
st s+ 1
e — )= T 1 = OV S DT = e 1 e+ 1 = 2 L (2.6)

2

By means of [9, Lemma 3.1.] and [5, Proposition 9] (see also [9, Lemma 3.3.] as a modified version of [5,

Proposition 9]), we get that g is ergodic on each set of the form x + +1|ZZ, where x € S(1).
Now we verify that (2.2) is equivalent to Condition (2) for all / > 1. First, for I < k and x € S;(1) we have
from (2.5)

1 1
Ixs—x|=§|x+1lsilx+1|3217.

It follows immediately that Condition (2) is equivalent to (2.2). Now, let [ > k + 1. We have
x* = x (mod 2%2),¥x € {|x + 1| < 272K} (2.7)

Moreover, from Lemma 2.1, since as mentioned above g is ergodic on each set of the form x + +1|Z

Vi<l—kVxe{x+1 =27 Veu,..., €1 €10,1}:
e (2.8)
Z G+ Z 2+ Z €2 Z G+ Z 2+ Z €2') + 21 (mod 212),
Etiksenes 6/6{0 ] j Etikyeees 616{0,1] i=2 i=t+1
and
t=l-k+1,Vxe{x+1=27":
t—1 . 1 ) t—1 ) 1 . (29)
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It follows from (2.5) and (2.9) that
Vi<l—-k+1V¥xe{x+1=27:

Z G+ tizf + ZI: €2y = Z 3+ Zzz Z €2 + Z 21 (mod 2'*2)

€ra1mer€l0,1) i=2 i=t+1 et mer€l0,1) i=t+1 €11k 1€(0,1} (2.10)
= Z B+ Z 20+ Z €:2") (mod 2*2).
€141,--€1€{0,1}

We obtain from (2.7) and (2.10)

1 1+1-k 1+1-k 1

Y, G+ edy=) ) 6+ Zz’ Z e2y+ ). B+ ) 2+ ) ey
€,...,€€{0,1} i=2 =2 €p41,...,€€{0,1} i=t+1 €112-k,--€1€{0,1} i=2 i=l+2-k

I+1-k t—1 ) I+1-k
= Z Z G+ Zz" + Z €2') + Z G+ Z 2+ Z €:2') (mod 21*2) 2.11)

t=2 €441,...,€€{0,1} i=2 i=t+1 €142k ,--€1€{0,1}

1

= (3+ ) €2') (mod 2,

€,...,€€{0,1} i=2

which completes the proof for the case when r = 1.
Now, let r > 2. We have from (2.4) for x € S,-(1)

s os-1 st =1 =t _ 1 = 1
b =l = e =1 = )T 41 T 1= ST )= ST~ 1= -1l (2.12)
Also,
s+ S+ 1
e — )= T =1 = DT S DT = e =) e+ 1 = L o). (2.13)

Hence, g is ergodic on each set of the form x + 27+k7,, where x € S»(1). In order to see that Condition (2) is
equivalent to (2.2), first consider the case when ! < r + k — 2. From (2.12)

1 < 1
2k+r_ﬁ’

1
Ixs—xlzglx—llz

which gives immediately that Condition (2) is equivalent to (2.2).

Besides, when | > r + k, for all €,41, ..., €141 € {0,1} we have from ergodicity of function g on the set
r+k-1 .
142"+ Y €2 +2%7,:

i=r+1

Z 1+2" + Z €2')° Z 1+2"+ Zl" €2') + 211 (mod 21*2).

€rvkr€1€{0,1} i=r+1 €rvkr€1€{0,1} i=r+1

Also, forl=r+k—-1andall €,41,...,€4x-1 € {0,1}

1+2" + 261215 1+2" + Z €:2') + 211 (mod 2'2).

i=r+1 i=r+1

This yields for [ > v+ k-1,

2 1+2" + Z €2) 2 1+2" + Z €i2') + Z 21 (mod 21+2)
0,1} 0,1}

€r+1,---€1€{ i=r+1 €r+1,---€1€{ i=r+1 €r+1,-/€r+k-1€{0,1}
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= z (1+2" + Zl: €:2") (mod 2"*?).

€r41,---,€1€{0,1} i=r+1

O

Theorem 2.3. Let s and r be positive integers. Assume that s = 3 (mod 4) and r > 2. Let the functions f and u
be defined on Z such that f(x) = x° + 2" u(x). Then, f is ergodic on Sy (1) if and only if u satisfies the following
conditions:

(1) |u(x) — u(y)l < 2*x — y|, ¥x,y € Sx (1),
(2) u(x) = 0 (mod 2), ¥x € Sy (1),

! .
(3) y ul+2"+ Y €2 =25 (mod 25"+, VI > r + 1.

€r41,---,€1€{0,1} i=r+1

Proof. Arguing as in the previous theorem, it suffices to prove that an isometric function f is ergodic on
S2r(1) if and only if Conditions (2) and (3) are simultaneously satisfied. The sphere S»(1) can be expressed
as (x + 27727Z,) U (x + 2"*1 + 27427,), for all x € Sy(1). Notice that from Condition (1) of Lemma 2.1 f is
transitive modulo 22 if and only if f(x) = x + 2" (mod 2*2), for all x € S»-(1). Namely,

¥ —x + 27 u(x) = 27 (mod 27%), Vx € Sy (1).
From (2.3) and (2.4)
e —x =t =1 =T +1-xT =1 =jx+1]-[x—1=2""1 (2.14)

Hence, f is transitive modulo 2"*? if and only if Condition (2) is true. It remains to prove that f is transitive
modulo 2/*2 for all [ > r + 1 if and only if Condition (3) is valid.
If s = 28 — 1 (mod 2841),let 1 € {r + 1,...,k + r — 1}. Notice that from (2.3) and (2.4) we also have
b —xf = T 1) = D 1 RO C gy = Lpten Jq o =
2 (2.15)

1
x+1]-jx =1 =271,

1, s 1 st1sa stls-1
= O = T 1 T 1=

From (2.14) and (2.15) we conclude that the function g is ergodic on each set of the form (x + 2K"+17Z,) U
(x* + 21%17,), where x € Sy(1). Hence, Yx € Sy (1) : g*(x + 28™*12Z,) = x + 2K™*17Z,. Tt follows that
Vie{r+1,... k+r=1}, Yx € Spr(1) : g*(x+2'*2Z,) = x+2/*2Z,. Therefore, ¥l € {r+1,..., k+r—1}, ¥x € Sy (1)
function g is transitive modulo 2! on the set (x + 2*1Z,) U (x° + 2/*1Z,), but it is not transitive modulo 2/+2.
According to Lemma 2.1, for a = x, b = x° (mod 2"*!) and k = I + 1, Condition (1) is verified, but Condition
(2) which gives transitivity of g modulo 2"*? is not verified.

[ .
We get g(a) + g(b) = a + b (mod 2'*2). Namely, if x has the formx=a=1+2"+ Y, €2 and x° = b (mod 2'*1),

i=r+2
[ .
whereb=1+2"+2"* + ¥ €2/, we must have

i=r+2

1 1 1 1
1+2" + Z €2 + (1+2 +2*1 + Z €2y = (1+2 + Z €2) + (1+2" + 21 + Z €/2) (mod 2'*).

i=r+2 i=r+2 i=r+2 i=r+2
This yields
! !
Z 1+2" + Z €2 = Z 1+2" + Z €2') (mod 2142),
E,H,...,EZE{O,” i=r+1 E,H,...,EZE{O,” i=r+1

which implies that Condition (3) is equivalent to the transitivity of f modulo 2/*2.
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Besides, for I > k + r, since function g is ergodic on each set of the form (x + 2kl 7y U (8 + 284741 7,),

we get for all fixed €42, ..., €y € {0,1}, if €),,,..., €, €{0,1} are such that

k+r k+r
1+2" + Z €2 €1 +2" +21 4 2 €2 + 247,
i=r+2 i=r+2

according to Lemma 2.1 (3) we must have for [ > k+r + 1:

1 k+r 1
Z ((1 +2 ¢ Z €2 + (1+27 + 271 & Z €2 + Z eizf)S]

€kir+1,---€1€{0,1} i=r+2 i=r+2 i=r+k+1
! . ktr ! .
= {(1 +2 4 Z €2) + (1+2" +2*1 ¢ Z €2l + Z e,-2’)] + 271 (mod 21+2),
€kirsl - €1€{0,1} i=r+2 i=r+2 i=r+k+1
and for ! = r + k, by Lemma 2.1 (2), we have:
r+k A k+r ‘
(1+2" + Z €2 +(1+27+2+1 + Z €2y’
i=r+2 i=r+2
r+k ‘ k+r ‘
=(1+2" + Z €2') + (1+2" + 21 + Z €/2') + 21 (mod 2'*?).
i=r+2 i=r+2

Therefore, for every [ > k + r, we also get that f is transitive modulo 2/*2

true because

if and only if Condition (3) is

Z 1+2" + i €2y = Z 1+2" + Z]‘ €2') + Z 21 (mod 21+2)

€r+1,-,€1€{0,1} i=r+1 €r+1,-,€1€{0,1} i=r+1 €r+2,-,€r+k€{0,1}

= Z 1+2" + i €:2') (mod 2'2).

€r41,---€1€{0,1} i=r+1

O

Theorem 2.4. Let s = 3 (mod 4). Let the functions f and u be defined on Z; such that f(x) = x° + 4u(x). Then, f is
ergodic on S5,(1) if and only if u satisfies the following conditions:

(1) fu(x) —u(y)l < 4lx —yl,¥x, y € S»(1),

(2) u(x) =1 (mod 2),Vx € S5(1),

1
3) Y  u@B+Y €2) =0 (mod2%?),VI > 2.
i=2

€,...€€{0,1}

Proof. As seen above, f is isometric if and only if Condition (1) is true. Assume that Condition (1) is
satisfied. As seen in (2.14) we have that

1
¥ —x=|x+1|-|]x-1] = §|x+ 1] < %,Vx € S5y(1). (2.16)

Therefore, f is transitive modulo 8 if and only if 4u(x) = 4 (mod 8), which is equivalent to Condition (2).
Recall that for s = 2F — 1 (mod 251), from (2.15) we have

L [x + 1. (2.17)

2 1
|x® —x|=%|x+1|-|x—1|=2k+l
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This means that g is ergodic on each set of the form (x + R +1IZ2) U(x® + i +1|Zz) where x € 5;(1).

In order to prove that f is transitive modulo 2'*2, for all [ > 2 if and only if Condition (3) is satisfied it
suffices to verify that

1 1
Z G+ Z €2 = Z G+ Z €2') + 211 (mod 21+2). (2.18)
62,...,616{0,1} =2 €2,... 616[0,1} =2

Indeed, take first] < k+ 1. Forall t > 2 and x € {|x + 1| = 27}, the function g is not transitive modulo 22 on
(x +21Z5) U (x° + 21*17,).

Then, from Lemma 2.1, if t <1 -1, for all fixed €12,...,€ € {0,1},if €] ,, .. ., € € {0, 1} are such that
=1 I -1
(3+Zzl+ Z €2')° e3+221 +2oM 4 Z €2 +2"17,,
i=2 i=t+2 i=2 i=t+2

we must have

(3+i2i 262)5 3+Zzl+2t+1+262)5—
i=2

i=t+2

s B (2.19)
3+ Z 204 Z €2 +3+ Z 242t 4 Z €2 (mod 212).
i=2 i=t+2 i=2 i=t+2
Besides, for t = I, we have
-1 -1
G+ Z 2 =3+ Z 21 + 271 (1mod 21+2). (2.20)
i=2 i=2
While, when t > [ + 1, we have from (2.16),
= x (mod 2),Vx € {lx + 1| = 27}, (2.21)

Using (2.19), (2.20) and (2.21), we get
-1

Z (3+Zl‘e,-2")5= Z (3+ti2f ZeZ)S+(3+ZZ)S 3+Zz)5
0,1 =2

€,...,€€{0,1} i=2 t=2 €t41,...,€€{0,1} i=t+1

Z (3+sz Z e,2)+(3+22)+2’+1+(3+ZZ)(mod2”2)
0,1} =t+

t=2 €441,..,€1€{ i=2

-1

1
= 2 G+ Z €:2') + 211 (mod 2'2).

€,...,€€{0,1} =2

This proves (2.18) forl € {2,...,k+ 1}.
In a similar way, if | > k+2and t € {2,...,] -k}, then since g is ergodic on (x + 241 Z,) U (x° + 2/*4+17,),

for x € {|x + 1| = 27"}, we get for all fixed €142, . .., €1k € {0, 1}, if €140r 1€y € {0, 1} are such that

t+k t+k

G+ iz" + Z €2 €3+ Zz’ +2t 4 Z €2l 427,
i=2

i=t+2 i=t+2
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we have from Lemma 2.1

. Z€€[01}[(3+t2121 Z +(3+221 4+ 21 4 ik €2’ i eizi)sj|
tekaL e/l

..... , i=2 i=t+ i=t+2 i=t+k+1
=1 t+k 1
¥ {m Y. Zezz)+(3+221+z“l+ S ers Y ei2')}+2l+l (nod 2
€r4k+1,--,€1€{0,1} =2 i=t+2 i=t+k+1

l )
where if t = I — k, the sum over €411, . .., € € {0,1} contains only one termand ), ¢€;2' =0.

i=t+k+1
Therefore,
-1 ! !
Z G+ Z 24+ Y edy= ) G+ Z 2+ Z e2)+ Y, 2" (mod2™?)
e 01 =2 i=t+1 -~ 0,1) i=t+1 2rek€l0,1
te1,merel0 1) i i=t+ €te1--rE1E - i l+ €t42,-€14k€{0,1} (2.22)
= Z G+ Z 20+ Y €2%) (mod 212).
€t41,---€1€{0,1} =2 i=t+1

Meanwhile, for t € {{ =k +1,...,1 — 1}, as seen above function g is not transitive modulo 22 on the set
(x +2"1Z5) U (x° + 21*17Z,), for x € {|x + 1| = 27!}. Hence, for all fixed €45, ...,€ € {0,1}, if €/ ..€ €{0,1)
are such that

4277

t—1 1 t—1
(3+sz+ Z €2')° e3+22’+2f“+ Z €2 +2417,,
i=2 i=t+2 =2 i=t+2
! , I ,
where }| €2'= Y €2'=0,fort=1-1,wehave
i=t+2 i=t+2
t—1 .
(3+22’+ Z €2') + 3+Zzl oM 4 Z €2y
= ~ : | i=+2 (2.23)
= (3+Zz Z e,2)+(3+221 +2t 4 Z €/2) (mod 2'*?).
i=2 i=t+2 i=t+2
Fort =1, we get
-1 ‘ -1 A
G+ Z 2 =3+ Z 21+ 21 (mod 2%2). (2.24)
i=2 i=2
Finally, when t > I + 1, we have from (2.16)
t—1 ) t—1 .
G+ Z 2 =3+ Z 21 (mod 212). (2.25)
i=2 i=2
We conclude from (2.22), (2.23), (2.24) and (2.25)
-1 t—1 ‘ 1 ‘ -1 ‘ 1 ‘
Y (3+Ze12)s Y, G+Y 2+ ) ey +@+) 2y +@E+) 2) =
€,...,€1€{0,1} i=2 t=2 €141,...,€€{0,1} i=2 i=t+1 i=2 i=2
-1 t—1 1
= Z (3+221+2e,2)+(3+22)+21+1+(3+22)(modzl+2)
t=2 €441,...,€1€{0,1} i=2 i=t+ =2
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1
= 2 G+ Z €:2') + 211 (mod 212).

€2,...,€€{0,1} =2

O

Corollary 2.5. [4, Theorem 4.1.] Let u be a 1-Lipschitz function defined on Z;. Let s and r be positive integers, then
the function f(x) = x° + 2" u(x) is ergodic on Sy (1) if and only if s = 1 (mod 4) and u(1) = 1 (mod 2).

Proof. Assume first that f is ergodic and u(1) = 0 (mod 2). It is clear that in this case u does not satisfy the
conditions of Theorems 2.2 and 2.4. It follows that s = 3 (mod 4) and r > 2. Meanwhile, we prove that u
does not verify Condition (3) of Theorem 2.3. Indeed, since u is 1-Lipschitz

u(1 42" +u(l +2"+ 2" = 2u(1 +2") (mod 4) = 0 (mod 4),

which contradicts Condition (3) of Theorem 2.3 for [ = r + 1.
In this part we assume that f is ergodic and u(1) = 1 (mod 2) and s = 3 (mod 4). By means of Theorem
2.3, we get that ¥ = 1. By Theorem 2.4 u satisfies Conditions (1), (2) and (3). Meanwhile,

u(3) + u(7) = 2u(3) (mod 4) = 2 (mod 4),

which contradicts Condition (3) of Theorem 2.4.

On the other hand, if s = 1 (mod 4) and u(1) = 1 (mod 2), then we claim that u satisfies all conditions of
Theorem 2.2. Indeed, for I = r Condition (2) of Theorem 2.2 is equivalent to u(1 + 2") = 1 (mod 2), which is
true by assumption.

Suppose that Condition (2) of Theorem 2.2 is satisfied for all / € {r, ..., Iy}, for some [y > r.

Io+1 Iy lo
Z u(l+2" + Z €2') = Z u(l+2" + Z €2) +u(l+2" + Z €2! + 201y
e,.+1,...,e,0+1€{0,1} i=r+1 €141 yenes e,OE[O,l} i=r+1 i=r+1

lo
=2 Z u(l + 27 + Z €,~2i) (mod 210+1) — 210+1—r (mod 210+1—r+1),

€141 et eloe[O,l} i=r+1

because

lo lO
u+27+ Y &2 + 20 —u(1 42"+ Y| €2') = 0 (mod 2*),
i=r+1 i=r+1

This proves Condition (2) forall/ > r. O
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