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Abstract. In the present paper, we prove the inequality between the normalized scalar curvature and
the generalized normalized δ-Casorati curvatures for the submanifolds of locally conformal Kaehler space
form and also consider the equality case of the inequality.

1. Introduction

The theory of Chen invariants, one of the most interesting research area of differential geometry started
in 1993 by Chen [4]. In the initial paper Chen established inequalities between the scalar curvature, the
sectional curvature(intrinsic invariants) and the squared norm of the mean curvature(the main extrinsic
invariant) of a submanifold in a real space form. The same author obtained the inequalities for submanifolds
between the k-Ricci curvature, the squared mean curvature and the shape operator in the real space form
with arbitrary codimension [3]. Since then different geometers proved the similar inequalities for different
submanifolds and ambient spaces [1, 2, 9, 12, 13].

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian manifold introduced
by Casorati defined as the normalized square length of the second fundamental form [8]. The concept
of Casorati curvature extends the concept of the principal direction of a hypersurface of a Riemannian
manifold [20]. The geometrical meaning and the importance of the Casorati curvature discussed by some
distinguished geometers [7, 14, 15, 17, 18]. Therefore it attracts the attention of geometers to obtain the
optimal inequalities for the Casorati curvatures of the submanifolds of different ambient spaces [5, 10, 16, 23].

In this paper, we will study the inequalities for the generalized normalized δ-Casorati curvature for the
submanifolds of locally conformal Kaehler space forms.

2. Preliminaries

Let (M̃, J, 1̃) be a Hermitian manifold equipped with complex structure J and a Hermitian metric 1̃, is
called a locally conformal Kaehler manifold if for each point p ∈ M̃ has an open neighbourhood U with a
differentiable map φ : U→ R such that the local metric

1 = e−2φ1̃|U
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is a Kaehler metric on U. The fundamental 2-form Ω of M̃ is defined as

Ω(X,Y) = 1(JX,Y)

for any tangent vector field X,Y ∈ TM̃. [19]

Proposition 2.1. [22] A Hermitian manifold M̃ is a locally conformal Kaehler manifold iff there exist a global 1-form
ω, called the lee form, satisfying

1̃(
(
∇̃Z JX,Y

)
) = ω(JX)1̃(Y,Z) − ω(X)1̃(JY,Z) − ω(JY)1̃(X,Z) − ω(Y)1̃(JX,Z)

for all X,Y,Z ∈ TM̃.

The 1-form ω is called the Lee form and its dual vector field is said to be the Lee vector field. On a locally
conformal Kaehler manifold, a symmetric (0,2)-tensor P̃ is defined as

P̃(X,Y) = −
(
∇̃Xω

)
Y − ω(X)ω(Y) +

1
2
‖ω‖21̃(X,Y),

where ‖ω‖ is the length of the Lee form ω with respect to 1̃. The tensor field P̃ is said to be hybrid if

P̃(JX,Y) + P̃(X, JY) = 0,

for X,Y ∈ TM̃.

Proposition 2.2. [11] The Ricci tensor S̃ in a locally conformal Kaehler manifold M̃ of real dimension 2m satisfies

S̃(JX,Y) + S̃(X, JY) = 2(m − 1)
(
P̃(JX,Y) + P̃(X, JY)

)
for all X,Y ∈ TM̃. Thus, the tensor field P̃ is hybrid iff Ricci tensor S̃ is hybrid.

The locally conformal Kaehler manifold with constant holomorphic sectional curvature c is called locally
conformal Kaehler space form and denoted by M̃(c). In the rest part of the paper we assume that P̃ is hybrid
in a locally conformal Kaehler space form.

The curvature tensor R̃ of M̃(c) is given as [11, 21, 22]

R̃(X,Y,Z,W) =
c
4
{1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)}

+
c
4
{1(JY,Z)1(JX,W) − 1(JX,Z)1(JY,W) − 21(JX,Y)1(JZ,W)}

+
3
4
{1(Y,Z)P̃(X,W) − 1(X,Z)P̃(Y,W) + P̃(Y,Z)1(X,W) − P̃(X,Z)1(Y,W)}

−
1
4
{1(JY,Z)P̃(JX,W) − 1(JX,Z)P̃(JY,W) + P̃(JY,Z)1(JX,W)

− P̃(JX,Z)1(JY,W) − 2P̃(JX,Y)1(JZ,W) − 21(JX,Y)P̃(JZ,W)} (1)

for all X,Y,Z,W ∈ TM̃.
Let M be an n-dimensional submanifold of a locally conformal Kaehler space form M̃. Let ∇ and ∇̃ be

the Levi-Civita connection on M and M̃ respectively. The Gauss and Weingarten formulas are defined as

∇̃XY = ∇XY + h(X,Y),

∇̃Xξ = −SξX + ∇⊥Xξ,
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for vector fields X,Y ∈ TM and ξ ∈ T⊥M. Where h, S and ∇⊥ is the second fundamental form, the shape
operator and the normal connection respectively. The second fundamental form and the shape operator
are related by the following equation

1(h(X,Y), ξ) = 1(SξX,Y),

for vector fields X,Y ∈ TM and ξ ∈ T⊥M.
The equation of Gauss is given by

R(X,Y,Z,W) = R̃(X,Y,Z,W) + 1(h(X,W), h(Y,Z)) − 1(h(X,Z), h(Y,W)), (2)

for X,Y,Z,W ∈ TM, where R̃ and R represent the curvature tensor of M̃ and M respectively.
Let M be an n-dimensional submanifold of a locally conformal Kaehler space form M̃ of dimension m.

For any tangent vector field X ∈ TM, we can write JX = PX + QX, where P and Q are the tangential and
normal components of JX respectively. If P = 0, the submanifold is said to be an anti-invariant submanifold
and if Q = 0, the submanifold is said to be an invariant submanifold. The squared norm of P at p ∈ M is
defined as

‖P‖2 =

n∑
i, j=1

12(Jei, e j), (3)

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM.
Let M be a Riemannian manifold and K(π) denotes the sectional curvature of M of the plane section

π ⊂ TpM at a point p ∈ M. If {e1, . . . , en} and {en+1, . . . , em} be the orthonormal basis of TpM and T⊥p M at any
p ∈M, then the scalar curvature τ at that point is given by

τ(p) =
∑

1≤i< j≤n

K(ei ∧ e j)

and the normalized scalar curvature ρ is defined as

ρ =
2τ

n(n − 1)
.

The mean curvature vector denoted by H is defined as

H =
1
n

n∑
i, j=1

h(ei, ei)

and also we put
hγi j = 1(h(ei, e j), eγ), i, j ∈ 1, 2, ..,n, γ ∈ {n + 1, ...,m}.

The norm of the squared mean curvature of the submanifold is defined by

‖H‖2 =
1
n2

m∑
γ=n+1

( n∑
i=1

hγii

)2

and the squared norm of second fundamental form h is denoted by C defined as

C =
1
n

m∑
γ=n+1

n∑
i, j=1

(
hγi j

)2

known as Casorati curvature of the submanifold.
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If we suppose that L is an r-dimensional subspace of TM, r ≥ 2, and {e1, e2, . . . , er} is an orthonormal basis
of L. then the scalar curvature of the r-plane section L is given as

τ(L) =
∑

1≤γ<β≤r

K(eγ ∧ eβ)

and the Casorati curvature C of the subspace L is as follows

C(L) =
1
r

m∑
γ=n+1

n∑
i, j=1

(
hγi j

)2

A point p ∈ M is said to be an invariantly quasi-umbilical point if there exist m − n mutually orthogonal
unit normal vectors ξn+1, . . . , ξm such that the shape operators with respect to all directions ξγ have an
eigenvalue of multiplicity n − 1 and that for each ξγ the distinguished eigen direction is the same. The
submanifold is said to be an invariantly quasi-umbilical submanifold if each of its points is an invariantly
quasi-umbilical point.

The normalized δ-Casorati curvature δc(n − 1) and δ̂c(n − 1) are defined as

[δc(n − 1)]p =
1
2
Cp +

n + 1
2n

in f {C(L)|L : a hyperplane of TpM} (4)

and

[δ̂c(n − 1)]p = 2Cp +
2n − 1

2n
sup{C(L)|L : a hyperplane of TpM}. (5)

Some authors use the coefficient n+1
2n(n−1) instead of 2n−1

2n in the equation(5). It was pointed out that the
coefficient n+1

2n(n−1) is not suitable and therefore modified by the coefficient 2n−1
2n . For a positive real number

t , n(n − 1), put

a(t) =
1
nt

(n − 1)(n + t)(n2
− nt) (6)

then the generalized normalized δ-Casorati curvatures δc(t; n − 1) and δ̂c(t; n − 1) are given as

[δc(t; n − 1)]p = tCp + a(t)in f {C(L)|L : a hyperplane of TpM}

if 0 < t < n2
− n, and

[δ̂c(t; n − 1)]p = rCp + a(t)sup{C(L)|L : a hyperplane of TpM}.

if t > n2
− n.

3. Main Theorem

Theorem 3.1. Let M be a submanifold of a locally conformal Kaehler space form M̃. Then
(i) The generalized normalized δ-Casorati curvature δc(t; n − 1) satisfies

ρ ≤
δc(t; n − 1)

n(n − 1)
+

c
4

+
3c

4n(n − 1)
‖P‖2 +

3
2n

trace(P̃) +
3

2n(n − 1)

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j) (7)

for any real number t such that 0 < t < n(n − 1).
(ii) The generalized normalized δ-Casorati curvature δ̂c(t; n − 1) satisfies

ρ ≤
δ̂c(t; n − 1)

n(n − 1)
+

c
4

+
3c

4n(n − 1)
‖P‖2 +

3
2n

trace(P̃) +
3

2n(n − 1)

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j) (8)
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for any real number t > n(n − 1). Moreover , the equality holds in (7) and (8) iff M is an invariantly quasi-umbilical
submanifold with trivial normal connection in M̃, such that with respect to suitable tangent orthonormal frame
{e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operator Sr ≡ Ser , r ∈ {n + 1, . . . ,m}, take the
following form

Sn+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...
...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 n(n−1)

t a


, Sn+2 = · · · = Sm = 0. (9)

Proof. Let {e1, . . . , en} and {en+1, . . . , em} be the orthonormal basis of TpM and T⊥p M respectively at any point
p ∈M. Putting X = W = ei, Y = Z = e j in (1) and take i , j, we have

R̃(ei, e j, e j, ei) =
c
4
{1(e j, e j)1(ei, ei) − 1(ei, e j)1(e j, ei)}

+
c
4
{1(Je j, e j)1(Jei, ei) − 1(Jei, e j)1(Je j, ei) − 21(Jei, e j)1(Je j, ei)}

+
3
4
{1(e j, e j)P̃(ei, ei) − 1(ei, e j)P̃(e j, ei) + P̃(e j, e j)1(ei, ei) − P̃(ei, e j)1(e j, ei)}

−
1
4
{1(Je j, e j)P̃(Jei, ei) − 1(Jei, e j)P̃(Je j, ei) + P̃(Je j, e j)1(Jei, ei)

− P̃(Jei, e j)1(Je j, ei) − 2P̃(Jei, e j)1(Je j, ei) − 21(Jei, e j)P̃(Je j, ei)} (10)

From Gauss equation and (10), we have

c
4
{1(e j, e j)1(ei, ei) − 1(ei, e j)1(e j, ei)} +

3c
4
{1(Jei, e j)1(Jei, e j)} +

3
4
{1(e j, e j)P̃(ei, ei) − 1(ei, e j)P̃(e j, ei) + P̃(e j, e j)1(ei, ei) − P̃(ei, e j)1(e j, ei)}

+
3
2
{1(Pei, e j)P̃(ei, Je j)} = R(ei, e j, e j, ei) + 1(h(e j, e j), h(ei, ei)) − 1(h(ei, e j), h(e j, ei))

(11)

By taking summation 1 ≤ i, j ≤ n and using (3) and (11), we get

2τ = n2
‖H‖2 − nC +

n(n − 1)c
4

+
3c
4
‖P‖2 +

3(n − 1)
2

trace(P̃) +
3
2

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j) (12)

Define the following function, denoted by Q, a quadratic polynomial in the components of the second
fundamental form

Q = tC + a(t)C(L) − 2τ +
n(n − 1)c

4
+

3c
4
‖P‖2 +

3(n − 1)
2

trace(P̃) +
3
2

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j) (13)

where L is the hyperplane of TpM. Without loss of generality, we suppose that L is spanned by {e1, . . . , en−1},
it follows from (13) that

Q =
n + t

n

m∑
γ=n+1

n∑
i, j=1

(hγi j)
2 +

a(t)
n − 1

m∑
γ=n+1

n−1∑
i, j=1

(hγi j)
2
−

m∑
γ=n+1

( n∑
i=1

hγii

)2
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which can be easily written as

Q =

m∑
γ=n+1

n−1∑
i=1

[(n + t
n

+
a(t)

n − 1

)
(hγii)

2 +
2(n + t)

n
(hγin)2

]
+

m∑
n+1

[
2
(n + t

n
+

a(t)
n − 1

) n∑
(i< j)=1

(hγi j)
2
−

2
n∑

(i< j)=1

hγiih
γ
j j +

t
n

(hγnn)2
]

(14)

From(14), we can see that the critical points

hc = (hn+1
11 , h

n+1
12 , . . . , h

n+1
nn , . . . , h

m
11, . . . , h

m
nn)

of Q are the solutions of the following system of homogenous equations:

∂Q
∂hγii

= 2
(

n+t
n +

a(t)
n−1

)
(hγii) − 2

∑n
k=1 hγkk = 0

∂Q
∂hγnn

= 2t
n hγnn − 2

∑n−1
k=1 hγkk = 0

∂Q
∂hγi j

= 4
(

n+t
n +

a(t)
n−1

)
(hγi j) = 0

∂Q
∂hγin

= 4( n+t
n (hγin) = 0,

(15)

where i, j = {1, 2, . . . ,n − 1}, i , j and γ ∈ {n + 1,n + 2, . . . ,m}.
Hence, every solution hc has hγi j = 0 for i , j and the corresponding determinant to the first two equations

of the above system is zero. Moreover, the Hessian matrix of Q is of the following form

H(Q) =

 H1 O O
O H2 O
O O H3


where

H1 =



2
(

n+t
n + a(t)

n−1

)
− 2 −2 . . . −2 −2

−2 2
(

n+t
n + a(t)

n−1

)
− 2 . . . −2 −2

...
...

. . .
...

...

−2 −2 . . . 2
(

n+t
n + a(t)

n−1

)
− 2 −2

−2 −2 . . . −2 2t
n


and H2 and H3 are the diagonal matrices and O is the null matrix of the respective dimensions. H2 and H3
are respectively given as

H2 = dia1
(
4
(n + t

n
+

a(t)
n − 1

)
, 4

(n + t
n

+
a(t)

n − 1

)
, . . . , 4

(n + t
n

+
a(t)

n − 1

))
and

H3 = dia1
(4(n + t)

n
,

4(n + t)
n

, . . . ,
4(n + t)

n

)
.

Hence, we find thatH(Q) has the following eigenvalues

λ11 = 0, λ22 = 2
(2t

n
+

a(t)
n − 1

)
, λ33 = · · · = λnn = 2

(n + t
n

+
a(t)

n − 1

)
,
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λi j = 4
(n + t

n
+

a(t)
n − 1

)
, λin =

4(n + t)
n

, ∀ i, j ∈ {1, 2, . . . ,n − 1}, i , j.

Thus, Q is parabolic and reaches at minimum Q(hc) = 0 for the solution hc of the system (15). Hence Q ≥ 0
and hence

2τ ≤ tC + a(t)C(L) +
n(n − 1)c

4
+

3c
4
‖P‖2 +

3(n − 1)
2

trace(P̃) +
3
2

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j)

whereby, we obtain

ρ ≤
t

n(n − 1)
C +

a(t)
n(n − 1)

C(L) +
c
4

+
3c

4n(n − 1)
‖P‖2 +

3
2n

trace(P̃) +
3

2n(n − 1)

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j)

for every tangent hyperplane L of M. If we take the infimum over all tangent hyperplanes L, the result
trivially follows. Moreover the equality sign holds iff

hγi j = 0, ∀ i, j ∈ {1, . . . ,n}, i , j and γ ∈ {n + 1, . . . ,m} (16)

and

hγnn =
n(n − 1)

t
hγ11 = · · · =

n(n − 1)
t

hγn−1n−1,∀γ ∈ {n + 1, . . . ,m} (17)

From (16) and (17), we obtain that the equality holds if and only if the submanifold is invariantly quasi-
umbilical with normal connections in M̃, such that the shape operator takes the form (9) with respect to the
orthonormal tangent and orthonormal normal frames.

In the same way, we can prove (ii).

Corollary 3.2. Let M be a submanifold of a locally conformal Kaehler space form M̃. Then
(i) The normalized δ-Casorati curvature δc(n − 1) satisfies

ρ ≤ δc(n − 1) +
c
4

+
3c

4n(n − 1)
‖P‖2 +

3
2n

trace(P̃) +
3

2n(n − 1)

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j)

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M̃, such that with respect to suitable tangent orthonormal frame {e1, . . . , en} and normal orthonormal frame
{en+1, . . . , em}, the shape operator Sr ≡ Ser , r ∈ {n + 1, . . . ,m}, take the following form

Sn+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...
...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 2a


, Sn+2 = · · · = Sm = 0.

(ii) The normalized δ-Casorati curvature δ̂c(n − 1) satisfies

ρ ≤ δ̂c(n − 1) +
c
4

+
3c

4n(n − 1)
‖P‖2 +

3
2n

trace(P̃) +
3

2n(n − 1)

n∑
i, j=1

1(Pei, e j)P̃(ei, Je j)
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Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M̃, such that with respect to suitable tangent orthonormal frame {e1, . . . , en} a and normal orthonormal frame
{en+1, . . . , em}, the shape operator Sr ≡ Ser , r ∈ {n + 1, . . . ,m}, take the following form

Sn+1 =



2a 0 0 . . . 0 0
0 2a 0 . . . 0 0
0 0 2a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2a 0
0 0 0 . . . 0 a


,Sn+2 = · · · = Sm = 0.
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