<

Filomat 31:15 (2017), 4933-4944
https://doi.org/10.2298/FIL1715933K

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A Fixed Point Approach to the Stability of Sextic Lie *—Derivations

Dongseung Kang?, Heejeong Koh*?

?Mathematics Education, Dankook University, 152, Jukjeon, Suji, Yongin, Gyeonggi, 16890, Korea

Abstract. We obtain a general solution of the sextic functional equation f(ax +by) + f(ax —by) + f(bx +ay) +
flbx —ay) = (@b)*(@® + ) f(x + y) + f(x — Y] + 2(a* = V*)(a* — VY[ f(x) + f(y)] and investigate the stability
of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we
present a counterexample for a single case.

1. Introduction

The stability problem of functional equations originated from a question of Ulam ([19]) concerning
the stability of group homomorphisms. Hyers ([7]) gave a first affirmative partial answer to the question
of Ulam for Banach spaces. Afterwards, the result of Hyers was generalized by Aoki ([1]) for additive
mapping. Also, Rassias ([16]) generalized Hyers’ Theorem for a unbounded Cauchy difference controlled
by e(llx[IF +lylI’) (0 < p < 1). Gavruta ([6]) replaced the factor [|x||” +|y|l by a general control function ¢(x, y).
Later, the result of Rassias has provided a lot of influence in the development of what we call Hyers-Ulam
stability or Hyers-Ulam-Rassias stability of functional equations. In 1996, Isac and Rassias ([9]) were first to
provide applications of new fixed point theorems for the proof of stability theory of functional equations.
Jang and Park ([10]) investigated the stability of *-derivations and of quadratic *-derivations with Cauchy
functional equation and the Jensen functional equation on Banach *-algebra. The stability of *-derivations
on Banach *-algebra by using fixed point alternative was proved by Park and Bodaghi and also Yang et al.;
see ([14]) and ([22]), respectively. Also, the stability of cubic Lie derivations was introduced by Fosner and
Fosner; see ([5]). For further information about these topics, we also refer the reader to ([11]), ([8]), ([2]),
(3]), ([13]) and ([15]).

Xu and et al. ([20]) introduced the sextic functional equation
fle+3y) + f(x = 3y) —6[f(x +2y) + f(x = 2] + 15[ f(x + y) + f(x — )] 1)
=20f(x) + 7201 (y).

In particular, Sahoo ([18]) and Xu and Rassias ([21]) determined the general solution of a given functional
equation without assuming any regularity conditions on the unknown function. In fact, they proved that
the solution of the given functional equation is equivalent to a symmetric and additive function in each
variable.
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In this paper, we deal with the following functional equation:
flax +by) + f(ax — by) + f(bx + ay) + f(bx — ay) (2)

= @b)*(@ + ) f(x + y) + f(x = ]+ 2(a* = *)(@a* = bYf() + f(y)]

for all x,y € X and integers a, b(a,b # 0,+1anda # +b). We will obtain the general solution of the
functional equation (2) by using the symmetric and additive functions and investigate the Hyers-Ulam
stability of the sextic Lie *-derivations associated with the given functional equation. Also, we will present
a counterexample for a single case.

2. General Solution of a Sextic Functional Equation

In this section let X and Y be real vector spaces and we investigate the general solution of the functional
equation (2). Before we proceed, we would like to introduce some basic definitions concerning n-additive
symmetric mappings and key concepts which are found in ([18]) and ([21]). A function A : X — Y'is
said to be additive if A(x + y) = A(x) + A(y) for all x,y € X. Let n be a positive integer. A function
A, : X" - Y is called n-additive if it is additive in each of its variables. A function A, is said to be
symmetric if A,(x1, -+ ,%u) = Au(Xs01)," " ,Xo(n)) for every permutation {o(1),---,0(n)} of {1,2,---,n}. If
An(x1,%2,--+ ,%,) is an n-additive symmetric map, then A"(x) will denote the diagonal A, (x,x,---,x) and
A'(rx) = r"A"(x) for all x € X and all r € Q. such a function A"(x) will be called a monomial function of
degree n (assuming A" # 0). Furthermore the resulting function after substitution x; = x, = --- = x, = x
and Xs41 = Xe42 = -+ =X, = yin Au(xq,x2, -+, x,) will be denoted by A*"~*(x, y) .

Theorem 2.1. A function f : X — Y is a solution of the functional equation (2) if and only if f is of the form
f(x) = AS(x) for all x € X, where A®(x) is the diagonal of the 6-additive symmetric mapping A : X° — Y.

Proof. Suppose f satisfies the functional equation (2). Letting x = y = 0 in the equation (2), we have
(4a° + 4b° — 24*p* - 22°b* - 4)f(0) = 0 (3)

for all x € X and integers a, b(a,b # 0,+1 and a # +b). Hence we get f(0) = 0. On taking y =0and x =0 in
the equation (2), we get

flax) + f(bx) = a®f(x) + B° () (4)

fby) + f(=by) + fay) + f(-ay) (5)

= (ab*(@® + ) f(y) + f(=p)] + 2(a* = b*)(@* = b*) f(y)

for all x,y € X, respectively. Replacing x and y by —x and x in the equations (4) and (5), respectively we
have

f(=ax) + f(=bx) = a® f(=x) + b° f(~x) (6)
and
f(bx) + f(=bx) + f(ax) + f(—ax) @)

= (ab)*(@* + D) f () + f(=0] +2(a* = b*)(@* = b*) f(x)
for all x € X, respectively. If both equations (4) and (6) apply to the equation (7), we get

(@® + b° — a*h? — a®b*) f(—x) — (a® + b°® — a*V* — 2V f(x) = 0,
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thatis, f(—x) = f(x) for all x € X . Now, we can rewrite the functional equation (2) in the following form

1 1
1 1
R G G T bﬁfwx’“”

b2
s S fa =)+ ) =

forallx,y € X and integersa, b(a,b # 0,+1 and a # +b) . By Theorem 3.5 and 3.6 in ([21]), f is a generalized
polynomial function of degree at most 6, that is, f is of the form

Sfx+y)+

f(x) = A%(x) + A%(x) + A*(x) + A3(x) + A%(x) + Al (x) + A(x)
for all x € X, where A%x) = A” is an arbitrary element of Y and A'(x) is the diagonal of the i-additive
symmetric mapping A; : X’ — Y fori =1,2,---,6. Since f(0) = 0 and f(-x) = f(x) for all x € X, we get
A%(x) = A” = 0 and Al(x) = A3(x) = A%(x) = 0. Hence we have
fx) = A°(x) + A*(x) + A%(x),
for all x € X. The equations (4), (5) and A" (rx) = r"A™(x) for all ¥ € Q imply that

(@ + b?) — (a® + b°) 22
(a® + b°) — (a* + 1)

Atx) = A”(x)

for all x € X and integers a, b(a,b # 0,+1 and a # +b). Hence A*(x) = A%(x) = 0, that is, f(x) = A%(x) for
all x € X, as desired. Conversely, assume that f(x) = A%(x) for all x € X, where A®%(x) is the diagonal of a
6-additive symmetric mapping As : X° — Y. Note that

Ab(gx +ry) = ¢PAS(x) + 60°rA> (x, y) + 154 P A (x, y) + 204° P AP (x, y)
+ 152 A% (x, y) + 6qr° A (x, y) + r6A6(y)
CAY(x,y) = A¥(ex,y), AV (xy) = A (xcy)
where 1 <s5,¢ <5 and c € Q. Thus we may conclude that f satisfies the equation (2). O

From now on, we call the mapping f a generalized sextic mapping if f satisfies the equation (2).

3. Hyers-Ulam-Rassias Stability of Sextic Lie *-Derivations

In this section, we will investigate the Hyers-Ulam-Rassias stability of functional equation f in (2) when
b = 1. Before proceeding this section, we will introduce some definitions and notations. We assume that
A is a complex normed *-algebra and M is a Banach A-bimodule. We will use the same symbol || - || as
norms on a normed algebra A and a normed A-bimodule M. A mapping f : A — M is a sextic homogeneous
mapping if f(ua) = ubf(a), for alla € A and u € C. A sextic homogeneous mapping f : A — M is called a

sextic derivation if
flay) = fy° +x°f(y)

holds forall x,y € A. For all x, y € A, the symbol [x, y] will denote the commutator xy — yx. We say that a
sextic homogeneous mapping f : A — M is a sextic Lie derivation if

flx, yD) = [f (), y°1+ [2°, ()]

forallx, y € A.In addition, if f satisfies in condition f(x*) = f(x)* for allx € A, then it is called the sextic Lie
=-derivation.
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Example 3.1. Let A = C be a complex field endowed with the map z — z* = Z (where Z is the complex conjugate of
z). We define f : A — A by f(a) = a® foralla € A. Then f is sextic and

f(la, b)) = [f(@), b°1 + [a°, f(B)] = O

forallae A. Also,
fl@) = f@ =a* = @) = flay

foralla € A. Thus f is a sextic Lie »-derivation.
In the following, T?! will stand for the set of all complex units, that is,
T' ={ueCllul=1}.
For the given mapping f : A — M, we consider
Auf,y) = flkpx + py) + flkux — py) + f(ux +kuy) + f(px = kuy) ®)

—pP R + DIf(x + y) + fx — )] = 2u°(* = DE* = DIf(x) + f(y)]
and
Af(x,y) = f([x, yD) = [f ), ¥°1 = [x°, f(»)]
forallx, ye A,uyeC andke Z(k#0,+1).

Theorem 3.2. Suppose that f : A — M isa mapping with f(0) = O for which there exists a function ¢ : A> — [0, o)
such that

— =1 S

ba,b,x,y,2) = ;; e QI8 Kb, 3, Ky, K2) < oo 9)
1A, f(a,b)ll < P(a,b,0,0,0) (10)
IAf(x,y) + f(z7) = f@)Il < ¢(0,0,x,y,2) (11)

forallpye T ={f0<6< i—’;} andalla,b,x,y,z € A in which ng € N . Also, if for each fixed a € A the mapping

r i f(ra) froom R to M is continuous, then there exists a unique sextic Lie »-derivation S : A — M satisfying
1 ~
If(a) - S@)ll < qu(a, 0,0,0,0), (12)

forallac A.

Proof. Letting b = 0 and p = 1 in the inequality (10), we have

L

e #(@.0,0,0,0) (13)

IF@ - 7z fkal <

for all a € A. By using the induction, it is easy to show that

1
v

=1 »(kia,0,0,0,0
o f(k"a) — L ! Z ¢(Ka ) (14)
j=m

Ka)| < .
o /(0 < S K[
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forn > m > 0and a € A. The inequalities (9) and (14) imply that the sequence {g: f(k"a)}> is a Cauchy

sequence. Since M is complete, the Cauchy sequence is convergent. Hence we can define a mapping
S:A—> Mas

N S
S(@) = lim == f(K"a) (15)
for a € A. On taking m = 0 in the inequality (14), we have

1., 1 & ¢(kia,0,0,0,0)
s fK'a) ~ fa)l < M; e (16)

forn>0anda € A. On taking n — oo in the inequality (16), the inequalities (9) implies that the inequality
(12) holds.

Now, we will show that the mapping L is a unique sextic Lie *-derivation satisfying the inequality (12).
We note that

1
145, b)ll = lim

n WIIAHf(k"a, ol (17)

< lim ¢(k"a, k"b,0,0,0) _

S ’
foralla,b € Aand u € T', . On taking p = 1 in the inequality (17), it follows that the mapping S is a sextic
mapping. Also, the ineqliuality (17) implies that A;S(a,0) = 0. Hence

S(ua) = p°S(a)

forallac Aandu e T', .Letpu e T' ={A € C||A| = 1}. Then u = ¢, where 0 < 0 < 21t Let 11y :y% —em .
o

Hence we have y; € T', . Then
VIO

S(ua) = S(uy"a) = u3™S(a) = u°S(a)

forall u € T! and a € A. Suppose that p is any continuous linear functional on A and 4 is a fixed element in
A . Then we can define a function g : R — R by

g(r) = p(S(ra))

for all » € R. It is easy to check that g is sextic. Let

kn
(1) = P(f(k6nra))

foralln e Nand r € R.
Note that g is measurable because g is the the pointwise limit of the sequence of measurable functions
gn - Hence g is continuous see ([4]) and

g(r) = 1°9(1)
forall r € R. Thus
p(S(ra)) = g(r) = r°g(1) = °p(S(a)) = p(r°S(a))

for all ¥ € R. Since p was an arbitrary continuous linear functional on A we may conclude that

S(ra) = 1°S(a)
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forallre]R.LetyeC(y;&O).Thenﬁ € T!. Hence

6 6
S(ua) = S(iElula) = () (o) = () 16 s(@ = p°S(@)
|l |l lul
foralla € A and u € C(u # 0). Since a was an arbitrary element in A, we may conclude that S is sextic
homogeneous.
Next, replacing x and y by k"x and k"y, respectively, and letting z = 0 in the inequality (11), we have

Af(Kx, k"
fim | 2L XK

n—oo on

IASCx, il

n—oo

1
< Ilim Wcj}(O, 0, k”xl kn]// 0) =0

for all x,y € A. Hence we have AS(x,y) = 0 for all x,y € A. That is, S is a sextic Lie derivation. Letting
x = y = 0 and replacing z by k"z in the inequality (11), we get

‘f(k”z*) Sk

< ¢(0,0,0,0,k"z)
Jeon Jeon

- |k|6n

(18)
forallz€ A. As n — oo in the inequality (18), we have
5(z") = S@@)

for all z € A. This means that S is a sextic Lie *-derivation. Now, assume S’ : A — A is another sextic
+-derivation satisfying the inequality (12). Then

IS(@) - S' @)l = |k|16nlls<k”a)— @)
1
= W(||5<k”ﬂ) — fk" D)l + | f(K"a) — S’ (K"a)])
<

1 Z"" 1 .
- I ]+77
2|k{6n+1 j=0 |k|6i (k"4,0,0,0,0)
1 ~ ”
S 2|k|6l’l+1 (p( Q,O, O/ O/ O)r

which tends to zero as n — oo, for alla € A. Thus S(a) = S’(a) for all 2 € A. This proves the uniqueness of
S. O

Corollary 3.3. Let O, r be positive real numbers withr < 6 and let f : A — M be a mapping with f(0) = 0 such that

1Auf(a, D)l < O(llall” + [IBII") (19)

A£G, y) + f(2) = f@7I < O+ [Iyll" + Izl (20)

forall p € T', anda,b,x,y,z € A. Then there exists a unique sextic Lie »-derivation S : A — M satisfying

ng

Ollall

If(@) = S@)Il < W

forallac A.



D. Kang, H. Koh / Filomat 31:15 (2017), 49334944 4939

Proof. On taking ¢(a,b,x,y,z) = O(llall" + |bII" + |lx|I" + llyll” + ||zI|") for alla, b, x, y,z € A, it is easy to show that
the inequalities (19) and (20) hold. Similar to the proof of Theorem 3.2, we have

/(@) = S@ll

IN

1 ~
W(P(ar Or Or 0/ 0/ )
_ Ollall Ky
- 2|kl ].Z_(;(|k|6)

Ollall” 1 Ollall

2K 1 - I 20K ~ kI

forallae Aandr<6. O
In the following corollaries, we show the hyperstability for the sextic Lie *-derivations.
Corollary 3.4. Let r be positive real numbers with r < 6 and let f : A — M be a mapping with f(0) = 0 such that
1A, f (@, D)II < llall"lIbI
IAf Qe y) + f(2) = F@I < NPy lz1l

forall p e T', anda,b,x,y,z € A. Then f is a sextic Lie »-derivation on A .

VIO
Proof. On taking ¢(a, b, x, y,z) = (llall” + llxI"){IbI" + llyll"l|zII") , we have
1AL f(a, b)ll < ¢(a, b,0,0,0) = llall"llbll"
1Af(x, y) + f(2) = f(@)'ll < ¢(0,0,x,y,2) = [IxI"llyll"lI=II

forall y e 11"1i and a,b,x,y,z € A. Similar to the proof of Theorem 3.2, we have
HO

/(@) = S@l

IN

1 ~
W(ﬁ(&l, 0, O, 0, 0)
1 v 1
= _— _— ,0,0, 0,0 = O
2k[6 ]ZO, |k|6]¢(a )

foralla € A and r < 6. Hence the inequality (12) implies that f = S, that is, f is a sextic Lie *-derivation on
A. O

Corollary 3.5. Let r be positive real numbers with r < 6 and let f : A — M be a mapping with f(0) = 0 such that
1Auf (@, DI < llall"lIblI (21)

IAf(x, y) + £(2) = f@IE< Nl Iyl + [1z11") (22)
forall p e T, anda,b,x,y,z € A. Then f is a sextic Lie »-derivation on A .

ng

Proof. On taking ¢(a,b,x,y,z) = (llall" + |IxI[")(IbI" + lyll” + l|zI]"), it is easy to show that the inequalities (21)
and (22) hold. Similar to the proof of Theorem 3.2, we my conclude that the inequality 12) is true, that is,

1 1
If@) - S@Il < 5 Z —(a,0,0,0,0) = 0

j=0 Ikl

(e8]

for alla € A and r < 6. Hence the inequality (12) implies that f = S, that is, f is a sextic Lie *-derivation on
A. O
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4. Stability of Sextic Lie *-Derivations via a Fixed Point Method

In this section, we will investigate the stability of the given functional equation (8) using the alternative
fixed point method. Before proceeding the proof, we will state the theorem, the alternative of fixed point;
see ([12]) and ([17]).

Definition 4.1. Let X be a set. A function d : X X X — [0, oo] is called a generalized metric on X if d satisfies
(1)d(x, y) =0ifandonly ifx = y;
(2)d(x, y)=d(y, x) forallx, y € X;
(3)d(x, z) <d(x, y)+d(y, z) forallx, y, z € X.

Theorem 4.2 ( The alternative of fixed point ([12]), ([17]) ). Suppose that we are given a complete generalized
metric space (Q,d) and a strictly contractive mapping T : QO — Q with Lipschitz constant 1. Then for each given
x € Q, either

d(T"x, T"*'x) = oo foralln > 0,

or there exists a natural number ng such that

1. d(T"x, T"'x) < oo forall n > ny;
2. The sequence (T"x) is convergent to a fixed point y* of T ;
3. vy is the unique fixed point of T in the set

A ={y e Qd(T™x,y) < oo};
4. d(y,y) < 5 d(y, Ty) forall y € A.

Theorem 4.3. Let f : A — M be a continuous mapping with f(0) = 0 and let ¢ : A> — [0, c0) be a continuous
mapping such that

1Auf (@, )l < ¢(a,b,0,0,0) (23)

IAf(x, y) + f(z") — f(2)']l < ¢(0,0,x,y,2) (24)
forall u e 11"1i and a,b,x,y,z € A. If there exists a constant | € (0,1) such that

0
o(ka, kb, kx, ky, kz) < |k|6lcf)(a, b,x,y,z) (25)

foralla,b,x,y,z € A, then there exists a sextic Lie »-derivation S : A — M satisfying

||f(ﬂ) - S(ﬂ)” < l) (P(ar Or 0/ Or 0) (26)

__L
2lkle(1 -
forallae A.

Proof. Consider the set
Q=1{glg:A—A,g0)=0)

and introduce the generalized metric on (2,
d(g, h) = inf{c € (0,00)]| || ga) — h(a) lI< c(a,0,0,0,0),for alla € A}.

It is easy to show that (Q, d) is complete. Now we define a function T : Q — Q by

TG)0) = 2z9(ka) @)
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for alla € A. Note that for all g,h € Q, let c € (0, o0) be an arbitrary constant with d(g, 1) < c. Then
llg(a) — h(@)ll < c¢(a, 0,0,0,0) (28)

foralla € A. Letting a = ka in the inequality (28) and using both inequalities (25) and (27), we have

IT(9)(@) — T(M)@)| |Ig(kﬂ) h(ka)ll

Ikl(’

IA

|k|6cc¢>(ka 0,0,0,0) <cl¢(4,0,0,0,0),

that is,
d(Tg, Th) <cl.

Hence we have that
d(Tg, Th) < 1d(g, h),

forall g,h € Q, that is, T is a strictly self-mapping of Q) with the Lipschitz constant /. Letting u =1,b =0
in the inequality (23), we get

1
Il—f ka) = f@)l < qu’(ﬂ, 0,0,0,0)

for all a € A. This means that

ATS, ) < 5
Since lim,,—,.o d(T" f, S) = 0, there exists a fixed point S of T in Q) such that
__ f(k"a)

S(a) = lim e (29)

foralla € A. Hence 1
a(f,S) < ——d(T
(1,9 < Ti(TF ) < 1
This implies that the inequality (26) holds for alla € A. Since [ € (0, 1) , the inequality (25) shows that
kK'a,k"b, k'x, k"y, k"z
nl—l;n ¢( |k|6n y ) = (30)

Replacing a and b by k"a and k"b, respectively, in the inequality (23), we have

¢(k"a, k"b,0,0,0)
|k|6n

1
e 18 'a D)) <

On taking the limit as 7 tend to infinity, we have A, f(a,b) = 0 foralla,b € A and all u € T", . The remains
are similar to the proof of Theorem 3.2. [ '

Corollary 4.4. Let 0, r be positive real numbers withr < 6 and let f : A — M be a mapping with f(0) = 0 such that
1A f (@, D)l < O(llall” + [IbII") (31)

IAf(x, y) + f(2) = f@)7I < 6" + [Iyll" + l1zIl") (32)
forall p € T', anda,b,x,y,z € A. Then there exists a unique sextic Lie »-derivation S : A — M satisfying

0

If6) = SO < o —

forallac A.
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Proof. On taking ¢(a,b,x,y,z) = O(llall" + |bII" + |lx|I" + llyll” + ||zI|") for alla, b, x, y,z € A, it is easy to show that
the inequalities (31) and (32) hold. Similar to the proof of Theorem 4.3, we have

I1f(@) = S@Il < Ollall

(0,0,0,0,0,)=W

1
2D
forallae Aandr<6. O

In the following corollaries, we show the hyperstability for the sextic Lie *-derivations.
Corollary 4.5. Let r be positive real numbers with r < 6 and let f : A — M be a mapping with f(0) = 0 such that
1A, f (@, D)II < llall"lIbI
IAf (e, y) + f2) = F@IT < [Nyl

forall y € T', and a,b,x,y,z € A. Then f is a sextic Lie »-derivation on A .

o

Proof. On taking ¢(a,b,x,y,z) = (llall” + lIx|[)IBI" + llylI"l|zlI") in Theorem 4.3 for all a,b,x,y,z € A, we have
¢(a,0,0,0,0) = 0. Hence the inequality (26) implies that f = S, thatis, f is a sextic Lie »-derivationon A. O

Corollary 4.6. Let r be positive real numbers with r < 6 and let f : A — M be a mapping with f(0) = 0 such that
1Auf (@, DI < llall"lIblI
IAf(x, y) + f(2) = f@)IE < Nl Ayl + [1z117)

forall y € T\, and a,b,x,y,z € A. Then f is a sextic Lie »-derivation on A .

VIU
Proof. On taking ¢(a,b,x,y,z) = (lall” + [lx|")(IDII" + llyll” + ||zI|") in Theorem 4.3 for alla, b, x, y,z € A, we have
¢(a,0,0,0,0) = 0. Hence the inequality (26) implies that f = S, thatis, f is a sextic Lie *-derivationon A. [J
5. Counterexample

In this section, we will present a counterexample to show that the functional equation (2) is not stable
forr = 6 and u =1 in Corollary 3.3.

Example 5.1. Let ¢ : R — R be a mapping defined by

(1) :{ Ox8  for|x| <1

0 otherwise

where 0 > 0 is a constant and a mapping f : R — R by

fo =y 280 )
i=0
forall x € R. Then the mapping f satisfies the inequality
IALf(x, p)] < (2K — K — I + 4) ,36"1_891 (l® + [y1%) (34)
forall x € R. Then there does not exist a sextic mapping S : R — R and a constant p > 0 such that
f () = SQ)I < Bll® (35)

forallx e R.
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Proof. The definitions of ¢ and f imply that

- KN N 6 Ok
ki i 60~ k6 —1

for all x € R. Hence f is bounded by = If |x[° +|y|° > 1, then the inequality (34) holds. Now, we suppose
that 0 < |x|® + Iyl6 < 1. Then there exists a positive integer ¢ such that

< l® +1yl° < (36)

1 1
J6(t+2) o(t+1) :

Since [x[® + |y|° < i we have

Ko < — 3 L and SETARS
That is,

ktx<%andkty< 11{

These imply that k'~1x, k' 1y, k'~ (x + y), K71 (x — y), K= (ke + y), K70 (ke = ), K7 (e + Ky), KM (= ky) € (<1, 1).
Hence we obtain that k/x, kf v, ki (x + y), K/ (x —y), K (kx + y), K/ (kx — y), K/ (x + ky), ki (x — ky) € (=1,1) for each
j=0,1,---,t—=1.Also, foreachj=0,1,--- ,t -1,
¢(kj (kx + ) + ok (kx = y)) + qb(kj (x +ky)) + ok (x — ky))
—K (K + DIOK (x + ) + d(K (x — y))]
=20 = (k" = DIp®Kx) + (') = 0

From the definition of f and the inequality (36), we have
Ayl <) oKk + ) + bk (ex = y)
j=0
+ ORI (x + ky)) + p(k/ (x — ky))
I + DI (x + ) + p(K (x = y))]
—2(k = 1)(k* = DIp(k'x) + p(k/y)]}

= 20(2k° — k* — k2 + 4)
<), 6

j=t
k6
< 20Kk2QK® — K — K + 4)——

k6(t+2) K —1

<@ -k R+ 2 ap 4 |y|6> .

- k6 -1

We claim that the sextic functional equation (2) is not stable for = 6 and y = 1 in Corollary 3.3. Assume
that there exists a sextic mapping S : R — R and a constant § > 0 satisfying the inequality (35). Since
f is bounded and continuous for all x € R, S is bounded on any open interval containing the origin and
continuous at the origin. In view of Corollary 3.3, S(x) must have the form S(x) = yx® for all x € R. Hence
we have that

Ol < B+ IyDIal° . (37)

But we can choose a positive integer m with m0 >  + |y|. If x € (0, ﬁ), then k% € (0,1) for all
t=0,1,--- ,m—1. For this x, we have

)= i oK) Zj O (kix)°

6i T 6i
i=0 k i=0 k

= mOx® > (B + y)®
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This implies that it is a contradiction to the inequality (37). Therefore the sextic functional equation (2) is
not stable whenr=6and u=1. 0O
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