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Abstract. In this paper, we will present various results on computing of wide classes of Hessenberg
matrices whose entries are the terms of any sequence. We present many new results on the subject as well
as our results will cover and generalize earlier many results by using generating function method. Moreover,
we will present a new approach on computing Hessenberg determinants, whose entries are general higher
order linear recursions with arbitrary constant coefficients, based on finding an adjacency-factor matrix. We
will give some interesting showcases to show how to use our new method.

1. Introduction

The n × n lower Hessenberg matrix Hn is defined as follows

Hn =



h11 h12 0
h21 h22 h23

h31 h32 h33
. . .

...
...

...
. . .

. . .

hn−1,1 hn−1,2 hn−1,3 · · ·
. . . hn−1,n

hn1 hn2 hn3 · · · · · · hnn


.

Similarly, the n × n upper Hessenberg matrix is considered as transpose of the matrix Hn. Throughout the
paper, we are interested in a lower Hessenberg matrix so in fact our results will be also valid for an upper
Hessenberg matrix. Hessenberg matrices are one of the important matrices in numerical analysis [7, 9]. For
example, the Hessenberg decomposition played an important role in the matrix eigenvalues computation
[9].

The authors of [1, 3, 5, 13, 15, 17, 18, 24, 25] studied algebraic properties of some Hessenberg matrices
such as inverses, determinants, permanents etc. For example, Cahill et al. [3] gave a recurrence relation for
the determinant of the matrix Hn as follows

det Hn = hnn det Hn−1 +

n−1∑
r=1

(−1)n−r hnr

n−1∏
j=r

h j, j+1 det Hr−1
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where H0 = 1 for n > 0.
Meanwhile some authors computed determinants and permanents of various tridiagonal matrices which

are in fact Hessenberg matrices [4, 12, 14, 19–21]. For example, in [14], Kılıç et al. gave the following result∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0
−1 2 1

−1 2
. . .

. . .
. . . 1

0 −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Pn+1,

where Pn is the nth Pell number.
Moreover the authors of [6, 7] gave closed formulas for the inverses of some Hessenberg matrices as

well as algorithms to compute their inverses and determinants. The authors of [2, 11] gave combinatorial
approach to compute the determinants of some Hessenberg matrices.

For n ≥ k and any reals ci, 1 ≤ i ≤ k, define the kth order linear recursive sequence {un} with constant
coefficients as

un = c1un−1 + c2un−2 + c3un−3 + · · · + ckun−k, (1)

with arbitrary initials ut for 0 ≤ t < k and assumed that at least one of them is different from zero.
We give the following table for some special cases of the sequence {un}:

Order Coefficients Initials
2 c1 = c2 = 1 u0 = 0, u1 = 1 Fibonacci sequence {Fn}

2 c1 = p, c2 = q u0 = 0, u1 = 1 Gen. Fibonacci sequence {Un}

2 c1 = 2, c2 = 1 u0 = 0, u1 = 1 Pell sequence {Pn}

2 c1 = c2 = 1 u0 = 2, u1 = 1 Lucas sequence {Ln}

2 c1 = p, c2 = q u0 = 2, u1 = p Gen. Lucas sequence {Vn}

2 c1 = p, c2 = −q u0 = a, u1 = b Horadam sequence {Wn}

2 c1 = 1, c2 = 2 u0 = 0, u1 = 1 Jacobsthal sequence {Jn}

3 c1 = c2 = c3 = 1 u0 = u1 = 0, u2 = 1 Tribonacci sequence {Tn}
Table 1

Recently, Macfarlane [22] considered the following Hessenberg matrix whose entries consist of the terms
of the sequence {Wn}:

An =



W1 W2 W3 · · · Wn−2 Wn−1 Wn
−x W1 W2 · · · Wn−3 Wn−2 Wn−1

−x W1 · · · Wn−4 Wn−3 Wn−2
. . .

. . .
...

...
...

. . . W1 W2 W3
−x W1 W2

0 −x W1


,

where {Wn} is the Horadam sequence as in Table 1. By using the cofactor expansion of the determinant, he
showed that the sequence {det An} satisfies the recurrence for n > 2,

det An =
(
b + px

)
det An−1 − qx (a + x) det An−2.

For any sequence {an} , the generating function of {an} is the power series [27]:

A(x) =
∑
k≥0

akxk.
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For example, the generating function of the Fibonacci sequence {Fn} is

F(x) =
∑
k≥0

Fkxk =
x

1 − x − x2 .

In general, the generating function of the sequence {un} given in (1) is

U (x) =
∑
k≥0

ukxk =
p (x)

1 − c1x − c2x2 − · · · − ckxk
,

where the polynomial p (x) is determined by the initial values of the sequence {un}.
Recently, by using generating function method, Merca [23] showed that determinant of an n× n Toeplitz-

Hessenberg matrix is expressed as a sum over the integer partitions of n.
Getu [8] computed determinants of a class of Hessenberg matrices by using generating function method.

He considered the infinite matrix

D =



b0 1 0 0 . . .
b1 c1 1 0 . . .
b2 c2 c1 1 . . .
b3 c3 c2 c1 . . .
b4 c4 c3 c2 . . .
...
...
...
...
. . .


.

Then he showed that if the following equation holds

A (x) =
B (x)

C (x) + 1
,

then

an = (−1)n det Dn,

where A (x) , B (x) and C (x) are the generating functions of the sequences {ak+1}, {bk} and {ck+1} , resp.
In this work, we use the generating function method to determine the relationships between determi-

nants of three classes of Hessenberg matrices whose entries are terms of the certain sequences and generating
functions of these sequences. So determinants of these Hessenberg matrices could be easily found by these
relations. Some of our results will generalize the results of [8]. We show that earlier computed Hessenberg
determinants in [12–16, 18, 21, 22, 25] with cofactor expansion could much easily be recomputed by our
method. Moreover we compute two new classes of Hessenberg matrices whose determinants have not been
computed before. Finally, we give an elegant method to compute the determinants of Hessenberg matrices
whose entries consist of the terms of the recursive sequences: our approach is to find an adjacency-factor
matrix and use the results of Section 2.

2. Evaluating Hessenberg Determinants via Generating Functions

Let {bn}n≥0 and {cn}n≥1 be any sequences. Denote their generating functions as B (x) =
∑

k≥0 bkxk and
C (x) =

∑
k≥1 ckxk, resp. To generalize the result of [8], we define the Hessenberg matrix An (r, s) of order

n + 1:

An (r, s) :=



b0 r 0
b1 c1 s
b2 c2 c1 r
b3 c3 c2 c1 s
...

...
... · · ·

. . .
. . .

bn−1 cn−1 cn−2 · · · · · · c1 dn (r, s)
bn cn cn−1 · · · · · · c2 c1


, (2)
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where

dn (r, s) =

{
r if n is odd,
s if n is even,

for arbitrary nonzero real numbers r and s. Briefly, we use An instead of An (r, s) if there is no restrictions on
r and s.

When r = s = 1, the matrix An (1, 1) is considered in [8] and the author computed its determinant via
generating functions. To compute determinant of An via generating function method, we have the following
result:

Theorem 2.1. If

A (x) =
B (x)

(
C (−x) + r+s

2

)
− B (−x)

(
r−s
2

)
C (x) C (−x) +

(
r+s
2

)
(C (x) + C (−x)) + rs

,

then (i) for even n such that n = 2t,

det An = (−1)n rt+1stan,

(ii) for odd n such that n = 2t + 1,

det An = (−1)n rt+1st+1an,

where A (x) is the generating function of {an} .

Proof. We consider the infinite linear system of equations

r 0
c1x sx
c2x2 c1x2 rx2

c3x3 c2x3 c1x3 sx3

c4x4 c3x4 c2x4 c1x4 rx4

...
...

...
...

...
. . .





a0
a1
a2
a3
a4
...


=



b0
b1x
b2x2

b3x3

b4x4

...


. (3)

Here we write

ra0 = b0

c1a0x + sa1x = b1x
c2a0x2 + c1a1x2 + ra2x2 = b2x2

c3a0x3 + c2a1x3 + c1a2x3 + sa3x3 = b3x3

... =
...

By summing both sides of the above equalities, we obtain

A (x) C (x) + r
∑
k≥0

a2kx2k + s
∑
k≥0

a2k+1x2k+1 = B (x) . (4)

Since ∑
k≥0

a2kx2k =
A (x) + A (−x)

2
and

∑
k≥0

a2k+1x2k+1 =
A (x) − A (−x)

2
,
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Eq. (4) could be rewritten as

A (x)
[
C (x) +

r + s
2

]
+ A (−x)

[ r − s
2

]
= B (x) .

Taking (−x) instead of x,we get

A (−x)
[
C (−x) +

r + s
2

]
+ A (x)

[ r − s
2

]
= B (−x) .

Solving two equations just above in terms of A (x), we get

A (x) =
B (x)

(
C (−x) + r+s

2

)
− B (−x)

(
r−s
2

)
C (x) C (−x) +

(
r+s
2

)
(C (x) + C (−x)) + rs

,

as desired.
We examine the relationship between the sequences {an} and {det (An)} . If we consider the system (3) for

only first n + 1 equations and take x = 1, the system (3) turns to

r 0
c1 s
c2 c1 r
c3 c2 c1 s
...

...
...

...
. . .

cn cn−1 cn−2 · · ·
... dn+1 (r, s)





a0
a1
a2
a3
...

an


=



b0
b1
b2
b3
...

bn


,

where dn (r, s) is defined as before.

By Cramer’s rule, we obtain an =
(−1)n det An

rt+1st for even n such that n = 2t and an =
(−1)n det An

rt+1st+1 for odd

n such that n = 2t + 1,which completes the proof.

We want to note some important and useful special cases of Theorem 2.1 with the following corollaries:

Corollary 2.2. For the matrix An (1, 1), we have that an = (−1)n det An and the generating function of the sequence
{det An (1, 1)} is

A (x) =
B (−x)

1 + C (−x)
.

This result was firstly given in [8].

Corollary 2.3. For the matrix An (−1,−1), we have that an = −det An and the generating function of the sequence
{det An (−1,−1)} is

A (x) =
B (x)

1 − C (x)
. (5)

Let’s give some examples.

Example 2.4. For n ≥ 0, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1 −1 0
F2 1 −1
F3 1 1 −1
F4 0 1 1 −1
...

...
... · · ·

. . .
. . .

Fn 0 0 · · · · · · 1 −1
Fn+1 0 0 · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∑
k=0

Fk+1Fn+1−k.
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Proof. If bn = Fn+1 and {cn}
∞

1 = {1, 1, 0, . . .} , then B (x) = 1
1−x−x2 and C (x) = x + x2. So the generating function

of {det An (−1,−1)} by Corollary 2.3 is 1
(1−x−x2)2 , which is the generating function of

{∑n
k=0 Fk+1Fn+1−k

}
, as

well.

Example 2.5. For n ≥ 0, we have that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L0 −1 0
L1 −F1 −1
L2 −F2 −F1 −1
L3 −F3 −F2 −F1 −1
...

...
... · · ·

. . .
. . .

Ln−1 −Fn−1 −Fn−2 · · · · · · −F1 −1
Ln −Fn −Fn−1 · · · · · · −F2 −F1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

{
2 if n is even,
−1 if n is odd.

Proof. Since bn = Ln and {cn}
∞

1 = {−Fn}
∞

1 , B (x) = 2−x
1−x−x2 and C (x) = −x

1−x−x2 . By Corollary 2.3, the generating
function of {det An (−1,−1)} is

A (x) =
B (x)

1 − C (x)
=

2 − x
1 − x2 ,

which gives the periodic sequence {2,−1, 2,−1, . . .} .

Let {bn} be any sequence and {cn}
∞

1 = {1, 0, 0, . . .} . Since 1
1−x B (x) is the generating function of the sum of

the first nth term of {bn} , by Corollary 2.3, we see that

det An (−1,−1) =

n∑
k=0

bk.

For example,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0
1
2 1 −1
1
3 0 1 −1
1
4 0 0 1 −1
...

...
... · · ·

. . .
. . .

1
n 0 0 · · · · · · 1 −1
1

n+1 0 0 · · · · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Hn+1,

where Hn stands for nth Harmonic number.
Since permenantal and determinantal relationships between the matrices An (1, 1) and An (−1,−1) are

det An (1, 1) = perAn (−1,−1) and perAn (1, 1) = det An (−1,−1) ,

the corollaries given above include the results of [12, 25].

Corollary 2.6. If

A (x) =
C (−x) B (x) − B (−x)

C (x) C (−x) − 1
,

then we have

det An (1,−1) = (−1)
1
2 n(n−1) an.
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We will give an example:

Example 2.7. If we take {cn} =
{
(−1)n Fn−1

}
and define the sequence {bn} as b2n = −b2n+1 = F2n+2, then for even n

such that n = 2k, the matrix An (1,−1) takes the form

A2k (1,−1) =



F2 1 0
−F2 0 −1
F4 F1 0 1
−F4 −F2 F1 0 −1
...

...
... · · ·

. . .
. . .

−F2k −F2k−2 F2k−3 · · · · · · 0 −1
F2k+2 F2k−1 −F2k−2 · · · · · · F1 0


and so

det A2k (1,−1) = (−1)k F2k+1.

Proof. The generating functions of {bn} and {cn} are B (x) = 1−x
(1+x−x2)(1−x−x2) and C (x) = x2

1+x−x2 , resp. So we get

A (x) = 1
1−x−x2 which means det A2k = (−1)k F2k+1 by Corollary 2.6.

The example just above could be also given for odd n. Here we leave it.

Corollary 2.8. If

A (x) =
B (x)

C (x) + d
,

then

det An (d, d) = (−1)n dn+1an

and the generating function of {det An (d, d)} is

A (x) = d · A (−dx) .

The result of [22] could be derived by using Corollary 2.8 and the properties of the generating functions.

Example 2.9. If bn = − (Hn + 1) with b0 = −1 and cn = 2
n , then∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 2 0
− (H1 + 1) 2 2
− (H2 + 1) 1 2 2
− (H3 + 1) 2

3 1 2 2
...

...
... · · ·

. . .
. . .

− (Hn−1 + 1) 2
n−1

2
n−2 · · · · · · 2 2

− (Hn + 1) 2
n

2
n−1 · · · · · · 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n 2n−1.

Proof. If we take d = 2, bn = − (Hn + 1) with b0 = −1 and cn = 2
n in Corollary 2.8, then we get

B (x) =
ln (1 − x) − 1

1 − x
and C (x) = ln (1 − x)−2 .

Thus A (x) = 1
2x−2 and det An = 2 (−2)n an, which gives us det An = (−1)n 2n−1, as claimed.
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When c0 = d, by Corollary 2.8, we obtain A (x) = B(x)
C(x) ,where C (x) =

∑
k≥0 ckxk. For example, if we choose

B (x) = x + 4x2 + x3 and C (x) = (1 − x)4 , then∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0
1 −4 1
4 6 −4 1
1 −4 6 −4 1

0 1 −4 6
. . .

. . .

0 0 1 −4
. . . −4 1

...
...

...
... · · · 6 −4 1

0 0 0 0 · · · −4 6 −4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

= (−1)n n3.

Now we recall an already known result given in [23]. But we will give an alternative and much simple
proof for it.

Corollary 2.10. If {cn} is any sequence such that c0 , 0, then we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c0 0 · · · 0
c2 c1 c0 · · · 0
c3 c2 c1 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= [xn]
c0

C (−c0x)
,

where C (x) =
∑

k≥0 ckxk and [◦] is the coefficient extraction operator.

Proof. To prove it by our result, Corollary 2.8, first we consider an equal determinant to the claimed
determinant by the following equality∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c0 0 · · · 0
c2 c1 c0 · · · 0
c3 c2 c1 · · · 0
...

...
...

. . .
...

cn cn−1 cn−2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c0 0 0 · · · 0
0 c1 c0 0 · · · 0
0 c2 c1 c0 · · · 0
0 c3 c2 c1 · · · 0
...
...

...
...

. . .
...

0 cn cn−1 cn−2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

The value of the determinant on the RHS of the above equation could be easily found by Corollary 2.8. So
the claimed result directly follows.

Let’s give an example related to Theorem 2.1.

Example 2.11. Let {bn} be the alternating of the sequence A135491 in [26]. Then for n = 2k,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 1 0
b1 1 −3
b2 1 1 1
b3 1 1 1 −3
...

...
... · · ·

. . .
. . .

b2k−1 0 0 · · · · · · 1 −3
b2k 0 0 · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= T2k+2 (−3)k .

Similarly, for n = 2k + 1, determinant of the corresponding Hessenberg matrix is equal to −T2k+3 (−3)k+1 , where Tn
is the nth Tribonacci number.
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Proof. The generating functions of {bn} and {cn} are B (x) = 1−x+x2
−x3

1+x−x2+x3 and C (x) = x + x2 + x3, resp. By Theorem
2.1, when r = 1 and s = −3, we obtain det An = Tn+2 (−3)t for n = 2t and det An = −Tn+2 (−3)t+1 for n = 2t + 1,
as desired.

Let {bn} , {cn} and {dn} be any number sequences. Their generating functions are B (x) =
∑

k≥0 bkxk, C (x) =∑
k≥1 ckxk and D (x) =

∑
k≥1 dkxk, respectively.

Now we consider two classes of Hessenberg determinants, which are not considered before. We start
with the first one: For any nonzero real d,we define a Hessenberg matrix of order n + 1 as follows:

An =



b0 d 0
b1 c1 d
b2 c2 d1 d
b3 c3 d2 d1 d
...

...
... · · ·

. . .
. . .

bn−1 cn−1 dn−2 · · · · · · d1 d
bn cn dn−1 · · · · · · d2 d1


.

Theorem 2.12. If

A (x) =
B (x) + a0D (x) − a0C (x)

D (x) + d
with a0 = b0/d, (6)

then

det An = (−1)n dn+1an

and the generating function of {det An} is

A (x) = d · A (−dx) .

Proof. Similar to the proof of Theorem 2.1, we have the following infinite linear system of equations

d 0
c1x dx
c2x2 d1x2 dx2

c3x3 d2x3 d1x3 dx3

c4x4 d3x4 d2x4 d1x4 dx4

...
...

...
...

...
. . .





a0
a1
a2
a3
a4
...


=



b0
b1x
b2x2

b3x3

b4x4

...


.

By summing the equations come from the infinite linear system of equations just above and adding a0D (x)
to both sides of it, we obtain

a0C (x) + A (x) D (x) + a0A (x) = B (x) + a0D (x) ,

which gives

A (x) =
B (x) + a0D (x) − a0C (x)

D (x) + d
,

as desired. Finally, if we restrict the linear system of equations to the fist (n + 1) equations and take x = 1,
then by Cramer’s rule, we get an =

(−1)n det An
dn+1 , as claimed.
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Example 2.13. For n > 0,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P1 1 0
P2 F2 1
P3 F3 P2 1
P4 F4 P3 P2 1
...

...
... · · ·

. . .
. . .

Pn Fn Pn−1 · · · · · · P2 1
Pn+1 Fn+1 Pn · · · · · · P3 P2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n Fn−1,

where Fn and Pn are the nth Fibonacci and Pell number, resp.

Proof. It is a consequence of Theorem 2.12. When d = 1, B (x) =
∑

k≥0 Pk+1xk = 1
1−2x−x2 , C (x) =

∑
k≥1 Fk+1xk =

x+x2

1−x−x2 and D (x) =
∑

k≥1 Pk+1xk = 2x+x2

1−x−x2 , the proof follows.

If d = c0 = d0, then we rewrite the equation (6) as

A (x) =
B (x) + a0D (x) − a0C (x)

D (x)
,

where C (x) =
∑

k≥0 ckxk and D (x) =
∑

k≥0 dkxk and B (x) is same to before.
Similarly, let {bn} , {cn} and {dn} be any sequences, whose generating functions are denoted as before.
Now we define the second class of Hessenberg matrices of order n + 1, whose columns are periodic after

first column, as follows:

An =



b0 d 0
b1 c1 d
b2 c2 d1 d
b3 c3 d2 c1 d

b4 c4 d3 c2 d1
. . .

...
...

...
... · · ·

. . . d
bn−1 cn−1 dn−2 cn−3 dn−4 · · · s (n, 1) d
bn cn dn−1 cn−2 dn−3 · · · s (n, 2) s (n + 1, 1)


,

where

s (n, k) =

{
ck if n is even,
dk if n is odd.

We have the following result for the generating function of the determinant of the just above matrix.

Theorem 2.14. If

A (x) =
B (x) (C (−x) + D (−x) + 2) − B (−x) (C (x) −D (x))

C (x) (1 + D (−x)) + D (x) (1 + C (−x)) + (C (−x) + D (−x)) + 2d
,

then

det An = (−1)n dn+1an

and the generating function of {det An} is

A (x) = d · A (−dx) .
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Proof. Similar to the previous theorems, if we consider the infinite linear system of equations, then we
obtain

C (x)
∑
k≥0

a2kx2k + D (x)
∑
k≥0

a2k+1x2k+1 + dA (x) = B (x) . (7)

Since
∑

k≥0 a2kx2k = A(x)+A(−x)
2 and

∑
k≥0 a2k+1x2k+1 = A(x)−A(−x)

2 , the equation (7) is written as

A (x)
(

C (x) + D (x)
2

+ 1
)

+ A (−x)
(

C (x) −D (x)
2

)
= B (x) ,

which, by solving in terms of A (x), gives us

A (x) =
B (x) (C (−x) + D (−x) + 2) − B (−x) (C (x) −D (x))

C (x) (1 + D (−x)) + D (x) (1 + C (−x)) + (C (−x) + D (−x)) + 2d
,

as desired. When we restricted the infinite system of equations to the first n + 1 equations with x = 1, we
complete the proof by Cramer’s rule.

Example 2.15. For even n, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L0 1 0
L1 F1 1
L2 F2 L0 1
L3 F3 L1 F1 1

L4 F4 L2 F2 L0
. . .

...
...

...
... · · ·

. . . 1
Ln−1 Fn−1 Ln−3 Fn−3 Ln−5 · · · F1 1
Ln Fn Ln−2 Fn−2 Ln−4 · · · F2 L0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 2

n
2 + 1.

If n = 2k + 1, the determinant of corresponding matrix is equal to 2k.

Proof. Since bn = Ln, cn = Fn and dn = Ln−1, we have B (x) = 2−x
1−x−x2 , C (x) = x

1−x−x2 and D (x) = 2x−x2

1−x−x2 . Hence,
for d = 1 by Theorem 2.14, we obtain

A (x) =
−x − 3x2 + x3 + 2

(x − 1) (x + 1) (2x2 − 1)
=

1
1 − x2 +

1 − x
1 − 2x2

=

∞∑
k=0

x2k +

∞∑
k=0

2kx2k
−

∞∑
k=0

2kx2k+1

=

∞∑
k=0

(
2k + 1

)
x2k
−

∞∑
k=0

2kx2k+1,

as claimed.

We consider certain Hessenberg matrices whose superdiagonal are constant or two periodic. Now we
give a general idea for Hessenberg matrices with arbitrary superdiagonal entries. To show how this idea
will be applied, we present two Hessenberg matrices whose superdiagonals now consist of the terms of
two special sequences, {n + 1} and {2n

}, resp.
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Let {bn} , {cn}
∞

n=1 and {dn} such that dn , 0 for all n ∈ N be any sequences. First define the Hessenberg
matrix An of order n + 1 of the form

An :=



b0 d0 0
b1 c1 d1
b2 c2 c1 d2
b3 c3 c2 c1 d3
...

...
... · · ·

. . .
. . .

bn−1 cn−1 cn−2 · · · · · · c1 dn−1
bn cn cn−1 · · · · · · c2 c1


.

Consider the following infinite linear system of equations

d0 0
c1x d1x
c2x2 c1x2 d2x2

c3x3 c2x3 c1x3 d3x3

c4x4 c3x4 c2x4 c1x4 d4x4

...
...

...
...

...
. . .





a0
a1
a2
a3
a4
...


=



b0
b1x
b2x2

b3x3

b4x4

...


,

which gives us the relation

A (x) C (x) +

∞∑
k=0

akdkxk = B (x) , (8)

where C (x) =
∑

k≥1 ckxk. If we restricted this infinite system to the first n + 1 equations with x = 1, then by
Cramer’s rule we have

an =
(−1)n det An∏n

k=0 dk
.

Now we present two special cases of the idea mentioned above.

Theorem 2.16. If {dn} = {n + 1} , then

xA (x)
(
e
∫ C(x)

x dx
)

=

∫
e
∫ C(x)

x dxB (x) dx + C,

with

det An = (−1)n (n + 1)!an,

where C is a constant.

Proof. By (8), we have

A (x) C (x) +

∞∑
k=0

ak (k + 1) xk = B (x) ,

which, equivalently, gives us

A (x) C (x) + (xA (x))′ = B (x) .
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By taking y = x · A (x) ,we get the first order linear differential equation

y
C (x)

x
+ y′ = B (x) .

The solution of this differential equation is

y =
(
e
∫ C(x)

x dx
)−1

(∫
e
∫ C(x)

x dxB (x) dx + C
)
,

which completes the proof. Note that the constant C is determined by the initial y (0) = 0.

Example 2.17. For n ≥ 0, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
3 1 2
5 1 1 3
7 1 1 1 4
...

...
... · · ·

. . .
. . .

2n − 1 1 1 · · · · · · 1 n
2n + 1 1 1 · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n (n + 1)!.

Proof. Since bn = 2n + 1 and cn = 1,we obtain B (x) = x+1
(x−1)2 and C (x) = x

1−x . So we get∫
1

1 − x
dx = − ln (x − 1) and e

∫ C(x)
x dx =

1
x − 1

.

By Theorem 2.16, we have that

xA (x)
1

x − 1
=

∫
x + 1

(x − 1)3 dx + C

xA (x)
1

x − 1
= −

x
(x − 1)2 + C.

For x = 0,we find that C = 0 and so

A (x) =
1

1 − x
,

which gives det An = (−1)n (n + 1)!.

For the case bn = cn+1, i.e. B (x) = C(x)
x , the relation given in Theorem 2.16 turns

xA (x) = 1 + C
(
e
∫ C(x)

x dx
)−1
.

Now we present the other special case with an example which could be produced by (8).

Example 2.18. For n ≥ 0,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
3 1 2
4 1 1 4
10
3

1
2 1 1 8

...
...

... · · ·
. . .

. . .
2n−2(n+1)

(n−1)!
1

(n−2)!
1

(n−3)! · · · · · · 1 2n−1

2n−1(n+2)
n!

1
(n−1)!

1
(n−2)! · · · · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n 2(n+1
2 )

n!
.
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Proof. Since bn = 2n−1(n+2)
n! and cn = 1

(n−1)! , their generating functions are B (x) = e2x (x + 1) and C (x) = xex,
resp. By (8), we have

xexA (x) + A (2x) = e2x (x + 1) .

Hence we find that A (x) = ex, which gives an = 1
n! . Finally, from the relation an =

(−1)n det An

2(n+1
2 )
, we obtain

claimed result.

3. A Matrix Method to Compute a Class of Hessenberg Determinants

In this section, we give a new method to compute a class of Hessenberg determinants in which the
entries of each matrix in the class are terms of a general linear recurrence relation.

Consider the following lower Hessenberg matrix of order n for nonzero real r:

En (r) =



u1 r 0
u2 u1 r
u3 u2 u1 r

u4 u3 u2 u1
. . .

...
...

...
...

. . .
. . .

un−1 un−2 un−3 un−4 · · · u1 r
un un−1 un−2 u−3 · · · u2 u1


,

where the terms un’s are defined as in (1).
We only consider the matrix En (r) with case r = −1, briefly denoted by En,while giving our method but

one could follow whole steps will be given above for the matrix En (r) with any nonzero r.
Indeed one could compute determinant of the matrix En by using the results of Section 2. Here we will

present a new and easy method to compute det (En). For this, we define an adjacency-factor matrix related
with the matrix En : Define a n × n lower triangular adjacency-factor matrix M as

Mi j =


1 if i = j,
−ci− j if 1 ≤ i − j ≤ k,

0 otherwise.

Clearly the matrix M has the form

M =



1 0
−c1 1
−c2 −c1 1
... −c2

. . .
. . .

−ck
. . .

. . .
. . .

. . .
. . .

0 −ck · · · −c2 −c1 1


.

From a matrix multiplication, we obtain that

MEn = Ên,

where

Ên =


−1 if j = i + 1,
bi if j = 1 and i ≤ k,

di− j+1 if i ≥ j > 1 and i − j ≤ k − 1,
0 otherwise,
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with

bm = um −

m−1∑
l=1

um−lcl and dm = um −

m−1∑
l=1

um−lcl + cm,

for 1 ≤ m ≤ k.
Here since det M = 1, we have det En = detn Ê. Afterwards, we prefer to compute the value of the

determinant of Ên instead of the matrix En because the matrix Ên is a banded matrix with bandwidth k + 1
and includes many zeros and so it gives us to advantage to choose the matrix Ên rather than En regard to use
of the results of the previous section to compute determinants of Hessenberg matrices.

By Corollary 2.3, we have that

∑
i≥0

det Ei+1xi =
∑
i≥0

det Êi+1xi =

∑k
i=1 bixi−1

1 −
∑k

i=1 dixi
. (9)

As a special case, if we consider the recurrence relation {un} defined in (1) with the initials u−k+2 = u−k+3 =
· · · = u−1 = u0 = 0 and u1 = 1, then we have

b1 = 1 and bi = 0 for 1 < i ≤ k,
d1 = 1 + c1 and di = ci for 1 < i ≤ k.

Hence the generating function of the determinant of the matrix En+1 is written as

1
1 − (1 + c1) x − c2x2 − · · · − ckxk

. (10)

Now we give an example to show how to use the method described above.

Example 3.1. For positive integer m, define the sequence {un} with un =
(m+n−1

m
)

and construct the following n × n
matrix An (m)

An (m) :=



(m
m
)

−1 0(m+1
m

) (m
m
)

−1(m+2
m

) (m+1
m

) (m
m
) . . .(m+3

m
) (m+2

m
) (m+1

m
)
· · · −1

· · · · · · · · · · · ·
(m

m
)

−1(m+n−2
m

) (m+n−3
m

) (m+n−4
m

) ...
(m+1

m
) (m

m
)
−1(m+n−1

m
) (m+n−2

m
) (m+n−3

m
) ...

(m+2
m

) (m+1
m

) (m
m
)


,

where
(n

k
)

is the usual binomial coefficient. Then

det An+1 (m) =

n∑
k=0

(
(m + 1) n + m (1 − k)

k

)
.

Proof. We should find the recursion relation for the sequence {un}. From [10], we recall the Equation 5.24:
For l ≥ 0 and integers m,n,∑

k

(
l

m + k

)(
s + k

n

)
(−1)k = (−1)l+m

(
s −m
n − l

)
.
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If we choose l→ m + 1, m→ 1, s→ m − n and n→ m in the equation above, then we obtain

m∑
k=−1

(−1)k
(
m + 1
k + 1

)(
n − k − 1

m

)
=

m∑
k=−1

(−1)k+m
(
m + 1
k + 1

)(
m − n + k

m

)
=

(
n −m − 1
−1

)
= 0.

By the above equation, we could deduce

m∑
k=0

(−1)k
(
m + 1
k + 1

)(
n − k − 1

m

)
=

(
n
m

)
.

If we take n = n + m − 1, then we get the recurrence relation of order m + 1 for the sequence {un} :

un =

m∑
k=0

(−1)k
(
m + 1
k + 1

)
un−k−1,

with u−m+1 = u−m+2 = · · · = u−1 = u0 = 0 and u1 = 1. By our method, we see that the adjacency-factor matrix
for the matrix An (m) is

Mi j = (−1)i− j
(
m + 1
i − j

)
,

which is also equal to

Mi j =


1 0
−1 1

−1 1
. . .

. . .
0 −1 1



m+1

.

Thus by (10), we find the generating function of the sequence {det An+1 (m)} as follows

1

1 −
(
1 +

(m+1
1

))
x +

(m+1
2

)
x2 − · · · − (−1)m (m+1

m+1
)
xm+1

=
1

(1 − x)m+1
− x
.

In other words, we have that

[xn]
1

(1 − x)m+1
− x

= det An+1 (m) . (11)

To prove this claim, it is sufficient to show that

∑
n≥0

n∑
k=0

(
(m + 1) n + m (1 − k)

k

)
xn =

1

(1 − x)m+1
− x
.
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Consider,∑
n≥0

n∑
k=0

(
(m + 1) n + m (1 − k)

k

)
xn =

∑
k≥0

∑
n≥k

(
(m + 1) n + m (1 − k)

k

)
xn

=
∑
n≥0

xn
∑
k≥0

(
m + n + mn + k

k

)
xk

=
1

(1 − x)m+1

∑
n≥0

(
x

(1 − x)m+1

)n

=
1

(1 − x)m+1
− x
,

which completes the proof.

Finally, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(m
m
)

−1 0(m+1
m

) (m
m
)

−1(m+2
m

) (m+1
m

) . . .
. . .

· · · · · · · · ·
(m

m
)

−1(m+n−2
m

) (m+n−3
m

) ...
(m+1

m
) (m

m
)
−1(m+n−1

m
) (m+n−2

m
) ...

(m+2
m

) (m+1
m

) (m
m
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n−1∑
k=0

(
(m + 1) n −mk − 1

k

)
.

As a special case for m = 1, we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0
2 1 −1

3 2
. . .

. . .
· · · · · · · · · 1 −1 0

n − 1 n − 2
... 2 1 −1

n n − 1
... 3 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n−1∑
k=0

(
2n − k − 1

k

)
= F2n,

which could be also found in [22].

References

[1] J. Abderramán Marrero, V. Tomeo and E. Torrano, On inverses of infinite Hessenberg matrices, J. Comput. Appl. Math. 275 (2014)
356–365.

[2] A. T. Benjamin and M. A. Shattuck, Recounting determinants for a class of Hessenbergmatrices. Integers 7 (2007) A55.
[3] N. D. Cahill, J. R. D’Errico, D. A. Narayan and J. Y. Narayan, Fibonacci determinants, College Math. J. 33 (2002) 221-225.
[4] N. D. Cahill and D. A. Narayan, Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart. 42 (2004),

216-221.
[5] J. L. Cereceda, Determinantal Representations for Generalized Fibonacci and Tribonacci Numbers, Int. J. Contemp. Math. Sciences

9 (6) (2014) 269–285.
[6] Y.-H. Chen and C.-Y. Yu, A new algorithm for computing the inverse and the determinant of a Hessenberg matrix, Appl. Math.

Comput. 218 (2011) 4433–4436.
[7] M. Elouafi and A. D. Aiat Hadj, A new recursive algorithm for inverting Hessenberg matrices, Appl. Math. Comput. 214 (2009)

497–499.
[8] S. Getu, Evaluating Determinants via Generating Functions, Mathematics Magazine 64(1) (1991) 45–53.
[9] G. H. Golub and C. F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore and London, 1996.

pp. 341–352.
[10] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics (Second Edition), Addison Wesley, 1994.
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