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Abstract. A fixed point theorem is established for a new class of JS-contraction type mappings. As
applications, some Kelisky-Rivlin type results are obtained for linear and nonlinear g-Bernstein-Stancu
operators.

1. Introduction

Let © be the set of functions 0 : (0, o0) — (1, o0) satisfying the following conditions:
(®1) 0 is non-decreasing;
(®,) For each sequence {t,} C (0, ), we have

lim O(t,) =1 & lim t, = 0%;
(®3) There exist r € (0,1) and ¢ € (0, o] such that lim;_,o- % =7

Recently, Jleli and Samet [4] introduced the class of JS-contraction mappings as follows.

Definition 1.1. Let (X, d) be a metric space, and let T : X — X be a given mapping. The mapping T is said to be a
JS-contraction if there exist 0 € © and k € (0, 1) such that

(y) e XXX, d(Tx,Ty) >0 = 0(d(Tx, Ty)) < [0(d(x, y)I".

In [4], the following generalization of Banach contraction principle was established.
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Theorem 1.2. Let (X, d) be a complete metric space, and let T : X — X be JS-contraction. Then T has a unique fixed
point.

Observe that Banach contraction principle follows from Theorem 1.2 by taking 0(t) = eV, For other
related results, we refer the reader to [13, 16].

In this paper, a fixed point theorem for a new class of JS-contraction type mappings is presented. Next,
this theorem is used to study the iterates properties of some polynomial operators including g-Bernstein-
Stancu operators and g-Bernstein-Stancu operators of nonlinear type.

2. A Fixed Point Theorem

In this section, a new fixed poin theorem is established for a new class of JS-contraction type mappings.
The obtained result is an extension of Theorem 1.2.

At first, let us introduce some notations. Let M be a nonempty set, and let T : M — M be a given
mapping. We denote by Fix(T) the set of all the fixed points of T, that is,

Fix(T) ={x e M : x = Tx}.

Suppose that M is a group with respect to a certain operation +. For x € M and N C M, we denote by x + N
the subset of M defined by
x+N={x+y:yeN}

We denote by IN the set of positive integers, that is,
N={0,1,2,---}.

We denote by IN” the set defined by
N"={1,23,---}.

Our fixed point theorem can be stated as follows.

Theorem 2.1. Let E be a group with respect to a certain operation +. Let X be a subset of E endowed with a certain
metric d such that (X,d) is complete. Let Xo C X be a closed subset of X such that X is a subgroup of E. Let
T : X — X be a given mapping satisfying

(x,y)e XXX, x—yeXo,dTx,Ty) 0 = 0(d(Tx, Ty)) < [6(d(x, )]}, 1)
where k € (0,1) is a constant and O € ©. Suppose that the operation mapping + : X X X — X defined by
+x,y)=xty, (xyeXxX
is continuous with respect to the metric d. Moreover, suppose that
x—TxeXy, xeX ()
Then we have

(i) For every x € X, the Picard sequence {T"x} converges to a fixed point of T.

(ii) For every x € X,
(x + Xp) N Fix(T) = {lim T”x} .
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Proof. Let x € X be an arbitrary point in X. If for some p € IN, we have TPx = TP*!x, then TPx will be a fixed
point of T. So, without restriction of the generality, we can suppose that d(T"x, T"*'x) > 0, for all n € IN.
From (2), we have

x—Tx e Xp.

Using (1), we obtain
O(d(Tx, T?x)) < [0(d(x, Tx))]F.

Again, using (2), we obtain
Tx — T*x = Tx — T(Tx) € Xo,

which implies from (1) that
6(d(T2x, T*x)) < [6(d(Tx, T2x)|* < [6(d(x, Tx))].
Therefore, by induction we obtain
T'x-T"*'xeXy, neN, )

and
Od(T"x, T"'x)) < [6(d(x, Tx))]¥', neN.

Thus, we have
1< 0d(T"x, T" %)) < [0(d(x, Tx)|¥', neN. 4)
Passing to the limit as # — oo in (4), we obtain
lim O(d(T"x, T x) =1,
which implies from (®,) that

lim d(T"x, T""'x) = 0. (5)

n—o0

From condition (®3), there exist r € (0,1) and ¢ € (0, o0] such that

_Od(Tx, T %) — 1
lim =
n—oo [d(T"x, Tn+1x)]r

Suppose that £ < co. In this case, let B = £/2 > 0. From the definition of the limit, there exists ny € IN such
that
Od(T'x, T 'x)) — 1

— ¢ <B, n>ny.

[d(Trx, Tr+1x)]r -
This implies that )
oy Tl gy
Q(ﬁg(TTf}’CITTMf;;]y Lt _B=B nxn
Then,
n[d(T"x, T" ') < An[0(d(T"x, T"'x)) =11, n > no,
where A = 1/B.

Suppose now that £ = co. Let B > 0 be an arbitrary positive number. From the definition of the limit, there
exists ny € IN such that

0(d(T"x, T"x)) — 1
>B, n>mny.
[d(Tnx, T ix) = no
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This implies that
n[d(T"x, T" ') < An[0@d(T"x, T"'x)) = 1], n > ny,

where A = 1/B.
Thus, in all cases, there exists A > 0 and 1y € IN such that

n[d(T"x, T" ') < An[0@d(T"x, T" 'x)) = 1], n > ny.

Using (4), we obtain
nld(T"x, T"'0]" < An ([0@(x, TX)DI = 1), n 2 no.

Letting n — oo in the above inequality, we obtain

lim n[d(T"x, T"'x)]" = 0.
n—oo
Thus, there exists 111 € IN such that

1
d(T"x, T™x) < —m, nzm, (6)

Using (6), we have

d(T"x, T""x) < d(T"x, T"'x) + d(T"™ %, T"2x0) + - 4+ d(T"" ", T"™ ")
S A S
T allr i+ 1)U (n+m-—1)r

=1
S PR
Z i’

i=n

which implies that the Picard sequence {T"x} is Cauchy in the complete metric space (X, d) (since r € (0, 1)).
Then there is some w € X such that

lim d(T"x, w) = 0. @)
On the other hand, observe that forn,p > 1,
T'x — T"Px = (T"x — T" ) + (T x — T"2x) + - -« + (TP~ 1x — T"Px).
Therefore, by (3) and using the fact that (X, +) is a group, we deduce that
T'x-T"PxeXy, np=1.

Passing to the limit as p — oo, using (7), the continuity of the operation mapping +, and the closure of X,
we obtain that

T'x —we Xy, nelN (8)

Without restriction of the generality, we may suppose that d(T"x, Tw) > 0, for all n € IN. Therefore, using
(8) and (1), we have
1< 6d(T"'x, Tw)) < [O(T"x, )]}, neN.

Passing to the limit as n — oo, using (7) and (©,), we deduce that

lim d(T"'x, Tw) = 0. )
n—oo
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Next, (7), (9) and the uniqueness of the limit yield w = Tw, that is, w is a fixed point of T. Then (i) is proved.
In order to prove (ii), let x € X be fixed. We know that the Picard sequence {T"x} converges to w € X, a fixed
point of T. Moreover, from (8), we have w — x € X, thatis, w € x + Xy. Therefore, we have

{lim T”x} C (x + Xo) N Fix(T).

n—oo
Now, let z € (x + Xo) N Fix(T) be fixed. Then
Tz=z and z-xc¢€ X,.

Therefore, we have
z=Tx=Tz-Tx=(Tz-2)+ (x—Tx) + (z — x) € X.

Again,
z—T%x = T’z — T?x = (T?2 — Tz) + (Tx — T%x) + (z — Tx) € X,.

Hence, by induction we obtain
z—T"'xe€ Xy, nelN.

Without restriction of the generality, we may suppose that z # T"x, for all n € IN. Therefore, by (1) we have

s

1< 0(d(z, T"'%)) = 6(d(Tz, T" 'x)) < [6(d(z, T"*)F < --- < [0(d(z, x)]F", neN.
Passing to the limit as n — co and using (©,), we deduce that

lim d(T"x,z) =0,
which yields z € {lim T”x}. Then we proved that

(x + Xo) NFix(T) c {lim T”x} .
n—oo
The proof is complete. [

The following result follows immediately from Theorem 2.1 with 9(t) = e V|

Corollary 2.2. Let E be a group with respect to a certain operation +. Let X be a subset of E endowed with a certain
metric d such that (X,d) is complete. Let Xo C X be a closed subset of X such that X is a subgroup of E. Let
T : X — X be a given mapping satisfying

(xyeXxX x—yeXy = d(Tx,Ty) < kd(x,vy),
where k € (0,1) is a constant. Suppose that the operation mapping + : X X X — X defined by
*x,y)=xxy, ((xyeXxX
is continuous with respect to the metric d. Moreover, suppose that
x—Txe Xy, xeX
Then we have

(i) For every x € X, the Picard sequence {T"x} converges to a fixed point of T.

(ii) Forevery x € X,
(x + Xp) N Fix(T) = {lim T”x} .
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3. Applications: Iterates Properties of Some Polynomial Operators

In this section, as applications of Theorem 2.1, the iterates properties of some polynomial operators
are investigated. Two types of polynomial operators are discussed: g-Bernstein-Stancu operators and g-
Bernstein-Stancu operators of nonlinear type. For each kind of operators, a Kelisky-Rivlin type result is
established. Let us mention some well known contributions in this topic. In [6], via some linear algebra
tools, Kelisky and Rivlin studied the iterates properties of the class of Bernstein operators. Another proof
of Kelisky-Rivlin theorem was presented by I.A. Rus [10] with the help of some trick with the Contraction
principle. Another possibility to establish Kelisky-Rivlin theorem, which is based on a fixed point theorem
for linear operators on a Banach space, was suggested by Jachymski [3]. For other related works, we refer
to [1, 2, 8, 14, 15] and references therein.

The following basic notations in quantum calculus will be used. Let g > 0. For any #n € IN, the g-integer
[n], is defined by

[, =1+q+g*+-+q"" (n>1), [0], =0.

The g-factorial [n],! is defined by
[n],! = [1]412];-- - [n]; (n > 1), [0],! = 1.

For integers 0 < k < n, the g-binomial is defined by

(n) Iy
k)T Tn— kKL

It is clear that for g = 1, we have

al

[l = n, [yt = !, ( " )1 =(

For more details on quantum calculus, we refer to [5].

3.1. A Kelisky-Rivlin type result for g-Bernstein-Stancu operators

Let C([0,1]; R) be the set of real valued and continuous functions f : [0,1] — R. For f € C([0,1]; R),
g >0, @ > 0 and each n € IN*, the g-Bernstein-Stancu operator of order # is defined by [7]

iy

Bulg)()(B) =Y f([n]q) B0, te[0,1],
=0

where
i-1 n—i-1
[[¢t+atstp [ ] -g't+aljly)
mio=(]) =
' [Ja+atjy)
j=0

From here on an empty product is taken to be equal to 1.
If « = 0, B,.(g, 0) reduces to the g-Bernstein polynomial of order n introduced by Phillips [9]

n . n=1-i
B.(q,0)(F)(t) = Zf(%)( ; ) f[[a-an telol
i=0 q =0
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If g = 1, B4(1, @) reduces to the Bernstein-Stancu polynomial of order # introduced by Stancu [11]

n—i—1

) ‘ H(t+as H(l—t+a])
Baann=Y (1) 1) , telol
=0 H(1 + aj)
j=0

If (o, q) = (0, 1), we obtain the standard Bernstein polynomial of order n

B.(1,0)()(H) = Zf(i)( " )t"(l —p, te (o1l
i=0

The following lemmas will be useful later (see [2, 15]).
Lemma 3.1. Letn € N*, g € (0,1) and a > 0. Then
D gy —
L B, () =1
Lemma 3.2. Letn € N*, g € (0,1) and a > 0. Then
min {BY3(H) + Bln(®) : t € [0,1]} > 0.
We have the following Kelisky-Rivlin type result for g-Bernstein-Stancu operators.
Theorem 3.3. Letn € N*, @ > 0and 0 < g < 1. Then, for every f € C([0,1];R),
Jim [B,(q, )" (f)(®) = £(0) + [f(1) = fO))t, te€[0,1]
Proof. Let X = E = C([0, 1]; R). We endow X with the metric d defined by
d(f,g) =max{|f(t) —gt)|: t€[0,1]}, (f,9) e XxX
Then (X, d) is a complete metric space. Let Xy be the subset of X defined by
Xo=1{feX: f(0)=f(1) =
Then Xj is a closed linear subspace of X. Let (f, g) € X X X be such that f — g € Xy, that is,
(f,9) € XxX and f(0) = g(0), f(1) = g(1).
Let t € [0, 1] be fixed. Then we have

8.5 2000 ~ B0, o))
R
([n]q B (h) ;g” BY(1)
2
X;A(f ([n]q i, )] P @

lig) _ (ﬂ) 90
([nlq) 9\, )| P

[l]q) (mq) "
A ([n]q o, )| B @

<[ BZa(t)]d(f 9

i=1

4975
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On the other hand, using Lemmas 3.1 and 3.2, we get

,_.

n—

BI(t) = 1-(BY(H)+Bl(®)
- < 1-4,
where
A = min {BY(t) + Bia(t) : t € [0,1]} > 0. (10)

Terefore, we have

(f,9) € XXX, f-geXo = dBu(q,a)(f),Bu(q, @)(9)) < kd(f,9),

where k =1 - A € (0,1). Next, using lemma 3.1, for every f € X we have

y(®) = f(t) = Bu(g, )(f)(t) = Z (f(t) - f([[ ]] )) B)i(t), t€[0,1].

i=0

We can check easily that
y(©0) =y1) =0,
which yields
f=Bulqa)(f) € X0, feX

Applying Theorem 2.1 (or Corollary 2.2), we deduce that
(F + X0) NFix(B,(g, ) = { lim [B,q, 01 ()}, f e X
Let f € X. It is not difficult to observe that the function w : [0,1] — R defined by
= fO)1-1)+ f(1)t, te[0,1]
belongs to Fix(B,(g, «)). Moreover, for all ¢ € [0, 1],

u(t) = w(t) = f(t) = fO)A =) + f(DE = f(D).

Observe that
1(0) = £(0) - £(0)
and

p) = f1) - f(1) =

Therefore, w € f + Xo. As consequence, we get
lim d([B.(q, )1(F), @) = 0,
which yields the desired result. [

Remark 3.4. Another proof of Theorem 3.3 can be found in [15]. This proof is based on some linear algebra tools. In
our opinion, the presented proof in this paper is more esay and more simplified.



I. Altun et al. / Filomat 31:15 (2017), 4969-4978 4977

3.2. A Kelisky-Rivlin type result for nonlinear q-Bernstein-Stancu operators
For f € C([0,1];R), g > 0, a > 0 and each n € IN*, we define the nonlinear g-Bernstein-Stancu operator of

order n by
[]q)
o

Using Theorem 2.1, we shall establish the following Kelisky-Rivlin type result.

T.(q, )(F)(®) = 2 BIY®, telo1].

Theorem 3.5. Letn € N*, @ > 0and 0 < g < 1. Then, for every f € C([0, 1]; R) such that f(0) > 0and f(1) >0,
Jim [T(q, )I¥(F)(®) = £O) + [f(1) = fO)), te€[0,1]
Proof. Let E = C([0,1]; R) and X be the subset if E defined by
={feE: f(0)=>0, f(1) > 0}.
We endow X with the metric d defined by
d(f,9) = max{|f(t) - g(D)] : t€ [0, 1]}, (f,9) € XxX
Then (X, d) is a complete metric space. Let X, be the subset of X defined by
Xo={f€E: f(0)=f(1) =
Then Xj is a closed subgroup of E. Let (f, g) € X X X be such that f — g € X, that is,
(f,9) € XxX and f(0) = g(0), f(1) = g(1).
Let t € [0, 1] be fixed. Then we have
(g, )()(E) = Tulq, a)(g)(t)l

L (1| e
-

2
IR

Bli(h)

o)

)Bq“()

) o (o
"y ([n]) i, )| B ©
mq)_ (ﬁ) "
Z‘ ([n]q o, )| B @

n-1
S( ”(t)] (f9

i=1
= (L= MN)d(f, 9),
where A is given by (10). Terefore, we have
(f,9) € XXX, f-geXo = d(Tu(q,a)(f), Tu(q,)(9)) < kd(f, ),
where k =1 - A € (0,1). Next, for every f € X we have

Y = fO - Tug(NB =) (f(t) - ’f (%)) By (), te[0,1].
i=0
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Observe that

Y'(0) = f(0) = If(O)l = f(0) - f(0)=0
and

Y'() = fO) -1 = f1) - f(1) =0.
Then

f=Tug a)f) € Xo, feX
Applying Theorem 2.1 (or Corollary 2.2), we deduce that

(f + Xo) N Fix(T, (g, ) = { lim [Tu(a, 01'(D}, FeX.
Let f € X. It is not difficult to observe that the function w : [0,1] — R defined by
w(t) = fO)A -t + f(1)t, tel0,1]
belongs to (f + Xo) N Fix(Tx(q, @)). As consequence, we get
Jlim d([T,(q, )1 (f), ) =0,
which yields the desired result. [

Remark 3.6. Note that Theorem 4.1 in [3] cannot be applied in our case since it requires linear operators defined on
a certain Banach space X. Observe that in our case, X is not a linear space.

Remark 3.7. The case («,q) = (0,1) was considered in [12]. The authors claimed that if n € IN, for every
f € X = C([0, 1]; R), the Picard sequence [T,(0, 1)]N(f) converges uniformly to a fixed point of T,,(0, 1) (see Corollary
4 in [12]). For the proof of this claim, the authors used that f — T, (0, 1)(f) € X for every f € X, where Xy is the set
of functions u € X such that u(0) = u(l) = 0. Unfortunately, the above property is not true. To observe this fact, we
have just to consider a function f € X such that f(0) < 0or f(1) < 0. Our Theorem 3.5 for the case (a,q) = (0, 1) is
a corrected version of Corollary 4 in [12].

References

[1] O. Agratini, I. A. Rus, Iterates of a class of discrete linear operators via contraction principle, Commentationes Mathematicae
Universitatis Carolinae 44 (2003) 555-563.
[2] O. Agratini, On a gq-analogue of Stancu operators, Open Mathematics 8 (1) (2010) 191-198.
[3] J.Jachymski, The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical
Society 136 (2008) 1359-1373.
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, Journal of Inequalities and Applications 2014:38
(2014).
[5] V.Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York (2002)
[6] R.P.Kelisky, T.]. Rivlin, Iterates of Bernstein polynomials, Pacific Journal of Mathematics 21 (1967) 511-520.
[7] G.Nowak, Approximation properties for generalized g-Bernstein polynomials, Journal of Mathematical Analysis and Applica-
tions 350 (2009) 50-55.
[8] S.Ostrovska, g-Bernstein polynomials and their iterates, Journal of Approximation Theory 123 (2003) 232-255.
[9] G.M. Phillips, A generalization of the Bernstein polynomials based on the g-integers, The ANZIAM Journal 42 (2000) 79-86.
[10] I. A.Rus, Iterates of Bernstein operators, via contraction principle, Journal of Mathematical Analysis and Applications 292 (2004)
259-261.
[11] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl 13
(1968) 1173-1194.
[12] A.Sultana, V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, Journal
of Mathematical Analysis and Applications 417 (2014) 336-344.
[13] T.Suzuki, Comments on some recent generalization of the Banach contraction principle, Journal of Inequalities and Applications
2016:111 (2016).
[14] T. Vedi, M. A. Ozarslan, Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Journal of Inequalities and Applications
2015:91 (2015).
[15] W. Yali, Z. Yinying, Iterates properties for g-Bernstein-Stancu operators, International Journal of Modeling and Optimization 3
(2013) 362-368.
[16] Li. Zhilong, J. Shujun, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory and Applications 2016:40 (2016).

[4



