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Abstract. In some applications it is useful to consider variants of H-measures different from those intro-
duced in the classical or the parabolic case. We introduce the notion of admissible manifold and define
variant H-measures on Rd

× P for any admissible manifold P. In the sequel we study one special vari-
ant, fractional H-measures with orthogonality property, where the corresponding manifold and projection
curves are orthogonal, as it was the case with classical or parabolic H-measures, and prove the localisation
principle. Finally, we present a simple application of the localisation principle.

1. Introduction

In various situations concerning partial differential equations one often encounters L2 weakly converging
sequences, which do not converge strongly. This lack of strong convergence can be measured by H-measures
defined in Theorem 1 below. H-measures are (matrix) Radon measures defined on Ω×Sd−1 (here Sd−1 denotes
the unit sphere in Rd), for a domain Ω ⊆ Rd. In the sequel we shall consider only the case Ω = Rd as functions
defined only on Ω can be extended by zero to Rd. H-measures were introduced independently by Luc Tartar
[14] and Patrick Gérard [6] in the late 1980s and their existence is established by the following theorem.

Theorem 1. If (un) is a sequence in L2(Rd; Cr) such that un −⇀ 0, then there exist a subsequence (un′ ) and
an r × r Hermitian complex matrix Radon measure µ on Rd

× Sd−1 such that for any ϕ1, ϕ2 ∈ C0(Rd) and
ψ ∈ C(Sd−1) one has:

lim
n′

∫
Rd

(ϕ1un′ ) ⊗Aψ(ϕ2un′ ) dx = 〈µ, (ϕ1ϕ2) � ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ) dµ(x, ξ) ,
(1)

where F (Aψv)(ξ) = ψ( ξ
|ξ| )F v(ξ).
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This work has been supported in part by Croatian Science Foundation under the project 9780 WeConMApp, by the bilateral

Croatian–Montenegrin project Multiscale methods and calculus of variations, and by the University of Zagreb trough grant PP04/2015.
Email addresses: maerceg@math.hr (Marko Erceg), iivec@simet.hr (Ivan Ivec)



M. Erceg, I. Ivec / Filomat 31:16 (2017), 5027–5044 5028

The complex matrix measure µ defined by the previous theorem is called the H-measure associated to
the subsequence (un′ ).

Above, as well as in the rest of the paper, by ⊗we denote the tensor product of vectors on Cr, defined by
(a⊗b)v = (v ·b)a, where · stands for the (complex) scalar product (a ·b :=

∑r
i=1 aib̄i), resulting in [a⊗b]i j = aib̄ j,

while � denotes the tensor product of functions in different variables. The Fourier transform we define as
û(ξ) := F u(ξ) :=

∫
Rd e−2πiξ·xu(x) dx, and its inverse by (u)∨(ξ) := F̄ u(ξ) :=

∫
Rd e2πiξ·xu(x) dx.

As it was mentioned above, the H-measure describes a deviation of sequence un −⇀ 0 from being
strongly convergent in the sense that µ = 0 implies un′ −→ 0 in L2

loc(Rd; Cr).
An important property, the localisation principle, of the H-measure defined by a sequence of functions

satisfying differential constraints is given by the next theorem (cf. [14, Theorem 1.6]):

Theorem 2. If un −⇀ 0 in L2(Rd; Cr), with associated H-measure µ, and if un satisfies

d∑
k=1

∂k(Akun) −→ 0 strongly in H−1
loc(Rd) ,

where (matrix) coefficients Ak are continuous on Rd, then it holds

( d∑
k=1

ξkAk(x)
)
µ = 0 on Rd

× Sd−1 .

By the localisation principle the compensated compactness theory could be extended from constant coeffi-
cient differential relations to variable coefficients [14, 6].

From the previous theorems it is clear that H-measures are suitable for problems where all variables are
equal, i.e. in the observed differential relation the ratio among all partial derivatives is the same. However,
it has been proved (see [2]) that in the cases where that is not satisfied (e.g. parabolic equations), we get
unsatisfactory results. For the parabolic equations, i.e. equations with the ratio 1:2 between the order of
time and spatial derivatives, a new variant, parabolic H-measures, has been introduced [2] and successfully
applied to small-amplitude homogenisation [2], to explicit formulæ and bounds in homogenisation [3],
as well as to deriving differential relations for the microlocal energy densities, as a consequence of the
propagation principle [4]. Further generalisations of the previous object are the ultra-parabolic H-measures
[11, 12] allowing more than one variable of order 1, which are suitable for applications to ultra-parabolic
equations.

Although the majority of important equations from mathematical physics can be treated by one of the
mentioned variants (having ratios 1:1 or 1:2), recently the study of differential relations with fractional
derivatives has become more popular, so the previous approach needs to be generalised to arbitrary ratios.
In [9] a new variant was introduced and applied to the existence of weak solutions of fractional conservation
laws. This concept was later applied to the velocity averaging results [8] and compensated compactness
for the fractional differential relations [10].

In the next section we introduce the notion of an admissible manifold (which is slightly more general
then the one given in [9]) and prove a variant of the first commutation lemma using it. The third section
is devoted to an important example of admissible manifold where we supplement some arguments from
[9]. In the following section we prove that a corresponding ellipsoid is orthogonal to the curves studied in
the third section, and propose another variant of H-measures, the fractional H-measure with orthogonality
property defined on that ellipsoid which we hope to be suitable for obtaining the propagation principle
as it was done in [4]. In the last section we prove the localisation principle for fractional H-measures with
orthogonality property, giving also a simple application.

2. Variants of the first commutation lemma

The proof of Theorem 1 relies on the next lemma (see [14, Lemma 1.7]).
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Lemma 1. (first commutation lemma) Let a ∈ C(Sd−1), b ∈ C0(Rd), and letA be the Fourier multiplier with
symbol a, and B a multiplication operator, defined by:

F (Au)(ξ) = a
( ξ
|ξ|

)
F u(ξ) ,

Bu = bu .

Then their commutator C = [A,B] = AB − BA is a compact operator from L2(Rd) to L2(Rd).

Following the proof of Lemma 1, we can notice that it relies on a basic fact that the diameter of projection
(along rays from the origin) of a compact set K to the unit sphere Sd−1 decreases as the distance of K from
the origin increases. To be more precise, we have the following extension [15, Lemma 28.2]:

Lemma 2. Let b ∈ C0(Rd) and let a ∈ L∞(Rd) satisfies

(∀R > 0)(∀ ε > 0)(∃ r > 0)(∀ ξ,η ∈ Rd)
|ξ|, |η| > r & |ξ − η| 6 R =⇒ |a(ξ) − a(η)| < ε .

(2)

Furthermore, let a Fourier multiplier A with symbol a and a multiplication operator B be defined as in
Lemma 1, with the exception that we now use a(ξ) instead of a(ξ/|ξ|). Then C = AB − BA is a compact
operator from L2(Rd) to L2(Rd).

In some applications an imperfection of Theorem 1 is in the scaling along rays from the origin that makes
H-measures appropriate only for the study of hyperbolic problems. Recently [2], the first commutation
lemma was extended to the case of scaling along parabolas, allowing for applications of thus obtained
(parabolic) H-measures to parabolic problems [3, 4].

With the goal of introducing conditions more intuitive than (2) and allowing more general scalings, we
prove a variant of the first commutation lemma based on concrete curves and manifolds. This will be a
generalisation of a variant given in [9], making a verification of further results given in that article easier
(see the example of the next section).

In the next definition we are going to use an arbitrary metric d on Rd, besides the standard one defined
by the Euclidean norm | · |, with the property that the inclusion (Rd, | · |) ↪→ (Rd, d) uniformly preserves
boundedness of sets:

(∀R > 0)(∃CR > 0)(∀ x,y ∈ Rd) |x − y| 6 R =⇒ d(x,y) < CR . (3)

However, when we talk about continuity we always mean it with respect to the Euclidean metric on Rd.
We shall also use the notation Rd

∗ = Rd
\{0}.

Definition 1. A compact continuous manifold P ⊆ Rd is admissible if there exists a family of continuous
functions (curves) ϕν : R+

−→ Rd, indexed by ν ∈ P, satisfying

ϕν(1) = ν , (4)

and the following properties:
(i) (∀ ξ ∈ Rd

∗ )(∃ ! s ∈ R+)(∃ !ν ∈ P) ξ = ϕν(s);
(ii) there is an increasing function f : R+

−→ R+, limt→∞ f (t) = ∞, such that

(∀ν1,ν2 ∈ P)(∀ s1, s2 ∈ [1,∞〉)
d(ϕν1 (s1), ϕν2 (s2)) > f (min{s1, s2})|ν1 − ν2| ,

for at least one metric d satisfying (3);
(iii) function tν(s) := |ϕν(s)| is strictly increasing and

(∀ s ∈ R+) sup
ν∈P

tν(s) =: Cs < ∞ .
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In the terminology of [9, Definition 2.1], the condition (i) means that Rd
∗ admits a complete fibration

along the family of curves (ϕν,ν ∈ P). The corresponding projection of an arbitrary point ξ ∈ Rd
∗ we

denote by πP(ξ) ∈ P, so πP : Rd
∗ −→ P is well-defined surjection. Here we replaced Sd−1 (which was

used in [9]) by a more general compact continuous manifold P, since the appropriate choice of manifold
significantly simplifies verification of the conditions from the previous definition (as can be seen in the
succeeding section). However, the higher generality requires one additional assumption, (iii), which says
that Euclidean norm of the points on curves ϕν increases as parameter s increases, but the growth rate has
to be uniformly bounded. To conclude, let us just remark that s > 1 (s < 1) implies that ϕν(s) is outside
(inside) of manifold P (as a consequence of (4) and (iii)).

In the next lemma we give a variant of the first commutation lemma for functions that behave well
along the curves from Definition 1.

Lemma 3. (variant of the first commutation lemma) Let P be an admissible manifold and (ϕν,ν ∈ P) the
corresponding family of curves. Also, let b ∈ C0(Rd) and a ∈ L∞(Rd) satisfy

(∃ a∞ ∈ C(P)) lim
s→∞

a(ϕν(s)) = a∞(ν), uniformly in ν ∈ P. (5)

Furthermore, let the Fourier multiplier A with symbol a and a multiplication operator B be defined as in
Lemma 2. Then C = AB − BA is a compact operator from L2(Rd) to L2(Rd).

Proof. By Lemma 2 it suffices to prove (2).
Let R > 0 and ε > 0 be arbitrary, and ξ1, ξ2 ∈ Rd

∗ such that |ξ1 − ξ2| 6 R. By (i) we can uniquely define
s1, s2,ν1 and ν2 such that ξ1 = ϕν1 (s1), ξ2 = ϕν2 (s2).

The assumption on function a implies the existence of r1 > 0 for which

s1, s2 > r1 =⇒ |a(ξ1) − a∞(ν1)| <
ε
3

& |a(ξ2) − a∞(ν2)| <
ε
3
.

Further on, the compactness of P gives us that a∞ is uniformly continuous, hence there exists δ > 0 such
that

|ν1 − ν2| < δ =⇒ |a∞(ν1) − a∞(ν2)| <
ε
3
.

Moreover, by (ii) and the properties of function f and metric d it follows that there exists r2 > 1 such that

s1, s2 > r2 =⇒ |ν1 − ν2| 6
d(ξ1, ξ2)

f (r2)
6

CR

f (r2)
< δ .

Thus, for ξ1, ξ2 ∈ Rd such that |ξ1 − ξ2| 6 R and s1, s2 > r̃ := max{r1, r2}we have

|a(ξ1) − a(ξ2)| 6 |a(ξ1) − a∞(ν1)| + |a∞(ν1) − a∞(ν2)| + |a∞(ν2) − a(ξ2)| < ε .

It remains to prove that s1, s2 > r̃ can be replaced by |ξ1|, |ξ2| > r for some r > 0. This follows from the
property (iii). Namely, we claim that

(∀ r̃ > 0)(∃ r > 0)(∀ν ∈ P)(∀ s > 0) tν(s) > r =⇒ s > r̃.

Assuming the contrary gives

(∃ r̃ > 0)(∀ r > 0)(∃ν ∈ P)(∃ s > 0) s 6 r̃ & tν(s) > r ,

which leads to a contradiction to the conditions (iii) as

r < tν(s) 6 tν(r̃) 6 sup
ν∈P

tν(r̃) = Cr̃ < ∞ ,

and r is arbitrary. Therefore we get the claim.



M. Erceg, I. Ivec / Filomat 31:16 (2017), 5027–5044 5031

It is trivial to see that ψ ◦πP satisfies (5) for ψ ∈ C(P), and πP being projection along the family of curves
(ϕν). Actually, by (iii) it follows that (5) implies

lim
|ξ|→∞

(
a(ξ) − a∞(πP(ξ))

)
= 0 .

In the special case when P = Sd−1 and curves ϕν are parametrised by the distance from the origin, the
proof of the previous lemma can be found in [9, Lemma 2.2]. Moreover, if ϕν(s) = sν, ν ∈ Sd−1, are rays from
the origin, the set of continuous functions satisfying (5) is equal to C(K∞(Rd)) (see [15, Definition 32.5]).

As we have already remarked, having a new variant of the first commutation lemma enables us to define
the corresponding variant of H-measure on Rd

×P, whose construction follows the same steps as in [9], and
here we will study some further properties allowing us to prove the localisation principle. However, in
[4] it was pointed out how the choice of manifold is important for deriving additional results, such as the
propagation principle. Hence, on one hand we want to choose a manifold P for which the verification of
conditions (i)–(iii) is easy, and on the other hand we want to choose a manifold suitable for deriving further
results. To make things simpler, we want to be able to define a variant H-measure also for some manifolds
for which admissibility is not known. In the following condition we determine some manifolds with that
property, which happen to be sufficient for our applications.

More precisely, if we are able to define H-measures on Rd
× P, for an admissible manifold P, we would

like to be able to define them also on Rd
×Q, for a manifold Q for which admissibility is not known, if the

following condition holds:

(iv) for each ν ∈ P the curve ϕν intersects Q in a single point η, and the function ν 7→ η is continuous.

Of course, for Q = P the condition (iv) is trivially satisfied. Let us remark that Q satisfying (iv) is actually a
generalisation of the notion of admissible manifold given in [9, Definition 2.3].

An immediate consequence of the previous condition is that restriction πP|Q
: Q −→ P is a bijection with

continuous inverse which we denote by Φ. Since P is compact, we have also that Φ−1 = πP|Q
is continuous,

thus we finally get that Φ is a homeomorphism. The corresponding pull-back operator Φ∗ : C(Q) −→ C(P),
Φ∗ψ := ψ ◦ Φ, is an isometric isomorphism of Banach spaces C(Q) and C(P), with its inverse given by
(Φ∗)−1 = (Φ−1)∗.

By the means of the above homeomorphism between P and Q, the statement of the previous lemma is
also valid for a = ψ ◦ πQ, where ψ ∈ C(Q) and πQ := Φ ◦ πP is the natural projection on Q. Therefore, for
ψ ∈ C(Q) we have ψ ◦ πQ = (Φ∗ψ) ◦ πP.

Like in [9, Theorem 2.4], where a different notion of admissibility was used for manifolds, we have the
following extension of H-measures.

Theorem 3. Let P be an admissible manifold. If (un) is a sequence in L2(Rd; Cr) such that un −⇀ 0, then
there exist a subsequence (un′ ) and an r× r Hermitian matrix Radon measure µP on Rd

×P such that for any
ϕ1, ϕ2 ∈ C0(Rd) and ψ ∈ C(P) one has:

lim
n′

∫
Rd

(ϕ1un′ ) ⊗Aψ◦πP (ϕ2un′ ) dx = 〈µP, (ϕ1ϕ2) � ψ〉

=

∫
Rd×P

ϕ1(x)ϕ2(x)ψ(ξ) dµP(x, ξ) .

Moreover, we could state the previous theorem for Q satisfying (iv) as well. Namely, let (un′ ) be a
subsequence as in the statement of the previous theorem. Then for any ϕ1, ϕ2 ∈ C0(Rd) and ψ ∈ C(Q) we
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have

lim
n′

∫
Rd

(ϕ1un′ ) ⊗Aψ◦πQ (ϕ2un′ ) dx = lim
n′

∫
Rd

(ϕ1un′ ) ⊗A(Φ∗ψ)◦πP (ϕ2un′ ) dx

=
〈
µP, (ϕ1ϕ2) �Φ∗ψ

〉
=

〈
Φ∗µP, (ϕ1ϕ2) � ψ

〉
,

(6)

where Φ∗ is the push-forward operator in ξ.
By µQ := Φ∗µP we define a variant H-measure on Q which is justified since the above limit is satisfied.
This allows us to define variant H-measures corresponding to the same family of curves, but defined

on different spaces (manifolds) in ξ as long as (iv) is satisfied.

3. An example

The main application in [9] was provided by a variant of H-measure defined on manifold

P =
{
ξ ∈ Rd : |ξ|α = 1

}
, (7)

where |ξ|α :=
∑d

k=1 |ξk|
αk and α ∈ 〈0, 1]d (smoother variants of this manifold were considered in [8, 10]). The

existence of such a variant H-measure relies on the fact that P, with respect to the corresponding family of
curves

ϕν(s) = diag {s
1
α1 , . . . , s

1
αd }ν , s > 0 , ν ∈ P , (8)

is admissible. That proved to be a non-trivial task when expressed in terms of [9, Definition 2.3], so here
we present different approach, by proving that P is admissible in terms of Definition 1.

In the sequel we shall often have estimates depending on the minimal value of the components of α, so
for simplicity let us denote αmin := mink αk ∈ 〈0, 1].

It is clear that each curve ϕν satisfies (4). Let us also check the properties (i)–(iii).
For an arbitrary ξ ∈ Rd

∗ we first prove that there exist a unique ν ∈ P and an s ∈ R+ such that ξ = ϕν(s).

From ξk = νk s
1
αk , by taking the power αk and summation we get

s =

d∑
k=1

|ξk|
αk = |ξ|α .

Hence, by inserting back into the initial formula we obtain

νk = ξk|ξ|
−

1
αk
α ,

and the property (i) is thus proved. The projection πP is then well defined and given by

πP(ξ) =
(
ξ1|ξ|

−
1
α1
α , . . . , ξd|ξ|

−
1
αd
α

)
,

which is smooth on Rd
∗ and constant along corresponding curves, i.e. πP(λ

1
α1 ξ1, . . . , λ

1
αd ξd) = πP(ξ) for

λ ∈ R+, as the result of |(λ
1
α1 ξ1, . . . , λ

1
αd ξd)|α = λ|ξ|α.

Since at least one component of ν is non-trivial, 0 < s1 < s2 implies

|ϕν(s1)|2 =

d∑
k=1

s
2
αk
1 ν

2
k <

d∑
k=1

s
2
αk
2 ν

2
k = |ϕν(s2)|2 ,

thus, the mapping s 7→ |ϕν(s)| is strictly increasing. Moreover, from the estimate

|ϕν(s)| 6
d∑

k=1

s
1
αk |νk| 6 max{1, s

1
αmin }

d∑
k=1

|νk|
αk = max{1, s

1
αmin } ,
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where we have used that |νk| 6 1 in the second inequality, the verification of property (iii) is completed.
The proof of property (ii) requires some additional effort, so we present it in the form of a lemma.

Lemma 4. There exists a constant C > 0 such that for any ξ,η ∈ Rd
∗ we have

|ξ0 − η0| 6 C
|ξ − η|α
|ξ|α + |η|α

,

where ξ0 and η0 are the projections on manifold P of points ξ and η.

Proof. Let us take ξ,η ∈ Rd
∗ such that 1

q := |ξ|α > |η|α =: 1
p . Therefore, we have ξ0 = (q

1
α1 ξ1, . . . , q

1
αd ξd)

and η0 = (p
1
α1 η1, . . . , p

1
αd ηd). Moreover, let us denote by η′ the intersection of the manifold given by

{ξ ∈ Rd : |ξ|α =
q
p } (which is contained inside P since q

p 6 1) and the corresponding curve through η,

diag {s
1
α1 , . . . , s

1
αd }η, which implies (see Figure 1)

η′ = (η′1, . . . , η
′

d) = (q
1
α1 η1, . . . , q

1
αd ηd) .

ξ1

ξ2

1

1

ξ0
η0

ξ

η

η′

P

Figure 1: The manifolds and curves with α1 =
1
3
, α2 = 1.

The triangle inequality for Euclidean metric gives us

|ξ0 − η0| 6 |ξ0 − η
′
| + |η′ − η0| .

Since both ξ0 and η′ are contained inside P, their components are less or equal to 1, and so |ξ0 −η
′
|∞ 6 2.

By Lemma 5 below we get the bound

|ξ0 − η
′
| 6 21−αmin |ξ0 − η

′
|α = 21−αmin q|ξ − η|α .
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For the second term we have

|η′ − η0| =

√∑
k

∣∣∣∣ηk

(
q

1
αk − p

1
αk

)∣∣∣∣2 .
The function x 7→ x

1
α , α > 0, is smooth for x > 0, so we can apply the Lagrange mean value theorem to the

right hand side and since p > q we get

|η′ − η0| 6

√∑
k

η2
k

1
α2

k

p
2−2αk
αk (p − q)2

6
p − q
αmin

√∑
k

η2
k |η|

2αk−2
αk
α

6
p − q
αmin

√∑
k

η2
k |ηk|

2αk−2 6
p − q
αmin

|η|α =
p − q
pαmin

,

where in the third inequality we have used that |η|α > |ηk|
αk , and in the last one the equivalence of standard

norms | · | and | · |1 in Rd.
By Lemma 5, | · |α satisfies the triangle inequality so we have

p − q = pq(|ξ|α − |η|α) 6 pq|ξ − η|α ,

and lastly

|η′ − η0| 6
1
αmin

q|ξ − η|α .

Hence, under the starting assumption q 6 p we have

|ξ0 − η0| 6
(
21−αmin +

1
αmin

)
q|ξ − η|α .

Finally, since 2qp > min{q, p}(q + p), we get the required estimate

|ξ0 − η0| 6 2
(
21−αmin +

1
αmin

) |ξ − η|α
|ξ|α + |η|α

.

Lemma 5. For α ∈ 〈0, 1]d, by dα(ξ,η) =
∑d

k=1 |ξk − ηk|
αk is given a metric on Rd satisfying property (3).

Moreover for every compact K ⊆ Rd there exist CK such that |ξ| 6 CK|ξ|α, for ξ ∈ K.

Proof. Only the triangle inequality requires special attention; to this end, we need to check that for non-
negative a, b we have (a + b)αk 6 aαk + bαk , or equivalently(a

b
+ 1

)αk
6

(a
b

)αk
+ 1,

where, without loss of generality, we assumed b , 0.
The last inequality follows from the fact that the function f (x) = (x + 1)αk − xαk − 1 is non-increasing on

the interval [0,∞〉. Indeed, since f ′(x) = αk((x + 1)αk−1
− xαk−1) and αk − 1 6 0, it follows f ′(x) 6 0 on 〈0,∞〉,

so f is non-increasing. Therefore, we have that dα is a metric on Rd.
Since for any ξ ∈ Rd we have |ξ|α 6

∑d
k=1 |ξ|

αk , it follows that dα satisfies (3).
Finally, for compact K ⊆ Rd there exists R > 1 such that |ξ|∞ 6 R for ξ ∈ K, thus

|ξ| 6 |ξ|1 =

d∑
k=1

|ξk|
1−αk |ξk|

αk 6 R1−αmin |ξ|α ,

which completes the proof.
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Since P is an admissible manifold, we can define the corresponding variant H-measure on Rd
× P by

Theorem 3. This variant was the essential tool in [9] for the application to fractional conservation laws.
At the end, let us show another useful property of the variant H-measure by the following example. We

want to calculate an H-measure µP (for P from this section) and a classical H-measure µ corresponding to
the sequence of oscillations

un = e2πik·(nβ1 x1, ...,nβd xd) = e2πi(nβ1 k1, ...,nβd kd)·x ,

where k ∈ Rd and for the simplicity

β1 = . . . = βp > βp+1 > . . . > βq−1 > βq = . . . = βd =: βmin > 0 ,

for p, q ∈ {0, . . . , d}. We actually want to see which choice of α in (7) and (8) gives us the most information
contained in µP. A simple calculation shows that ϕ̂un(ξ) = ϕ̂(ξ− (nβ1 k1, . . . , nβd kd)) (for ϕ ∈ C0(Rd)) and then
by the Plancherel theorem and a linear change of variables, the first integral in Theorem 3 can be expressed
as ∫

Rd
ϕ̂1(ξ)ϕ̂2(ξ)ψ(πP(ξ + (nβ1 k1, . . . , nβd kd))) dξ .

For the argument of function ψ we have

[
πP(ξ + (nβ1 k1, . . . , nβd kd))

]
i
=

ξi + nβi ki( d∑
j=1
|ξ j + nβ j k j|

α j
)1/αi

=

ξi

nβi
+ ki( d∑

j=1

∣∣∣∣ ξ j

n(αiβi )/α j
+ n

β j−
αiβi
α j k j

∣∣∣∣α j)1/αi
,

and the limit of this expression (as n → ∞) is always non-trivial only if αiβi is constant, hence, we take

αi = βmin/βi 6 1. Under this condition, the limit of the above expression is ki|k|
−

1
αi
α = [πP(k)]i, and by the

Lebesgue dominated convergence theorem the above integral converges toψ(πP(k))
∫

Rd ϕ̂1(ξ)ϕ̂2(ξ) dξ, which
gives us

µP = λ � δπP(k) ,

where λ is the Lebesgue measure on Rd and δ is a Dirac mass. This result is satisfactory since for any choice
of βwe can chooseα such that the corresponding variant H-measure contains a complete information about
the direction of oscillations.

On the other hand, the corresponding classical H-measure reads

µ = λ � δ (k1 , ..., kp ,0, ..., 0)
|(k1 , ..., kp ,0, ..., 0)|

,

from which we do not have any information about variables ξp+1, . . . , ξd, i.e. about oscillations of the
observed sequence in the directions xp+1, . . . , xd.

So far we have tried to systematise the ideas used by Nenad Antonić, Martin Lazar and Evgenij Jurjevič
Panov (see [4], [12]) when defining parabolic and ultra-parabolic H-measures. In [15] and [8] it was shown
that certain results can be obtained directly from Lemma 2. However, those results require the smoothness
of the used manifold, and explicit formulas for projections on the manifold.

In the sequel we shall deal with another variant associated to the same family of curves, but defined on
a different manifold.
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4. Fractional H-measures with orthogonality property

We study the same family of curves as in (8), but we want to reparameterise these curves so that manifold
P, given by (7), is replaced by one with better features.

This family of curves has been used in all known variants of H-measures and H-distributions. In the
classical case we have α1 = α2 = · · · = αd = 1 (the rays from the origin), while the parabolic scaling is given
by α1 = 1

2 , α2 = · · · = αd = 1. Actually, the coefficients αk determine the ratio of orders of derivatives
involved in the partial differential equation under study, so the constraint αk ∈ 〈0, 1] does not reduce the
generality, but assures the differentiability of the curves.

In [4] it was noticed that for transport properties of H-measures it is important to have in Definition 1 a
manifold P perpendicular to the scaling curves. We show that the manifold perpendicular to curves of the
form (8) is an ellipsoid.

Let F(ξ1, . . . , ξd) = C be the equation of such a manifold. For the orthogonality, for each k = 1, . . . , d we
must have

∂kF(ν1, . . . , νd) = c ξ̇k(1) =
c
αk
νk .

After integration we get that F is of the form

F(ξ1, . . . , ξd) =
c

2α1
ξ2

1 +
c

2α2
ξ2

2 + · · · +
c

2αd
ξ2

d .

Since constants c and C are arbitrary, manifold Q given by

ξ2
1

α1
+
ξ2

2

α2
+ · · · +

ξ2
d

αd
=

1
αmin

(9)

has the desired property. The constants have been chosen in such a way that Q depends only on the ratio
of coefficients αk and not on their exact value, that Q coincides with Sd−1 in the classical case and with the
ellipsoid given in [4, Section 2] in the parabolic case. In particular, if we have α1 = · · · = αd = α ∈ 〈0, 1] then
Q = Sd−1, thus the measure given by Theorem 4 is a (classical) H-measure.

However, this choice has also some disadvantages. In general, we cannot obtain an explicit formula
for projections to the manifold Q given by (9) along curves (8), which would make the verification of

assumptions of Lemma 3 easier. Namely, for an arbitrary ξ ∈ Rd
∗ , from ξk = νk s

1
αk we want to calculate s

and ν ∈ Q depending on ξ only. After dividing ξk = νk s
1
αk by s

1
αk and taking the square, it follows

ξ2
k

s
2
αk

= ν2
k ,

while after dividing by αk and summing we get

d∑
k=1

ξ2
k

αks
2
αk

=

d∑
k=1

ν2
k

αk
=

1
αmin

, (10)

which is an equation than can be explicitly solved in s only in certain cases. So, the projections are given by

νk =
ξk

s(ξ)
1
αk

, (11)

where s(ξ) is a solution of (10).
In the parabolic case (α1 = 1

2 , α2 = · · · = αd = 1), equation (10) is in fact biquadratic and the corresponding
formula (11) can be used effectively (see [4]). Let us now try to investigate the solutions of (10) in the general
case.
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Since the left-hand side of (10) is strictly decreasing and continuous in s ∈ R+, the equation has a unique
positive real solution. This shows that projections are well-defined, although implicitly, by above formulæ;
besides, we also have s(ν) = 1.

Function s(·) is implicitly defined by

G(ξ, s) =

d∑
k=1

1
αk
ξ2

ks−
2
αk −

1
αmin

= 0 ,

and as we have, for arbitrary ξ ∈ Rd
∗ and s ∈ R+,

∂sG(ξ, s) = −

d∑
k=1

2
α2

k

ξ2
ks−

2
αk
−1
, 0 ,

by the implicit function theorem it follows that s(·) is a C∞ function on Rd
∗ . In particular, (11) defines

a continuous projection from Rd
∗ to Q. Hence, its restriction to P given in the previous section is also

continuous, which together with admissibility of P gives that Q satisfies property (iv) from the second
section. Therefore, based on the remark after Theorem 3, we can state the following result on existence of
fractional H-measures with orthogonality property:

Theorem 4. Let Q be a closed compact surface given by (9) and let πQ be the projection to the manifold Q
along projection curves (8) given by (11).

If (un) is a sequence in L2(Rd; Cr) such that un −⇀ 0, then there exist a subsequence (un′ ) and an r × r
Hermitian matrix Radon measure µ on Rd

×Q such that for any ϕ1, ϕ2 ∈ C0(Rd) and ψ ∈ C(Q) one has:

lim
n′

∫
Rd

(ϕ1un′ ) ⊗Aψ◦πQ (ϕ2un′ ) dx = 〈µ, (ϕ1ϕ2) � ψ〉

=

∫
Rd×Q

ϕ1(x)ϕ2(x)ψ(ξ) dµ(x, ξ) .

Similarly as in the previous section (using property (12) below), or using the push-forward technique
from the section 2, we can get that the fractional H-measure with orthogonality property µ corresponding
to the sequence of oscillations

un = e2πik·(nc/α1 x1, ...,nc/αd xd) ,

where c is an arbitrary constant, is
µ = λ � δπQ(k) .

Although we already have the existence of associated variant H-measure, for the completeness and
further analysis we shall need some additional properties of s, such as the triangle inequality.

By (11) we have that s has certain anisotropic homogeneity property

s
(
λ

1
α1 ξ1, . . . , λ

1
αd ξd

)
= λs(ξ), λ ∈ R+ , (12)

so the whole branch of the coordinate curve given by (8) is projected to the same point on Q, and s takes
constant value λ ∈ R+ on each ellipsoid

d∑
k=1

ξ2
k

αkλ
2
αk

=
1
αmin

,

showing that s(ξ) measures certain distance of ξ from the origin. In particular, (12) implies that s can be
extended by continuity to the origin by zero. Therefore, we claim that ds(ξ,η) := s(ξ − η) defines a metric
on Rd.
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The only non-trivial fact to be checked is the triangle inequality. We want to prove that for arbitrary
ξ,η ∈ Rd we have

s(ξ + η) 6 s(ξ) + s(η) . (13)

In doing so we need properties of s given in the following lemma.

Lemma 6.
a) (∀ ξ ∈ Rd

∗ ) s(ξ) = s(|ξ1|, . . . , |ξd|) ,
b) |ηk| > |ξk|, k = 1, . . . , d =⇒ s(η) > s(ξ).

Proof. a) By the uniqueness of s and the identity

1
αmin

=

d∑
k=1

|ξk|
2

αks(|ξ1|, . . . , |ξd|)2/αk
=

d∑
k=1

ξ2
k

αks(|ξ1|, . . . , |ξd|)2/αk
,

it follows that s(ξ) = s(|ξ1|, . . . , |ξd|).
b) From

1
αmin

=

d∑
k=1

ξ2
k

αks(ξ)2/αk
=

d∑
k=1

η2
k

αks(η)2/αk
>

d∑
k=1

ξ2
k

αks(η)2/αk

we obtain
d∑

k=1

ξ2
k

αk

(
1

s(ξ)
2
αk

−
1

s(η)
2
αk

)
> 0 .

The terms in parentheses are of the same sign, so it easily follows that s(η) > s(ξ).

We shall first prove (13) under additional assumption that ξ,η ∈ (R+
0 )d, as in this case we know from

Lemma 6 that s(ξ) 6 s(ξ + η) and s(η) 6 s(ξ + η). By using the classical triangle inequality for the Euclidean
norm we get

1
√
αmin

=

√√√ d∑
k=1

(ξk + ηk)2

αks(ξ + η)2/αk
6

√√√ d∑
k=1

ξ2
k

αks(ξ + η)2/αk
+

√√√ d∑
k=1

η2
k

αks(ξ + η)2/αk

=

√√√ d∑
k=1

ξ2
k

αks(ξ)2/αk

( s(ξ)
s(ξ + η)

) 2
αk +

√√√ d∑
k=1

η2
k

αks(η)2/αk

( s(η)
s(ξ + η)

) 2
αk

6

√√√ d∑
k=1

ξ2
k

αks(ξ)2/αk

( s(ξ)
s(ξ + η)

)2
+

√√√ d∑
k=1

η2
k

αks(η)2/αk

( s(η)
s(ξ + η)

)2

=
s(ξ)

s(ξ + η)

√√√ d∑
k=1

ξ2
k

αks(ξ)2/αk
+

s(η)
s(ξ + η)

√√√ d∑
k=1

η2
k

αks(η)2/αk

=
1
√
αmin

s(ξ) + s(η)
s(ξ + η)

,

which is the desired triangle inequality.
For general ξ,η ∈ Rd we now again use Lemma 6 to obtain

s(ξ + η) = s(|ξ1 + η1|, . . . , |ξd + ηd|) 6 s(|ξ1| + |η1|, . . . , |ξd| + |ηd|)
6 s(|ξ1|, . . . , |ξd|) + s(|η1|, . . . , |ηd|) = s(ξ) + s(η) .

Using these properties of function s, together with Lemma 7 below, we could check that manifold (9)
is admissible, which is not essential as we have already proved the existence of the corresponding variant
H-measure.

Let us first study further properties on the special example.
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Example 1. We are now going to solve (10) in the special case α1 = 1
3 , α2 = · · · = αd = 1, trying to get

an idea on how to estimate the solution in the general case, and with the aim of proving the localisation
principle for H-measures introduced by Theorem 4. We are actually interested in finding a unique positive
solution s(ξ).

We denote ξ = (ξ1, . . . , ξd) = (ξ1, ξ
′), and get the equation (10) in the form

3ξ2
1

s6 +
|ξ′|2

s2 = 3 ,

or equivalently

s6
−
|ξ′|2

3
s4
− ξ2

1 = 0 .

Taking t = s2, a = |ξ′ |2

3 , b = ξ2
1 this is the third order algebraic equation, t3

−at2
−b = 0, which by substitution

z = t − a
3 gets the form

z3
−

a2

3
z −

2
27

a3
− b = 0 ,

suitable for application of Cardano’s formula, which gives

z =
3

√
a3

27
+

b
2

+

√
a3b
27

+
b2

4
+

3

√
a3

27
+

b
2
−

√
a3b
27

+
b2

4
.

Taking

A =
|ξ′|6

729
+
ξ2

1

2
and B =

√
|ξ′|6ξ2

1

729
+
ξ4

1

4
one finally gets

s(ξ) =

√
|ξ′|2

9
+

3√

A + B +
3√

A − B .

We already proved that the equation (10) has a unique positive solution and this very solution we get
by taking positive determination of square roots and real determination of cubic roots in the last formula.

Although we get the explicit formula, it is complicated and it seems more interesting to get some estimate
on the solution. Therefore, we shall prove the following claim:

There are constants C1,C2 > 0 such that the function s(·) given by the last formula satisfies

C1
6
√
ξ2

1 + |ξ′|6 6 s(ξ) 6 C2
6
√
ξ2

1 + |ξ′|6 ,

for an arbitrary ξ ∈ Rd
∗ .

It is easy to check that A > B and it follows

(
3√

A + B +
3√

A − B)3 = A + B + 3 3
√

(A + B)2(A − B) + 3 3
√

(A + B)(A − B)2 + A − B > 2A ,

i.e. it holds

s(ξ) >

√
|ξ′|2

9
+

3√

2A >
6√

2A >
6√2
3

6
√
ξ2

1 + |ξ′|6 .

For the converse inequality we use inequality of arithmetic and cubic means to obtain
3√A + B +

3√A − B
2

6
3

√
A + B + A − B

2
=

3√

A ,

and it follows

s(ξ) 6

√
|ξ′|2

9
+ 2

3√

A 6
√

3
3√

A 6
√

3
6√2

6
√
ξ2

1 + |ξ′|6 .
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The example gives us an idea on how to obtain an estimate in the general case.

Lemma 7. There are constants C1,C2 > 0 such that the solution s(ξ) of (10) satisfies an estimate

(∀ ξ ∈ Rd
∗ ) C1|ξ|α 6 s(ξ) 6 C2|ξ|α .

Proof. Denoting ηk = |ξk|
αk and η = (η1, . . . , ηd), the desired estimate for s = s(ξ) is equivalent to C1|η|1 6 s 6

C2|η|1, so (10) reads
d∑

k=1

1
αk

(ηk

s

) 2
αk =

1
αmin

.

Therefore, for any k we have
1
αk

(ηk

s

) 2
αk 6

1
αmin

,

which gives

s >
(αmin

αk

) αk
2
ηk .

Since mink

{
α
−
αk
2

k

}
> 1, we can take C1 =

√
αmin

d .
For the converse, notice that from the above it follows(αmin

αk

) αk
2 ηk

s
6 1 ,

so again by (10) we get

1
αmin

=

d∑
k=1

1
αk

αk

αmin

((αmin

αk

) αk
2 ηk

s

) 2
αk
6

d∑
k=1

1
αmin

((αmin

αk

) αk
2 ηk

s

)2

6
1
αmin

d∑
k=1

(ηk

s

)2
,

which implies s 6 |η| 6 |η|1, i.e. we can take C2 = 1.

5. Localisation principle

Let us first define some function spaces and investigate their basic properties. In the literature, we can
find them as generalised Sobolev spaces. We mainly follow ideas and results presented in [4].

We shall use spaces consisting of tempered distributions u such that kû ∈ L2(Rd), for some weight
function k. These spaces are described in [7, Chapter 10.1] and denoted by B2,k there. More precisely,
Hörmander’s condition on the weight function k > 0 is

k(ξ + η) 6 (1 + C|ξ|)Nk(η) ,

for some positive constants C and N. However, the condition

k(ξ + η) 6 C(1 + |ξ|)Nk(η) (14)

could be used as well, together with additional assumption that k is continuous [7, p. 6]. In the sequel we
recall the results from [7] needed for our purposes.

As for the classical space Hs, for s ∈ R and α ∈ [0, 1]d we define the anisotropic Sobolev space

Hsα(Rd) := {u ∈ S′ : û is a function, ks
αû ∈ L2(Rd)} ,

where kα(ξ) := 1 + |ξ|α.
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To justify the above notation, let us check that introduced spaces depend only on the product sα. If
sα = 0, then ks

α is a constant. Suppose now that sα = tβ , 0. It is sufficient to prove the equivalence of
weighted norms in L2(Rd) with the corresponding weights ks

α and kt
β. It is clear that s and t have the same

sign, so let us first assume s > t > 0. Since s
t > 1 and all norms on R1+d are equivalent, there exist C1,C2 > 0

such that for any ξ ∈ Rd we have

C1k
t
s
β(ξ) = C1

(
1 +

d∑
k=1

|ξk|
αk

s
t

) t
s
6 kα(ξ) 6 C2

(
1 +

d∑
k=1

|ξk|
αk

s
t

) t
s

= C2k
t
s
β(ξ) ,

from which we get the claim. The case s 6 t < 0 follows in the same manner.
In the next lemma we show that ks

α satisfies condition (14), and present some needed results which
immediately follows by [7].

Lemma 8. If positive functions k1, k2 satisfy condition (14), then, for any s ∈ R, ks
1 and k1 + k2, as well as

function ks
α given above satisfy the same condition.

Proof. For s > 0 the first assertion is trivial, while for s < 0 we first substitute η with ξ + η and ξ with −ξ,
and then take the power −s.

If k1 and k2 satisfy (14) with constants C1,N1 > 0 and C2,N2 > 0, then the same condition holds for k1 + k2
with constants C = max{C1,C2} and N = max{N1,N2}.

To show that ks
α satisfies condition (14), it is now enough to check that the same holds for the function

k0(ξ) =
1
d

+ |ξk|
αk ,

which follows from the estimate

k0(ξ + η) =
1
d

+ |ξk + ηk|
αk 6

1
d

+ (|ξk| + |ηk|)αk 6
1
d

+ |ξk|
αk + |ηk|

αk

6 (1 + d|ξk|
αk )(

1
d

+ |ηk|
αk ) 6 (1 + d + d|ξk|)k0(η) 6 (1 + d)(1 + |ξ|)k0(η) ,

where the second inequality is proved in the proof of Lemma 5, except for the case αk = 0 which trivially
follows.

When equipped with the inner product

〈u | v 〉Hsα(Rd) := 〈 ks
α û | ks

α v̂ 〉L2(Rd) ,

Hsα(Rd) becomes a Hilbert space.
The following lemma is a consequence of [7, Teorem 10.1.7].

Lemma 9. The embeddings S ↪→ Hsα(Rd) ↪→ S′ are dense and continuous. Moreover, C∞c (Rd) is dense in
Hsα(Rd).

Without loss of generality we can assume that for 0 6 m 6 d we have 0 < α1, α2, . . . , αm < 1, and
αm+1 = · · · = αd = 1, which is the case considered in Lemma 10 and Theorem 5 below. We also use the
notation x = (x̄, x′), x̄ = (x1, . . . , xm), x′ = (xm+1, . . . , xd), and analogously for other vector variables.

The next lemma follows from [7, Teorem 10.1.10].

Lemma 10. For any compact set K ⊆ Rd and any r < s the embedding

H−r(0,1)(Rd) ∩ E′(K) ↪→ H−sα(Rd)

is compact, where 0 ∈ Rm, 1 = (1, . . . , 1) ∈ Rd−m, and s > 0.
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For the proof of localisation principle we also need the following lemma, whose proof in the scalar case
and for αi ∈ N can be found in [3, Lemma 3], while more general situation is treated in [1, Lemma 9].

Lemma 11. Let f be a measurable vector function on Rd, and h be a continuous scalar function of the form
h(x) =

∑d
i=1 |2πxi

|
αi , αi ∈ R+. Furthermore, we assume that (un) is a sequence of vector functions with

supports contained in a fixed compact set, such that un −⇀ 0 in L2(Rd; Cr), and

f
(1 + h)β

· ûn −→ 0 in L2
loc(Rd)

for some constant β ∈ R+. If h−βf ∈ L2
loc(Rd; Cr), then it also holds

f
hβ
· ûn −→ 0 in L2

loc(Rd) .

As the space Hsα(Rd) is semilocal (see [7, loc. cit.]), then the smallest local space containing it is

Hsα
loc(Rd) :=

{
u ∈ D′(Rd) : (∀ϕ ∈ C∞c (Rd)) ϕu ∈ Hsα(Rd)

}
.

This space is endowed with the weakest topology in which all maps u 7→ ϕu are continuous.
We also recall the definition of fractional derivative of order α: ∂αk is a pseudodifferential operator with

symbol (2πiξk)α, i.e.
∂αk u = F ((2πiξk)α û(ξ)) ,

where we consider the principle branch of complex logarithm.
This operator is well-defined on the union of Sobolev spaces H−∞(Rd) =

⋃
s∈R Hs(Rd).

Theorem 5. (localisation principle) Let (un) be a sequence in L2(Rd; Cr) such that un −⇀ 0, let for any
n ∈ N and x′ ∈ Rd−m supports of un(·, x′) be contained in a fixed compact set in Rm, and let for l ∈ N∑

|γ̄|=l

∂α1γ1

1 · · · ∂αmγm
m (Aγ̄un) +

∑
|γ′ |=l

∂
γ′

x′ (A
γ′un) −→ 0 strongly in H−lα

loc (Rd; Cq) , (15)

where Aγ̄,Aγ′ ∈ Cb(Rd; Mq×r(C)), for some q ∈ N, with γ̄ ∈ Nm
0 and γ′ ∈ Nd−m

0 .
Then, for the associated H-measure µ defined by Theorem 4, it holds(∑

|γ̄|=l

m∏
k=1

(2πi ξk)αkγk Aγ̄ +
∑
|γ′ |=l

(2πi ξ′)γ
′

Aγ
′

)
µ = 0 .

Proof. Let us first show that an analogue to relation (15) holds for any localised sequence (φun), where
φ ∈ C∞c (Rd). First, we take φ ∈ C∞c (Rd−m) (a function not depending on x̄), for which we have∑

|γ̄|=l

∂α1γ1

1 · · · ∂αmγm
m (Aγ̄φun) +

∑
|γ′ |=l

∂
γ′

x′ (A
γ′φun)

= φ
(∑
|γ̄|=l

∂α1γ1

1 · · · ∂αmγm
m (Aγ̄un) +

∑
|γ′ |=l

∂
γ′

x′ (A
γ′un)

)
+

∑
|γ′ |=l

∑
16|δ|6l

(
γ′

δ

)
∂δx′φ∂

(γ′−δ)
x′ (Aγ

′

un) .
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By Lemma 10, the terms under the last summation converge strongly to zero in H−lα(Rd; Cq). The remaining
terms converge in the same space by the assumptions of the theorem, which proves the claim.

For an arbitraryφ ∈ C∞c (Rd), we can take a functionϕ ∈ C∞c (Rd−m), not depending on x̄, such thatφ = φϕ.
We get ∥∥∥∥∑

|γ̄|=l

∂α1γ1

1 · · · ∂αmγm
m (Aγ̄φun) +

∑
|γ′ |=l

∂
γ′

x′ (A
γ′φun)

∥∥∥∥
H−lα(Rd;Cq)

6
∥∥∥∥∑
|γ̄|=l

m∏
k=1

(2πiξk)αkγk

(‖ξ‖α)l
Âγ̄φun +

∑
|γ′ |=l

(2πiξ′)γ′

(‖ξ‖α)l
Âγ′φun

∥∥∥∥
L2(Rd;Cq)

=
∥∥∥∥∑
|γ̄|=l

Pγ̄(φAγ̄ϕun) +
∑
|γ′ |=l

Pγ′ (φAγ
′

ϕun)
∥∥∥∥

L2(Rd;Cq)

6
∥∥∥∥φ(∑

|γ̄|=l

Pγ̄(Aγ̄ϕun) +
∑
|γ′ |=l

Pγ′ (Aγ
′

ϕun)
)∥∥∥∥

L2(Rd;Cq)

+
∥∥∥∥∑
|γ̄|=l

[Pγ̄,Mφ](Aγ̄ϕun) +
∑
|γ′ |=l

[Pγ′ ,Mφ](Aγ
′

ϕun)
∥∥∥∥

L2(Rd;Cq)
,

where Pγ′ and Pγ̄ denote Fourier multiplier operators associated to symbols pγ′ (ξ) =
(2πiξ′)γ′

(‖ξ‖α)l and pγ̄(ξ) =∏m
k=1(2πiξk)αkγk

(‖ξ‖α)l , Mφ denotes a multiplication with φ, while [P,Mφ] = PMφ − MφP. By Lemma 3 and our

example of admissible manifold, commutators [Pγ̄,Mφ] and [Pγ′ ,Mφ] are compact on L2(Rd), giving that
the last term in the expression above converges to 0. According to the first part of the proof, the sequence
(ϕun) satisfies the analogous relation to (15) and by Lemma 11 the sequence of functions

∑
|γ̄|=l Pγ̄(Aγ̄ϕun) +∑

|γ′ |=l Pγ′ (Aγ
′

ϕun) converges strongly in L2
loc(Rd; Cq). Thus we have shown that

∑
|γ̄|=l ∂

α1γ1

1 · · · ∂αmγm
m (Aγ̄φun)+∑

|γ′ |=l ∂
γ′

x′ (A
γ′φun) −→ 0 in H−lα(Rd; Cq), and by the above calculation and Lemma 7 it also holds

s−l(ξ)
(∑
|γ̄|=l

m∏
k=1

(2πiξk)αkγk Âγ̄φun +
∑
|γ′ |=l

(2πiξ′)γ
′

Âγ′φun

)
−→ 0 in L2(Rd; Cq) .

After multiplying the above sequence by ψ ◦ πQ, where ψ ∈ C(Q), and forming a tensor product with
φ̂un, by Theorem 4 we have

0 = lim
n

∫
Rd

(ψ ◦ πQ)
(∑
|γ̄|=l

m∏
k=1

(2πiξk)αkγk

s(ξ)l
Âγ̄φun +

∑
|γ′ |=l

(2πiξ′)γ′

s(ξ)l
Âγ′φun

)
⊗

(
φ̂un

)
dξ

=
〈 1

s(ξ)l

(∑
|γ̄|=l

m∏
k=1

(2πiξk)αkγk Aγ̄ +
∑
|γ′ |=l

(2πiξ′)γ
′

Aγ
′

)
µ , |φ|2 � ψ

〉
.

As s(ξ) = 1 on the support of measure µ, the claim follows.

Let us remark that in [1, 4] the localisation principle was stated for µ> since there a sesquilinear dual
product was used, while here we work with a bilinear dual product.

Remark. By the previous theorem in the case α1 = · · · = αd = α ∈ 〈0, 1〉, we obtain a generalisation of the
known localisation principle for H-measures to the case of differential relations with fractional derivatives.

Remark. The supports of un have to be contained in a fixed compact (in variable x̄), as fractional derivatives
are not local, and we lack an appropriate variant of the Leibniz product rule for them.

This assumption can be substituted by the requirement that coefficients Aγ̄ and Aγ′ have compact
support in x̄.
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Remark. For some further studies on fractional H-measures with orthogonality property, including the
development of the propagation principle, we refer to [5].

Recently, Evgenij Jurjevič Panov introduced an abstract concept of H-measures defined on a spectrum
of general algebra of test symbols allowing more general pseudodifferential operators in (15) [13, Theorem
3.1], which one might use in the proof of the localisation principle.

At the end, we give a simple application of the localisation principle.

Corollary 1. Let un −⇀ 0 in L2(Rd) has supports contained in a fixed compact, and let un satisfies the
equation

d∑
k=1

∂αk un + cun = fn ,

for some α ∈ 〈0, 1〉 and c ∈ C(Rd). If fn converges (strongly) to zero in H−(α,...,α)(Rd), then the H-measure µ
associated to the (sub)sequence (un′ ) is trivial.

Proof. In this case, the measure from Theorem 4 and (classical) H-measure coincide.
According to Lemma 10, cun converges to zero in H−(α,...,α)(Rd), and a direct application of Theorem 5

gives ( d∑
k=1

(iξk)α
)
µ = 0 .

If ξk > 0, then Re (iξk)α = ξαk cos απ
2 > 0, and if ξk < 0, then Re (iξk)α = (−ξk)α cos −απ2 > 0. Hence, the

expression inside parentheses above is equal to zero if and only if (ξ1, . . . , ξd) = 0. As Q = Sd−1 does not
contain the origin, we conclude that µ = 0, which implies un′ −→ 0 in L2

loc(Rd).
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[13] Evgenij Jurjevič Panov: On variants of H-measures and compensated compactness, J. Math. Sci. 205 (2015)
267–296.

[14] Luc Tartar: H-measures, a new approach for studying homogenisation, oscillations and concentration effects
in partial differential equations, Proc. Roy. Soc. Edinburgh 115A (1990) 193–230.

[15] Luc Tartar: The general theory of homogenization: a personalized introduction, Springer, 2009.


