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Abstract. One of the main obstacles before the development of the theory of topological hypergroups is
the fact that translation of open sets may not be open in this setting. In this paper, we get rid of such obstacle
by introducing the concept of topological complete hypergroups and investigate some of their properties.

1. Introduction and Preliminaries

The year 1934 saw the raise of the concept of hyper1roups by Marty [12], later it was studied by Corsini
[2], Corsini and Leoreanu [3], Davvaz [4], Dresher and Ore [6], Freni [7], Koskas [11], Massouros [13], R.
Migliorato [15], Mittas [14], Tallini [17], Vougiouklis [18], and many others. Till now, only a few papers
treated the notion of topological hyperstructures, for example see [1, 8–10, 16]. Heidari et al. [8, 9] introduced
the concepts of topological hypergroups and topological polygroups, respectively. In this paper we study
the concept of topological complete hypergroups, which is a special class of topological hypergroups.

Let us begin with some basic definitions and results that will be used as ready references. For any
nonempty set H, a mapping ◦ : H × H → P∗(H) is called a hyperoperation, where P∗(H) is the family of
nonempty subsets of H. The ordered pair (H, ◦) is called a hypergroupoid and if A, B are two nonempty
subsets of it and x ∈ H, then

A ◦ B =
⋃
a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H, x ◦ (y ◦ z) = (x ◦ y) ◦ z and is
called a quasihypergroup if reproduction axiom holds, that is if x ∈ H ⇒ x ◦ H = H = H ◦ x. The ordered
pair (H, ◦) is called a hypergroup if it is a semihypergroup as well as a quasihypergroup. Subhypergroup is
defined as in general case, that is a nonempty subset K of a hypergroup (H, ◦) is a subhypergroup if (1) for all
a, b ∈ K⇒ a ◦ b ⊆ K and (2) for all a of K, we have a ◦ K = K = K ◦ a.

A subhypergroup K of a hypergroup (H, ◦) is said to be

(1) closed on the left (on the right) if for all k1, k2 of K and x of H, from k1 ∈ x ◦ k2 (k1 ∈ k2 ◦ x, respectively), it
follows that x ∈ K. K is said to be closed if it is that on the both left and right;
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(2) invertible on the left (on the right) if for all x, y of H, from x ∈ K ◦ y (x ∈ y ◦ K), it follows that y ∈ K ◦ x
(y ∈ x ◦ K, respectively). K is called invertible if it is so on the left as well as right;

(3) normal in H if for all x ∈ H, x ◦ K = K ◦ x [5].

For n > 1, βn defines a relation, which is reflexive as well as symmetric, on a semihypergroup H as
follows:

aβnb⇔ ∃(x1, x2, ..., xn) ∈ Hn : {a, b} ⊆
n∏

i=1
xi,

and let β =
∞⋃

i=1
βn, where β1 = {(x, x) : x ∈ H} is the diagonal relation on H. Koskas [11] introduced a relation

β∗ which is the transitive closure of β and it is seen that if (H, ◦) is a hypergroup, then β∗ = β [7]. The
relation β∗ is called the fundamental relation on H and H/β∗ is called the fundamental group. Let (H, ◦) be a
semihypergroup and A be a nonempty subset of H. We say that A is a complete part of H if for any nonzero
natural number n and for all a1, a2, ..., an of H, the following implication holds:

A ∩
n∏

i=1
ai , φ⇒

n∏
i=1

ai ⊆ A.

Let (H, ◦) be a hypergroup and consider the canonical projection φH : H → H/β∗. The heart of H is the set
ωH = {x ∈ H : φH(x) = 1}, where 1 is the identity of the group H/β∗. It is seen that ωH is a complete part as
well as a subhypergroup of H [5]. A nonempty subset A of H is a complete part if and only if ωH ◦ A = A.
Also, ωH =

⋂
K∈CPS(H)

K, where CPS(H) denotes the class of all complete part subhypergroups of H. Let A be

a nonempty subset of H. The intersection of the complete parts of H containing A is called the complete
closure of A in H; it is denoted by C(A).

A semihypergroup H is complete, if it satisfies one of the following conditions:

(1) ∀(x, y) ∈ H2, ∀a ∈ x ◦ y,C(a) = x ◦ y;

(2) ∀(x, y) ∈ H2, C(x ◦ y) = x ◦ y;

(3) ∀(m,n) ∈ N2, 2 ≤ m,n,∀(x1, x2, ..., xn) ∈ Hn, ∀(y1, y2, ..., ym) ∈ Hm,

n∏
i=1

xi ∩
m∏

j=1
y j , φ⇒

n∏
i=1

xi =
m∏

j=1
y j.

A hypergroup is complete if it is a complete semihypergroup. If (H, ◦) is a complete semihypergroup,
then either there exist a, b ∈ H such that β∗(x) = a ◦ b or β∗(x) = {x}. An element e of a hypergroup (H, ◦) is
called an identity if a ∈ e ◦ a ∩ a ◦ e for all a ∈ H. An element x′ is called an inverse of x in H if there exists an
identity e in H such that e ∈ x ◦ x′ ∩ x′ ◦ x. A hypergroup H is said to be regular if it has at least one identity
and every element has at least one inverse. A regular hypergroup H is said to be reversible if ∀(a, b, x) ∈ H3

such that a ∈ b ◦ x and a ∈ x ◦ b⇒ ∃ x′, x′′ ∈ i(x) such that b ∈ a ◦ x′ and b ∈ x′′ ◦ a, respectively, where i(x)
denote the set of inverses of x [4]. A mapping f from a hypergroup (H1, ◦) to a hypergroup (H2, ∗) is called

(1) a homomorphism if for all x, y of H, we have f (x ◦ y) ⊆ f (x) ∗ f (y);

(2) a good homomorphism if for all x, y of H, we have f (x ◦ y) = f (x) ∗ f (y).

Theorem 1.1. ([5]) If (H, ◦) is a complete hypergroup, then

(1) ωH = {e ∈ H : ∀x ∈ H, x ∈ x ◦ e ∩ e ◦ x}, which means that ωH is the set of two-sided identities of H.

(2) H is regular and reversible.
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Lemma 1.2. ([10]) Let (H, τ) be a topological space, then the family B consisting of all SV = {U ∈ P∗(H) : U ⊆
V},V ∈ τ is a base for a topology on P∗(H). This topology is denoted by τ∗.

Definition 1.3. ([8]) Let (H, ◦) be a hypergroup and (H, τ) be a topological space. Then the system (H, ◦, τ)
is called a topological hypergroup if with respect to the product topology on H × H and the topology τ∗ on
P
∗(H)

(1) the mapping (x, y) 7→ x ◦ y from H ×H 7→ P∗(H) and

(2) the mapping (x, y) 7→ x/y from H ×H 7→ P∗(H)
are continuous, where x/y := {z ∈ H : x ∈ z ◦ y}.

For any nonempty subsets A, B of a hypergroup (H, ◦), A/B is defined as ∪{a/b : a ∈ A, b ∈ B}.

Lemma 1.4. ([8]) Let (H, ◦) be a hypergroup and τ be a topology on H. Then the following assertions hold:

(1) the mapping (x, y) 7→ x ◦ y is continuous if and only if for every x, y ∈ H and U ∈ τ such that x ◦ y ⊆ U, there
exist V,W ∈ τ such that x ∈ V, y ∈W and V ◦W ⊆ U;

(2) the mapping (x, y) 7→ x/y is continuous if and only if for every x, y ∈ H and U ∈ τ such that x/y ⊆ U, there
exist V,W ∈ τ such that x ∈ V, y ∈W and V/W ⊆ U.

2. Compactness in Topological Hypergroups with Special Emphasis on Topological Complete Hyper-
groups

In case of topological groups the translation maps are homeomorphisms, but for topological hypergroups
they are continuous in general as shown by the following Lemma 2.1, which will be used in sequel.

Lemma 2.1. Let (H, ◦, τ) be a topological hypergroup. Then the following translation maps

La : H→ P∗(H) by x 7→ a ◦ x and Ra : H→ P∗(H) by x 7→ x ◦ a

are continuous for every a ∈ H.

Proof. Let U ∈ τ such that a ◦ x ⊆ U. Then by the continuity of the mapping (x, y) 7→ x ◦ y, ∃ V,W ∈ τ such
that a ∈ V and x ∈W and V ◦W ⊆ U. This implies that a ◦W ⊆ V ◦W ⊆ U. This shows that La is continuous
on H. Continuity of Ra can be shown in a similar way.

Example 2.2. Consider the translation map L2 on the topological hypergroup (R, ◦, τ), where the hyper-
operation ◦ is defined as, x ◦ y = {x, y} for every x, y ∈ R and τ is the standard topology on R. Here
L2((0, 1)) = (0, 1) ∪ {2}which shows that L2 is not a homeomorphism.

Definition 2.3. Let (H, ◦, τ) be a topological hypergroup. We say H is a compact Hausdorff topological hyper-
group if (H, τ) is compact as well as a Hausdorff space.

Example 2.4. As in [8] if (X, τ) is a Hausdorff topological space, then (X, ◦, τ) is a topological hypergroup
with respect to the hyperoperation ◦, defined as, for every x, y ∈ X, x ◦ y = {x, y}. So for every compact
Hausdorff space (X, τ) one can find a compact Hausdorff topological hypergroup. For instance, let X = [0, 1]
and consider the standard topology τu on it. Then (X, ◦, τu) is a compact Hausdorff topological hypergroup.

Theorem 2.5. Let (H, ◦, τ) be a compact Hausdorff topological hypergroup and K be a subset of H. Then x◦K = x ◦ K,
for all x ∈ H.
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Proof. Using Lemma 2.1 we have x ◦ K ⊆ x ◦ K, ∀x ∈ H. To prove x ◦ K ⊆ x ◦ K, let p ∈ x ◦ K. Now, p ∈ x ◦ K
⇒ p ∈ x ◦ K but if p < x ◦ K, then p is a limit point of x ◦ K. Let U ∈ τ such that p ∈ U, then x ◦ K ∩ U , φ

⇒ x ◦ K ∩ U , φ⇒ p is a limit point of x ◦ K ⇒ p ∈ x ◦ K. Now, we show that x ◦ K = x ◦ K, i.e., x ◦ K is
closed. Here K is compact for being a closed subset of the compact space H. Also, x ◦ K is compact, since
translation maps are continuous (by Lemma 2.1). So being a compact subset of a Hausdorff space, x ◦ K is
closed. Hence, x ◦ K ⊆ x ◦ K. Thus, we conclude that x ◦ K = x ◦ K.

Hausdorffness of hypergroup is necessary in Theorem 2.5 as it is illustrated in the following example.

Example 2.6. Let H = {1, 2} and a hyperoperation ◦ on H is defined as follows

◦ 1 2
1 {1} {2}
2 {2} {1,2}

Then (H, ◦) is a hypergroup. If τ = {φ, {1}, {1, 2}}, then (H, ◦, τ) is a compact topological hypergroup and it is
not Hausdorff. Now if A = {1}, then A = {1, 2}, 2 ◦ A = {2} and 2 ◦ A = {2}. But we have 2 ◦ A = {1, 2}.

Necessity of the compactness of hypergroup in Theorem 2.5 is shown by the example below.

Example 2.7. Consider the set of real numbers R. For all x, y ∈ R, we define a hyperoperation as

x ◦ y =

{
(−∞, x] if x = y,
{max{x, y}} if x , y,

then (R, ◦) is a hypergroup. Now consider the upper limit topology τup onR, then (R, ◦, τup) is a Hausdorff
topological hypergroup and it is not compact. Now if A = (2, 3), then 3 ◦ A = 3 ◦ (2, 3] = (−∞, 3]. But we
have 3 ◦ A = 3 ◦ (2, 3) = {3} = {3}.

Proposition 2.8. Let (H, ◦, τ) be a topological hypergroup and A, B are compact subsets of H. Then, A◦B is compact.

Proof. Since A, B are compact subsets of H, it follows that A × B is compact subset of H × H with respect
to the product topology induced from the topology τ on H. Now, the continuity of the map (x, y) 7→ x ◦ y
implies that A ◦ B is compact.

Example 5 in [8] shows that, unlike in topological groups, translation of open sets may not be open in
topological hypergroups. In the later part of this paper we see that how this difference may be avoided by
restricting the domain of thoughts into a special class of topological hypergroups which we call topological
complete hypergroups. Before that we state a result in the form of a proposition on complete hypergroup
which will be used frequently.

Proposition 2.9. Let A and B be nonempty subsets of a complete hypergroup (H, ◦) such that A is a complete part
and x ∈ H. Then,

(1) x−1
◦ x ◦ A = x ◦ x−1

◦ A = A, where x−1
∈ i(x);

(2) x ◦ A and A ◦ x are complete parts;

(3) B ⊆ x−1
◦ A if and only if x ◦ B ⊆ A, where x−1

∈ i(x).

Proof. The proof is omitted.

Definition 2.10. Let (H, ◦, τ) be a topological hypergroup. Then, we say H is a topological complete hypergroup
if H is a complete hypergroup. Also, we say H is a topological regular hypergroup if H is a regular hypergroup.
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Note that in this section the completeness and regularity of a topological hypergroup are purely algebraic.

Corollary 2.11. Every topological complete hypergroup is a topological regular hypergroup (by Theorem 1.1).

Evidently, every topological group is a topological complete hypergroup. Here, we present some other
examples.

Example 2.12. The total hypergroup (H, ◦) (i.e., for all x, y ∈ H, x ◦ y = H) with an arbitrary topology is a
topological complete hypergroup.

Example 2.13. Consider the set of integers Zwith the hyperoperation ∗ on it as

m ∗ n =

{
2Z if m + n ∈ 2Z
(2Z)c otherwise,

then (Z, ∗) is a complete hypergroup. Let τ = {φ, 2Z, (2Z)c,Z}. Then τ is a topology on Z, and (Z, ∗, τ) is a
topological complete hypergroup.

Example 2.14. Consider the topological group (Z,+, τ), where τ is the subspace topology onZ induced by
the standard topology onR. Now for n ∈ Z+, letZn = {0̄, 1̄, · · · ,n − 1} be the set of all congruence classes of
integers modulo n. For all a, b ∈ Z, we define the hyperoperation a◦b = a + b, then (Z, ◦, τZ) is a topological
complete hypergroup, where τZ = { ∪

x∈U
x̄ : U ∈ τ}.

Note that every open subset of the topological complete hypergroups shown by Example 2.13 and
Example 2.14 is a complete part. Now, let’s develop a tool which will be used after a while.

Lemma 2.15. Let U be an open subset of a topological complete hypergroup (H, ◦, τ) such that U is a complete part.
Then, a ◦U and U ◦ a are open subsets of H for every a ∈ H.

Proof. Suppose U be an open subset as well as a complete part of H and a ∈ H. Then, for some a−1
∈ i(a) we

have

L−1
a−1 (SU) = {x ∈ H : La−1 (x) ∈ SU}

= {x ∈ H : a−1
◦ x ⊆ U}.

We claim that {x ∈ H : a−1
◦ x ⊆ U} = a ◦ U. For, let p ∈ {x ∈ H : a−1

◦ x ⊆ U}, then a−1
◦ p ⊆ U. Now, there

exists e ∈ ωH such that e ∈ a ◦ a−1 and this implies that p ∈ e ◦ p ⊆ a ◦ a−1
◦ p ⊆ a ◦U.

For the converse, let

t ∈ a ◦U ⇒ t ∈ a ◦ u for some u ∈ U
⇒ u ∈ a′ ◦ t for some a′ ∈ i(a)
⇒ u ∈ a′ ◦ t ⊆ a′ ◦ a ◦ a−1

◦ t = ωH ◦ a−1
◦ t = C(a−1

◦ t) = a−1
◦ t

⇒ a−1
◦ t ∩U , φ

⇒ a−1
◦ t ⊆ U, since U is a complete part of H.

⇒ t ∈ {x ∈ H : a−1
◦ x ⊆ U}.

Hence, L−1
a−1 (SU) = a ◦U. Since the translation maps are continuous, it follows that a ◦U is open in H.

Similarly, U ◦ a is open in H.

Theorem 2.16. Let H be a topological complete hypergroup and A,B be open subsets of H. If A or B is a complete
part of H, A ◦ B is open.

Proof. Suppose that A is a complete part of H, then A ◦ b is open(by Lemma 2.15). Now, A ◦ B =
⋃
b∈B

A ◦ b,

this shows that A ◦ B is open.
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Lemma 2.17. Let H be a topological complete hypergroup such that every open subset of H is a complete part. LetU
be a basis at some identity e. Then, the families {x ◦U : x ∈ H,U ∈ U} and {U ◦ x : x ∈ H,U ∈ U} are basis for H.

Proof. Let W be an open subset of H and a ∈W. Then, there exists a′ ∈ i(a) such that e ∈ ωH = a′ ◦ a ⊆ a′ ◦W.
SinceU is a basis at e, there exists U ∈ U such that e ∈ U ⊆ a′ ◦W. This implies a ∈ a ◦U ⊆ a ◦ a′ ◦W = W
(by Proposition 2.9), i.e., a ∈ a ◦U ⊆W. This shows that {x ◦U : x ∈ H,U ∈ U} is a basis for H.

Similarly, {U ◦ x : x ∈ H,U ∈ U} is also a basis for H.

Lemma 2.18. Let H be a topological complete hypergroup such that every open subset of it is a complete part andU
be a basis at some identity e. Then, the following assertions hold:

(1) for every W ∈ τ with x ∈W, there exists V ∈ U such that x ◦ V ⊆W and V ◦ x ⊆W;

(2) for every U ∈ U, there exists V ∈ U such that V ◦ V ⊆ U.

Proof. (1) Suppose that W ∈ τ with x ∈ W. Then, there exists x′ ∈ i(x) such that e ∈ ωH = x′ ◦ x ⊆ x′ ◦W.
SinceU is a basis at e, there exists V ∈ U such that e ∈ V ⊆ x′ ◦W. This implies x ◦ V ⊆ W (by Proposition
2.9).

Similarly, we can show that there exists V ∈ U such that V ◦ x ⊆W.
(2) Suppose that U ∈ U, then e ∈ U. Since U is a complete part of H, it follows that e ◦ e ⊆ U. So by the

continuity of the map (x, y) 7→ x ◦ y there exists V ∈ τ such that e ∈ V, i.e., V ∈ U such that V ◦ V ⊆ U.

Theorem 2.19. Let (H, ◦, τ) be a topological complete hypergroup such that every open subset of it is a complete part.
If A and B are two nonempty subsets of H, then

(1) A ◦ B ⊆ A ◦ B;

(2) IntA ◦ IntB ⊆ Int(A ◦ B), where Int(A) denotes the interior of the subset A.

Proof. (1) The map f (x, y) = x◦y is continuous from H×H toP∗(H), then f (A × B) ⊆ f (A × B)⇒ A◦B ⊆ A ◦ B.
(2) Let p ∈ IntA ◦ IntB, then p ∈ a ◦ b for some a ∈ IntA and b ∈ IntB. Since a and b are interior points of

A and B, respectively, then there exist U,V ∈ τ such that a ∈ U ⊆ A and b ∈ V ⊆ B⇒ p ∈ a ◦ b ⊆ U ◦ V ⊆
A ◦ B⇒ p ∈ Int(A ◦ B), since U ◦ V is open (by Theorem 2.16). Thus, IntA ◦ IntB ⊆ Int(A ◦ B).

Theorem 2.20. Let H be a topological complete hypergroup such that every open subset of it is a complete part. Let F
be a compact subset of H and P be a closed subset of H such that F ∩ P = φ. Then, there exists an open neighborhood
V containing some identity e such that F ◦ V ∩ P = φ and V ◦ F ∩ P = φ.

Proof. Since P is closed, it follows that for each x ∈ F there exists an open neighborhood Vx of some identity e
in H such that x◦Vx∩P = φ. By Lemma 2.18 there exists an open neighborhood Wx of e such that Wx◦Wx ⊆ Vx.

Now, {x◦Wx}x∈F is an open cover for the compact set F, so there exist x1, x2, ..., xn ∈ F such that F ⊆
n⋃

i=1
xi ◦Wxi .

Let V1 =
n⋂

i=1
Wxi . We claim that F◦V1∩P = φ. It suffices to verify that y◦V1∩P = φ for each y ∈ F. Let y ∈ F,

then y ∈ xk ◦Wxk for some k ∈ {1, 2, ...,n} and y ◦V1 ⊆ (xk ◦Wxk ) ◦V1 ⊆ xk ◦ (Wxk ◦Wxk ) ⊆ xk ◦Vxk ⊆ H \ P, by
our choice of the sets Vx and Wx. This proves that F ◦ V1 and P are disjoint.

Similarly, one can find an open neighborhood V2 of e in H such that V2 ◦ F ∩ P = φ. Then, the set
V = V1 ∩ V2 is the required open neighborhood of e.

Theorem 2.21. Let (H1, ◦, τ) and (H2, ∗, τ′) be two topological complete hypergroups such that every open subset
of them is a complete part. Let f be a homomorphism from H1 into H2. Then, f is continuous if and only if it is
continuous at some identity of H1.
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Proof. If f is continuous, then the condition is obvious.
For the converse, let the map f is continuous at some identity e of H1. Let x ∈ H1 and W be an open set

containing f (x) in H2. Since W is a complete part, f (x) ∈W ⇒ f (x)∗ f (e) ⊆W. By the continuity of translation
map there exists an open set V in H2 such that f (e) ∈ V and f (x)∗V ⊆W. Since f is continuous at e, it follows
that there exists an open set U containing e such that f (U) ⊆ V. Now, f (x ◦U) ⊆ f (x) ∗ f (U) ⊆ f (x) ∗V ⊆W.
This shows that f is continuous on H1.

Theorem 2.22. Let (H1, ◦, τ) and (H2, ∗, τ′) be two topological complete hypergroups such that every open subset of
them is a complete part. Also let f be a good homomorphism from H1 into H2. Then, f is an open map if and only if
for every open set V containing some identity e1 of H1, f (V) is open in H2 containing some identity e2.

Proof. If f is an open map, then the condition holds as f (ωH1 ) = ωH2 .
For the converse, let the given condition holds. Let U be an open set in H1. We show f (U) is open in

H2. Let y ∈ f (U), then y = f (x) for some x ∈ U. Since x ∈ U, there exists an open neighborhood V of some
identity e1 such that x ∈ x ◦ V ⊆ U (By Lemma 2.18). Then, y = f (x) ∈ f (x) ∗ f (V) = f (x ◦ V) ⊆ f (U). Since
f (V) is open in H2 containing e2, f (U) is open and hence f is an open map.

Now, let us define a special kind of identity element in a regular hypergroup.

Definition 2.23. Let (H, ◦) be a regular hypergroup. Let e be an identity in H and 1 ∈ H. We say e is related
to 1 if ∃ 1′ ∈ i(1) such that e ∈ 1 ◦ 1′ ∩ 1′ ◦ 1.
We say an identity e is related to H or a related identity of H if it is related to every element of H, i.e., for
every 1 ∈ H, ∃ 1′ ∈ i(1) such that e ∈ 1 ◦ 1′ ∩ 1′ ◦ 1.

Example 2.24. Consider the additive group (Z,+) of integers, and define the hyperoperation ◦ on it as
m ◦ n =< m,n >= the subgroup generated by m and n. Then, (Z, ◦) is a regular hypergroup with 0 as a
related identity.

Example 2.25. Consider the set of integers Zwith the hyperoperation ∗ on it as

m ∗ n =

{
2Z if m + n ∈ 2Z
(2Z)c otherwise.

Then, (Z, ∗) is a regular hypergroup with 0 as a related identity.

Let us develop some algebraic tools which will be used later in sequel.

Lemma 2.26. Every subhypergroup of a complete hypergroup is a complete part.

Proof. Let K be a subhypergroup of a complete hypergroup H. Now, ωH ◦K = ωK ◦K =
⋃

x∈ωK

x ◦K = K. This

shows that K is a complete part of H.

Corollary 2.27. Let K be a subhypergroup of a complete hypergroup H. Then, {x◦K}x∈H and {K◦x}x∈H are partitions
for H.

Proof. By Lemma 2.26, K is a complete part subhypergroup of H. Since any complete part subhypergroup
is invertible [5], it follows that {x ◦ K}x∈H and {K ◦ x}x∈H are partitions for H [5].

Theorem 2.28. Let K be a subhypergroup of a complete hypergroup H. Then, K is normal in H if and only if for
every k ∈ K and for every x ∈ H, x ◦ k ◦ x−1

⊆ K, i.e., x ◦ K ◦ x−1
⊆ K, where x−1

∈ i(x).

Proof. Let K be a normal subhypergroup of H. Now, for x ∈ H and k ∈ K, x ◦ k ⊆ x ◦ K = K ◦ x. Then,
x ◦ k ◦ x−1

⊆ K ◦ x ◦ x−1 = K ◦ ωH = K (by Lemma 2.26).
For the converse, suppose the given condition holds. Let p ∈ x ◦ K ⇒ p ∈ x ◦ k for some k ∈ K ⇒ p ∈

(x ◦ k ◦ x−1) ◦ x ⊆ K ◦ x. Therefore, we have x ◦ K ⊆ K ◦ x. Now, let q ∈ K ◦ x ⇒ q ∈ k1 ◦ x for some k1 ∈ K
⇒ q ∈ x ◦ x−1

◦ k1 ◦ x⇒ q ∈ x ◦ (x−1
◦ k1 ◦ (x−1)−1) ◦ x−1

◦ x ⊆ x ◦ K ◦ ωH = x ◦ K (by Lemma 2.26). Therefore,
we have K ◦ x ⊆ x ◦ K. Hence, x ◦ K = K ◦ x for every x ∈ H. This shows that K is normal in H.
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It is observed that if K is a normal subhypergroup of a complete hypergroup H, then for every x ∈ H
with x−1

∈ i(x), x ◦ K ◦ x−1 = K ◦ x ◦ x−1 = K ◦ ωH = K (by Lemma 2.26). Hence, the above theorem can be
restated as follows:

Corollary 2.29. Let K be a subhypergroup of a complete hypergroup H. Then, K is normal in H if and only if for
every x ∈ H, x ◦ K ◦ x−1 = K, where x−1

∈ i(x).

Proposition 2.30. Let (H, ◦) be a complete hypergroup and M,N are two normal subhypergroups of it. Then,

(1) (N ◦ a) ◦ (N ◦ b) = N ◦ a ◦ b, for all a, b ∈ H;

(2) N ◦ a = N ◦ b if and only if b ∈ N ◦ a;

(3) M ∩N is a normal subhypergroup of H.

Proof. (1) (N ◦ a) ◦ (N ◦ b) = N ◦ (a ◦N) ◦ b = N ◦N ◦ a ◦ b = N ◦ a ◦ b.
(2) First we suppose N ◦ a = N ◦ b. Then, b ∈ ωN ◦ b ⊆ N ◦ b = N ◦ a.
For the converse, let b ∈ N ◦ a. Then, N ◦ b ⊆ N ◦N ◦ a = N ◦ a. Since any complete part subhypergroup

is invertible [5], it follows that b ∈ N ◦ a⇒ a ∈ N ◦ b. So, N ◦ a ⊆ N ◦N ◦ b = N ◦ b and hence N ◦ a = N ◦ b.
(3) Being complete part subhypergroups of H (by Lemma 2.26), M,N are invertible and hence closed

[5]. Since ωM = ωN = ωH, it follows that the intersection of M,N is nonempty. Therefore, M ∩N is a closed
subhypergroup of H [13]. Since M,N are normal in H, it follows that for x ∈ H with x−1

∈ i(x) we have
x ◦M ◦ x−1

⊆ M and x ◦N ◦ x−1
⊆ N. So, for x ∈ H with x−1

∈ i(x) we have x ◦ (M ∩N) ◦ x−1
⊆ M ∩N. This

shows that M ∩N is normal in H.

Now, we show that the component(or connected component) of an element can be obtained from the
component of its related identity by using translation map in a topological regular hypergroup. In a
topological hypergroup, we use the notation C1 to denote the component of 1.

Lemma 2.31. Let (H, ◦, τ) be a topological regular hypergroup. Then, for each 1 ∈ H, L1(Ce) = C1, where e is an
identity related to 1.

Proof. L1(Ce) is a continuous image of Ce, so it is connected and 1 ∈ L1(Ce), so L1(Ce) ⊆ C1 as C1 is the
maximal connected set containing 1. Since e is an identity related to 1, there exists 1′ ∈ i(1) such that
e ∈ 1′ ◦ 1 ∩ 1 ◦ 1′. This shows that L1′ (C1) is a connected set containing e, so L1′ (C1) ⊆ Ce. This implies
C1 ⊆ 1 ◦ 1′ ◦ C1 = L1(L1′ (C1)) ⊆ L1(Ce). Hence, L1(Ce) = C1.

Theorem 2.32. Let (H, ◦, τ) be topological regular hypergroup and e be an identity related to H. Then, Ce is a
closed(topologically) subhypergroup. Furthermore, if H is a complete hypergroup, then Ce is a normal subhypergroup
of H.

Proof. Being the component of e, Ce is a closed set. We prove Ce is a subhypergroup. Let 1, h ∈ Ce. Then,
1 ◦ Ce is a connected set containing 1 and 1 ◦ h, i.e., 1 ◦ h ⊆ 1 ◦ Ce, so 1 ◦ h ⊆ Ce.

Let 1 ∈ Ce, then 1 ◦ Ce = C1 = Ce (By Lemma 2.31). Similarly, Ce ◦ 1 = Ce, for all 1 ∈ Ce. Hence, Ce is a
subhypergroup of H.

Now, suppose H be a complete hypergroup. For 1 ∈ H, Ce ◦ 1
′ is connected, where 1′ ∈ i(1), so 1 ◦Ce ◦ 1

′

is connected and contains e. Hence, 1◦Ce ◦1
′
⊆ Ce. This shows that Ce is normal in H (by Theorem 2.28).

Let us introduce topological subhypergroup.

Definition 2.33. Let H be a topological hypergroup and K be a subhypergroup of H. Let K be endowed
with relative topology induced from H. Since the mappings (x, y) 7→ x ◦ y and (x, y) 7→ x/y of H × H into
P
∗(H) are continuous, so are their restrictions from K × K into P∗(K). Thus, K is a topological hypergroup

endowed with relative topology. In this case, K is called a topological subhypergroup.
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Proposition 2.34. Let (H, ◦, τ) be a topological hypergroup such that every open subset of it is a complete part and
K be a subhypergroup of H. Then, every open subset of K is a complete part.

Proof. Let U be an open subset of K and for n ∈N,
n∏

i=1
ai ∩U , φ, where ai ∈ K. Then, there exists V ∈ τ such

that U = V ∩K. Therefore,
n∏

i=1
ai ∩V , φ and so,

n∏
i=1

ai ⊆ V. Also,
n∏

i=1
ai ⊆ K and hence

n∏
i=1

ai ⊆ V ∩K = U. This

shows that U is a complete part of K.

Theorem 2.35. Let (H, ◦, τ) be a topological complete hypergroup. Then, every open subhypergroup is closed(topologically).

Proof. Let K be an open subhypergroup of H, then x ◦ K is open for every x ∈ H, since K is a complete
part of H. Now, {x ◦ K}x∈H is a partition for H (by Corollary 2.27). So, we can write H =

⋃
x∈H

x ◦ K =

(
⋃
x∈K

x ◦ K) ∪ (
⋃
x<K

x ◦ K) = K ∪ (
⋃
x<K

x ◦ K). This implies K = H \ (
⋃
x<K

x ◦ K) and hence K is closed.

Lemma 2.36. Every subhypergroup of a complete hypergroup is complete.

Proof. Let K be a subhypergroup of a complete hypergroup (H, ◦). Now, for x, y ∈ K, C(x◦ y) = (x◦ y)◦ωK =
(x ◦ y) ◦ ωH = x ◦ y. This shows that K is a complete subhypergroup of H.

Theorem 2.37. Let (H, ◦, τ) be a topological complete hypergroup such that every open subset of it is a complete part
and K be a subhypergroup of H. Then, K is open if and only if its interior IntK , φ.

Proof. Let IntK , φ and x ∈ IntK. Then, there exists an open set U containing some identity e of H such that
x ∈ x ◦ U ⊆ K. Now, take any y ∈ K, then y ◦ U ⊆ y ◦ x−1

◦ x ◦ U ⊆ y ◦ x−1
◦ K = K, since x, y ∈ K and K is

complete(by Lemma 2.36). This shows that K is open.
For the converse, let K be open, then IntK , φ.

Proposition 2.38. Let (H, ◦, τ) be a topological complete hypergroup such that every open subset of it is a complete
part and e be a related identity of H. LetU be the system of all neighborhoods of e, then for any subset A of H,

A =
⋂
U∈U

A/U.

Proof. Let x ∈ A and U ∈ U, x ◦U is a neighborhood of x, and hence x ◦U ∩A , φ. This implies there exist
a ∈ A and u ∈ U such that a ∈ x ◦ u⇒ x ∈ a/u ⊆ A/U. Therefore, A ⊆ A/U and hence A ⊆ ∩U∈UA/U.

For the converse, suppose y ∈ A/U for every U ∈ U. Now, for any open neighborhood V of y, there
exists y−1

∈ i(y) such that y−1
◦ V contains e and hence y−1

◦ V ∈ U. This implies that y ∈ A/(y−1
◦ V)

⇒ y ∈ a/w for some a ∈ A and w ∈ y−1
◦ V⇒ a ∈ y ◦ w ⊆ y ◦ y−1

◦ V = V(by Proposition 2.9)⇒ V ∩ A , φ
and hence y ∈ A. This completes the proof.

Remark 2.39. Let (H, ◦) be a complete hypergroup and ωH be the heart of H. Then, for every e ∈ ωH we
have e/e = ωH.

For, let t ∈ e/e, then e ∈ t ◦ e. Also, e ∈ e ◦ e ⊆ e ◦ t ◦ e ⊆ e ◦ t ◦ ωH = C(e ◦ t) = e ◦ t. Now, we show that
t ∈ ωH, i.e., t is a two sided identity of H. Let x ∈ H, then x ∈ x ◦ e ⊆ x ◦ t ◦ e ⊆ x ◦ t ◦ ωH = C(x ◦ t) = x ◦ t.
This shows that t is a right identity of H. Similarly, x ∈ e ◦ x ⊆ e ◦ t ◦ x ⊆ ωH ◦ t ◦ x = C(t ◦ x) = t ◦ x. This
shows that t is a right identity of H and hence t ∈ ωH. Also, ωH ⊆ e/e. Therefore, we obtain e/e = ωH.

Theorem 2.40. Let (H, ◦, τ) be a topological complete hypergroup such that every open subset of it is a complete part
and e be a related identity of H. Now, if U is an open neighborhood of e, then there exists an open neighborhood V of e
such that V ⊆ U.
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Proof. Since U is a complete part of H and e ∈ U, it follows that ωH = e◦ e ⊆ U. Again, e/e = ωH, this implies
that e/e ⊆ U. So, by the continuity of the map (x, y) 7→ x/y, there exists an open neighborhood V of e such
that V/V ⊆ U. Now, by using Proposition 2.38 we have V ⊆ V/V ⊆ U, i.e., V ⊆ U.

Corollary 2.41. Let (H, ◦, τ) be a topological complete hypergroup such that every open subset of it is a complete part
and e be a related identity of H. Then, H is locally compact if and only if there exists a compact neighborhood of e.

Proof. Suppose that H is locally compact. Then, by the definition of locally compactness, there exists a
compact neighborhood of e.

For the converse, suppose that U be a compact neighborhood of e. Then, by Theorem 2.40, there exists
an open neighborhood V of e such that V ⊆ U. Now, being a closed subset of a compact set, V is compact.
So, for each x ∈ H, x ◦ V is a compact neighborhood of x. This completes the proof.

Let (H, ◦) be a complete hypergroup and K be a normal subhypergroup of H. By H/K we denote the
collection of all left(or right) cosets of K in H, i.e., H/K = {K ◦ x : x ∈ H}.

Proposition 2.42. Let (H, ◦) be a complete hypergroup and K be a normal subhypergroup of H. Then, H/K forms a
hypergroup with respect to the operation � defined by K ◦ x � K ◦ y = {K ◦ z : z ∈ x ◦ y}.

Proof. Let us check for associativity of � on H/K. For all x, y, z ∈ H, we have

(K ◦ x � K ◦ y) � K ◦ z = {K ◦ u : u ∈ x ◦ y} � K ◦ z
= {K ◦ v : u ∈ x ◦ y, v ∈ u ◦ z}
= {K ◦ v : v ∈ (x ◦ y) ◦ z},

K ◦ x � (K ◦ y � K ◦ z) = K ◦ x � {K ◦ u : u ∈ y ◦ z}
= {K ◦ v : u ∈ y ◦ z, v ∈ x ◦ u}
= {K ◦ v : v ∈ x ◦ (y ◦ z)}.

Since (x ◦ y) ◦ z = x ◦ (y ◦ z), it follows that (K ◦ x � K ◦ y) � K ◦ z = K ◦ x � (K ◦ y � K ◦ z).
Now, for reproduction axiom let K ◦ x ∈ H/K, then we have

K ◦ x �H/K = {K ◦ v : v ∈ x ◦ y, y ∈ H}
= {K ◦ v : v ∈ x ◦H = H}
= H/K.

Similarly, we have H/K � K ◦ x = H/K. Therefore, (H/K,�) is a hypergroup.

Let φ be the natural mapping x 7→ K ◦ x of H onto H/K. Then, (H/K, τ) is a topological space, where τ is
the quotient topology induced by φ. i.e., for every subset X of H, {K ◦ x : x ∈ X} is open in H/K if and only
if φ−1({K ◦ x : x ∈ X}) is an open subset of H. We use the notation X/K to denote the set {K ◦ x : x ∈ X}.

Lemma 2.43. Let (H, ◦, τ) be a topological complete hypergroup and K be a normal subhypergroup of it. Let φ be the
natural mapping x 7→ K ◦ x of H onto H/K. Then,

(1) φ is continuous;

(2) φ−1({K ◦ x : x ∈ X}) = K ◦ X for every subset X of H;

(3) If every open subset of H is a complete part, then φ is open;

(4) φ is a good homomorphism;

(5) If H is compact, then H/K is compact;
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(6) If every open subset of H is a complete part, then the quotient topology is the finest topology on H/K with respect
to which φ is continuous.

Proof. (1) φ is continuous by the definition of quotient topology.
(2) We have K◦X ⊆ φ−1({K◦x : x ∈ X}) for every subset X of H. For the converse, let y ∈ φ−1({K◦x : x ∈ X}).

Then, φ(y) = K◦y ∈ {K◦x : x ∈ X}. So, K◦x = K◦y for some x ∈ X, then by Proposition 2.30, y ∈ K◦x ⊆ K◦X.
Thus, the equality holds.

(3) Let U be an open subset of H. We show φ(U) is open in H/K. Here, φ−1(φ(U)) = K ◦U. Since U is a
complete part of H, it follows that K ◦ U is open in H (by Lemma 2.15). Hence, φ(U) is open in H/K. This
shows that φ is open.

(4) Let x, y ∈ H. Then, φ(x ◦ y) = {K ◦ z : z ∈ x ◦ y} = K ◦ x � K ◦ y. This shows that φ is a good
homomorphism.

(5) We have φ(H) = H/K. So, being the continuous image of a compact set, H/K is compact.
(6) Let τ′ be any other topology on H/K with respect to which φ : H→ H/K is continuous. Now, for any

open subset O of H/K there exists some open subset V of H such that O = V/K. Here φ−1(O) = φ−1(V/K) =
K ◦ V is open in H(by Lemma 2.15). But by the definition of quotient topology, all such O’s are open in
quotient topology. This shows that the quotient topology τ is finer than τ′. This completes the proof.

Theorem 2.44. Let K be a normal subhypergroup of a topological complete hypergroup (H, ◦, τ) and every open
subset of H is a complete part. Then, (H/K,�, τ) is a topological hypergroup, where K ◦ x�K ◦ y = {K ◦ z : z ∈ x ◦ y}
and K ◦ x/K ◦ y = {K ◦ z : z ∈ x/y}.

Proof. Let us show that the hyperoperation � and / are continuous on H/K. Suppose K ◦ x,K ◦ y ∈ H/K
and A be an open subset of H/K such that K ◦ x � K ◦ y ⊆ A. Then, x ◦ y ⊆ φ−1(A). Since φ−1(A) is open
in H, by the continuity of the map (x, y) 7→ x ◦ y, there exist open subsets V and W containing x and y
respectively, such that V ◦W ⊆ φ−1(A). Now, φ(V) and φ(W) are open subsets of H/K containing K ◦ x and
K ◦ y respectively, it follows that φ(V) � φ(W) ⊆ A. Therefore, the hyperoperation � is continuous on H/K.

Now, suppose B be an open subset of H/K and K ◦ x/K ◦ y ⊆ B. Then, x/y ⊆ φ−1(B). Since φ−1(B) is
open in H, by the continuity of the map (x, y) 7→ x/y, there exist open subsets P and Q containing x and
y respectively, such that P/Q ⊆ φ−1(B). Now, φ(P) and φ(Q) are open in H/K containing K ◦ x and K ◦ y,
respectively, it follows that φ(P)/φ(Q) ⊆ B. Therefore, the hyperoperation / is continuous on H/K and
hence (H/K,�, τ) is a topological hypergroup.

Theorem 2.45. Let (H, ◦, τ) be a topological complete hypergroup such that every open subset of H is a complete part
and K be a normal subhypergroup of it. Letφ : H→ H/K be the natural mapping. Then, the family {φ(U◦x) : U ∈ U}
is a local base of the space H/K at the point K ◦ x ∈ H/K, whereU is a base for H at some identity e.

Proof. Let U ∈ U. Then, U is a complete part of H and so, U ◦ x is open in H (by Lemma 2.15). Now, for
every k ∈ K, k ◦ (U ◦ x) is open in H. So, φ−1(φ(U ◦ x)) = K ◦ (U ◦ x) =

⋃
k∈K

k ◦ (U ◦ x) is an open subset

of H. Therefore, by Lemma 2.43, φ(U ◦ x) is open in H/K. Now, suppose V be an open neighborhood of
K ◦ x in H/K. Let us take φ−1(V) = W, then W is an open subset of H. Since K ◦ x ⊆ V, it follows that
x ∈ φ−1(K ◦ x) ⊆ φ−1(V) = W. So, there exists U ∈ U such that U ◦ x ⊆ W (by Lemma 2.18). Therefore,
K ◦ x ∈ φ(U ◦ x) ⊆ φ(W) = V. This shows that {φ(U ◦ x) : U ∈ U} is a local base of the space H/K at the point
K ◦ x.
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