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On the Diophantine Equation x> + 5 - p* = "

Musa Demirci?

?Department of Mathematics, Uludag University, 16059 Bursa, TURKEY

Abstract. In this paper, all the solutions of the Diophantine equations x? + 57 - p* = y" (for p = 29,41) are
given for nonnegative integers a,b, x, y,n > 3 with x and y coprime.

1. Introduction
Recently, there have been many papers dealing with by the generalized Lebesgue-Nagell equation
¥ +C=y" 1

where C > 0is a fixed integer and x, y, n are positive integer unknowns with n > 3. In 1850, V. A. Lebesque
[14] proved that this equation has no solution for C = 1. Ljunggren [16] solved for C = 2 and Nagell [20],
[21] solved it for C = 3,4 and 5. J. H. E. Cohn [10] could solve (1) for 77 values of C between 1 and 100.
In [19], Mignotte and de Weger dealt with the cases C = 74 and 86, which had not been dealt with Cohn.
Finally the remaining cases up to 100 were dealt with by Bugeaud, Mignotte and Siksek in [7].

Here we consider the Diophantine equation (1) where C = g7' - 43> ...q* or C = 2% - g7' - g3*...q* are
fixed numbers satisfying the following three conditions:

(I) gi =1 (mod 4) are primes foralli=1,2... k.

Write C = d - 2> with d is the square-free part of C. Let hi(—d) denote the class number of the imaginary
quadratic field Q( \/—_d). Let rad(n) denote the radical of the positive integer n (product of all prime divisors
of n).

(1) rad(h(—d)) | 6 for any decomposition C = d - z> as above.

(III) rad(q; £ 1) |2-3-5forall i=1,...,k

In such cases we apply the method used in [4]. If we are able to determine all S-integral points (with S
is an explicit set of rational primes) on some associated elliptic curve, then we can completely solve such
Diophantine equations. Conditions (I)-(IlI) above were suggested as a result of section 5 in [4].

In [11], all values of C satisfying conditions (I)-(Il) are determined (Lemma 2). Radicals of C take exactly
41 values. Some of the equations x* + C = y" with C listed in Lemma 2 were studied in the literature. These
include the cases where rad(C) € {5,13,17,29,41,97,2-5,2-13,2-17,5-13,5-17,2-5-13,2-5-17,2-29,2 - 41}.

All solutions of the Diophantine equation (1) where found in [17] and [18] for rad(C) = 10, 26; in [11] for
rad(C) = 34,58, 82; in [4] for rad(C) = 65; in [22] for rad(C) = 85; and in [12], [13] for rad(C) = 130, 170.

2010 Mathematics Subject Classification. 11D61, 11D41.

Keywords. Exponential Diophantine Equations, Primitive divisors of Lehmer sequences.
Received: 22 May 2014; Accepted: 12 April 2017

Communicated by Dragan S. Djordjevié

Research supported by the Research Fund of Uludag University KUAP(F)-2015/18
Email address: mdemirci@uludag.edu.tr (Musa Demirci)



M. Demzrci / Filomat 31:16 (2017), 5263-5269 5264

In [9], the authors gave the complete solutions (1,4, b, x, y) of the Diophantine equation x* + 5 - 11% = y"
when gcd(x, y) = 1, except for the case when x - a - b is odd.
In this paper, we obtain all solutions of the Diophantine equations

245t =y" (p=29,41) 2)
in integers unknowns x, y, 4, b, n under the conditions;
x>1,y>1,n>3,a20,b>0 x and y are coprime.

We apply the method from [4]. For n = 3 and n = 4, the problem is reduced to finding all {5, p} -integral
points on some elliptic curves. For n > 5, we shall use the primitive divisors of Lucas sequences as in
[6] to deduce that only cases n € {5,7} are possible. In these cases, we again reduce our problem to the
computation of all {5, p} -integral points on some elliptic curves. The calculations were done using MAGMA,
[5]. We now state the two main results of this paper:

Theorem 1.1. The only solutions of the equation
x2+5“-29b:y” ,x,y=1, gedx,y)=1, n>3,4ab20 (3)
are
(x,y,a,b)=(2,9,2,1) when n=3
and
(x,y,a0b)=2,3,21) when n=6.

Theorem 1.2. The only solutions of the equation

x2+5“-41h=y”,x,y21, ged(x,y)=1,1n23,4ab>0 4)
are
(x,y,a,b) = (840,29,0,2) when n=4;
(x,y,a,b) =(38,5,0,2) when n=>5
and

(x,y,a,b) =(278,5,0,2) when n=7.
Note that when a = 0, (3) becomes x + 29” = y" and x? + 41° = ", respectively, all solutions of which are

already known (see [11]), while when b = 0, our equation becomes x> + 5* = y" and all solutions of which
have been found in [2], [3] and [15]. Thus, from now on we shall assume thata - b > 0 in (2).

2. Preliminaries

We will determine all the primesp =1 (mod 4) satisfying the condition (III). First we recall some results:

Lemma 2.1. ([11]) There are exactly eight primes p = 1 (mod 4) satisfying the condition (IIl): 5,13,17,29,41,
97,449, 4801.

Now we are ready to determine all values of C satisfying (I)-(III).
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Lemma 2.2. ([11]) (i) The prime power p* satisfies the conditions (I)-(IIl) iff p € {5,13,17,29,41,97}.

(ii) The number C = 2% - p* satisfies (D)-(I1) iff p € {5,13,17,29,41}.

(iii) The odd number C = p® - q° with p,q are different odd primes, satisfies (D-(II) iff p - q € {5- 13,517,
5.29,5-41,13-17,13-29,13-41,17-29,17 - 41,17 - 97,29 - 41}.

(iv) The number C = 2% - p* - g* where p,q are different odd primes satisfies (D-(II) iff p - q € {5-13,5- 17,
5-41,13-17,17 - 41}.

(v) The odd number C = pi' - p5> - p3 with py,pp and ps are different odd primes satisfies (I)-(III) iff
pi ~p2-ps € {5-13-175-13-29,5 13 - 41,517 - 29,5 - 17 - 41,5 - 29 - 41,13 - 17 - 29,
13-17-41,13-29 - 41}.

(vi) The number C = 2% - pi' - p? - p3* where py,py and ps are different odd primes satisfies (I)-(III)
iffpr -p2-p3€{5-13-29,5-17-29,13-17-29,13 - 29 - 41}.

(vii) The number C with > 4 different odd prime factors satisfies ()-(III) iff C = 5° - 13% - 17¢ - 414,

Let a, § be two algebraic integers. If a + f and a - § are nonzero coprime integers and «/f3 is not a root of
unity, then (a, f) is called a Lucas pair. Further, letk = a + fand [ = a - . Then we have

a=3(k+AVd), p=1(k-AVd)with A € {1},

where d = k?—4l. We call (k, I) the parameters of the Lucas pair (¢, ). Two Lucas pairs (a1, f1) and (az, B2) are
called equivalent if @1/ = p1/B2 = ¥1. Given a Lucas pair («, 8), one defines the corresponding sequence
of Lucas numbers by

an_ﬂn
a-p

For two equivalent Lucas pairs (a1, f1) and (a2, f2), we have L,(a1, 1) = £Lq (a2, 2) for all n > 0.
A prime r is called a primitive divisor of L,(«, p), (n > 1) if

r | Ln(a/ﬁ) and r 'f d- Ll(a/ﬁ) e Ln—l(a/ﬁ)‘

Ly, B) = n=0,1,2,... (5)

Lemma 2.3. ([8]) If r is a primitive divisor of L,(a, B), then
r =e (mod n), where e = (_—fd).

Now we give an important result of Bilu, Hanrot and Voutier [6] concerning the existence of primitive
divisors of Lucas sequence :

Lemma 2.4. Let L, = L,(a, ) be a Lucas sequence. If n > 5 is a prime, then L, has a primitive divisor except for
finitely many pairs (, B) which are explicitly determined in Table 1 in [6].

Proof. Follows by Theorem 1.4 in [6] and Theorem 1in [1]. O

3. The Casen =4

We now consider the special case of n = 4. The situation is rather easy in this case:
Lemma 3.1. The equation (2) has no solution withn =4 anda-b > 0.

Proof. Letp € {29,41}. Let us rewrite the equation x> + 5 - p* = y* in the form (x/z%)*> + A = (y/z)* where A
is a 4th power-free positive integer, defined by. 5 - p* = A - z* for some integer z. Under these conditions,
we can write, A = 5% - p with a, B € {0, 1,2, 3} and we obtain the equation

V2= Ut 50 pb
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with U = y/z, V = x/z2. We now have to determine all {5, p}-integral points on these 16 elliptic curves.

Recall that if S is a finite set of prime numbers, then an S-integer is a rational number a/b with coprime
integers a and b > 0, where the prime factors of b are in S. We can always use MAGMA to determine the
{5, p}-integral points on the above elliptic curves (see [4], p. 176).

Now we give the results of our with MAGMA calculations:

(i) The only {5, 29} -integral point on V2 =U*-5%-29is (U, V,a, B) = (1,0,0,0) with the conditions on
x,y and the definition of U, V one can see that there is no solution for this equation.

(ii) The only {5, 41}-integral point on V2 =U*-5-41%is (U, V, a,p) =(1,0,0,0),(29,840,0,2). Under the
conditions on x, y the definition of U, V which are not convenient for us since they a = 0 ora = b = 0. This
concludes the proof. [

4. The Casen =3
Now we deal with the second separate case of n = 3:

Lemma 4.1. (i) The only solution of the equation (3) withn = 3and ab > 0is (x, y,a,b) = (2,9,2,1). In particular, if
n > 3 is a multiple of 3 and the Diophantine equation (2) has an integer valuation (x, y,a,b), then n = 6. Furthermore
when n = 6, the only solution (x,vy,a,b) is (2,3,2,1).

(ii) The equation (4) has no solution with n = 3 and ab > 0.

Proof. Letp € {29,41}. Rewrite the equation x? + 57 - p* = 1/ in the form (x/z%)? + A = (y/2z%)?, where A is a
6th power-free positive integer, defined by 5° - p* = Az°, with some integer z. Of course, A = 5% - p# with
a,p €1{0,1,2,3,4,5} and we obtain the equations:

V2:u3_5a.pﬁ’

with U = y/z2, V = x/z%. We now have to determine the {5, pl-integral points on these 36 elliptic curves,
and to do that, we use again MAGMA.

(i) The only {5, 29}-integral points on V2 =U®-5%29% are (U, V,a, B) €{(1,0,0,0),(29,0,0,3),(5,10,2,0),
9,2,2,1),(29,58,2,2),(125,1390, 2, 2), (145, 1740, 2, 2), (865, 25440, 2, 2), (145, 0, 3, 3)}. As the numbers x and y
are coprime positive integers, the above solutions lead to only one solution of the original equation, which
is (x,y,a,b) = (2,9,2,1).

When n = 6, replace n by 3 and y by y° to get a solution of equation (3) with n = 3 where the value of y
being a perfect square. We have only the possibility (2,9,2,1) for (x, y,a,b). Therefore, the only solution of
equation (3) withn = 61is (2,3,2,1).

(ii) The only {5,41} -integral points (1, v,a, B) on the curve V? = U3 — 5% - 41F are (1,0,0,0), (41,0,0,3),
(41,246,1,2),(5,10,2,0), (41,164,2,2),(5,0,3,0), (205,0, 3, 3), (125,950, 4, 2) and (1025, 32800, 4, 2) with the con-
ditions on x, y and the definition of U, V one can easily see that none of these leads to a solution of the
equation in (1) in the case n = 3. This is the required result. [

5. The Case n > 5 is prime
Lemma 5.1. Equations (4) and (5) have no solution with n > 5 prime and a.b > 0.

Proof. Suppose that (1) holds with n > 5, prime. We first rewrite the Diophantine equation x* + 57 - p* = y/"
as x> +d-z* = y", whered € {1,5,p,5p}, p = 29,41, z = 5* - p¥ and the relation between a and p with a and b,
respectively, is clear.

If in (4) and (5), y > 1 is taken as an even number, we obviously have that x is odd. Since for any odd
integer t, we have t* = 1 (mod 8) we get that 1 + d = 0 (mod 8) by reducing (4) and (5) modulo 8. This
leads tod =7 (mod 8) for d € {1,5,29,145} or d € {1,5,41, 205} which gives a contradiction. Hence in what
follows we may assume y > 1is odd in (4) and (5) (and hence x > 1 is even).

We work with the field K = Q( \/—_d). Since x is even, both factors on the left hand side of the equation

(x +zV=d)(x —z V—d) = y" are relatively prime. Hence, the ideal x + z V—d is a g-th power of some element
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in Qk, for a prime q. The cardinality of the group of units of Qx is 2 or 6, both coprime to 4. Furthermore
{1,(1 + V—d)/2} is always an integral base for Qx . Thus, we can finally write the relations

x+z\/—_d:(p’1, (p=u+v\/—_d (6)

where u,v € Z.
Conjugating (7) and subtracting the two relations, we get

2V—=d 5% pf = ¢ - . 7)

5.1. The Diophantine equation x* + 5% - 29" = y"

Since n > 5, 29 is primitive for L, by Lemma 3 (n is prime). Thus, 29 = +1 (mod #) and we conclude
that the only possibilitiesaren =7andd =1orn =5and d = 2.

5.1.1. TheCasen =7
By means of (8) with n =7 and d = 1, we obtain the relation

o(7u® — 35utv? + 21u?v* — v°) = 5.29° (8)
Since u and v are coprime, we have the following possibilities:
(@) v==45*-29, (b) v==%29, () v==5% (d) ov==l
We need only look at the last two possibilities.
Case 1:. v = 5%
In this case, equation (9) becomes
7ub — 35utv? + 21uPv* — v® = +296.

Dividing both sides by ©®, we obtain
7U° -35U% +21U—-1=D; - V? )

where U = u?/v?, V =291/0%, B =[B/2], D; = +1,+29. In this case, as D; = +1, we have to find the
{5}-integral points on the elliptic curves:

7U° - 35pU? +21U -y =Dy - V?, y==1. (10)
14 14 14

We multiply both sides of (10) by 72 to obtain
X3 -35y- X2+ 147X — 49y = Y?,

where (X, Y) = (7yU,7V) are {5}-integral points on the above elliptic curves.
Using MAGMA, we find (X, Y) € {(1,8), (58, -293)} (hence (U, V) € {(1/7,8/7),(58/7,-293/7)} for y = 1).
These do not lead to any solutions of the equation (4), either.
Consider the case D1 = +29. The unique {5}-integral point (2349, —87464) on the elliptic curve
X3-35-29X2+21-7-292X - 7%-293 = Y?

does not lead us to a solution of (4). With MAGMA, we find the following {5}-integral points
(—812,5887), (—377,6728), (=5, =776), (91,4648), (1015, 47096), (—340103561 /390625, 420852069512 /244140625)
on the elliptic curve

X3 +35-29x2 +21-7-29°X +72-29% = Y2,

Only the point (-812,5887) leads to the solution (x, y,4,b) = (278, 5,0, 2) of our original equation (4), which
is not convenient for us since it hasa = 0.
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Case 2:. v ==+1.
We have to find the integral points on

7U° -35U% +21U—-1=D; - V? (11)

where Dy = 1, £5, £29, +145.
The cases D = +1, +29 where treated above.
Consider the case D; = +5. Using MAGMA, we find two solutions (21, —56), (574, —11557) on the curve

X3-35-5-X2421-7-5°X-72-5°=Y?
and there exists no integral points on the curve
X?-35-5-X2+21-7-52X+7%-5 = Y2

These do not lead to any solutions of our original equation (4).
Consider the case D = +145. Using MAGMA, we only find the solution (25201, —3586024) on the curve

X3-35.5-29X%+21-7-5%-292X -72.5%.293 = Y?,
and we find another solution (696, 10933) on the curve
X3-35.5-29X%+21-7-5%-292X +72.5%.29% = Y2,

These also do not lead to any solutions of (4).

51.2. Casen=5
Using (8) withn =5, d = 2, we obtain the relation

v(5u* — 20uv* + 4v*) = 5% - 29P, (12)

As in the case n = 7, we only need to check the values v = £5%, v = +1.
In the first case, the Diophantine equation (12) is 5u* — 20u?v? + 4v* = +29f. Dividing both sides by v*,
we obtain

5U* —20U? + 4 = D, V?, (13)

where U = u/v, V =2%1/v?2, By =[g/2] and Dy = +1, +29. Using MAGMA, we find three {5}-integral
points (0,2), (2,2), (=2,2) on the curve (13) with D; = +1, and no other points in the remaining cases. These
points do not lead to solution of our original equation (1).

In the second case, the Diophantine equation (12) is 5U* — 20U? + 4 = +5% - 29, we need to find the
integral points on the curves 5U* — 20U% + 4 = D;V?, for D; = +1, +5, +29, +145. MAGMA finds three
solutions (0, 2), (2,2), (=2,2). None of points leads to any solutions of equation (2).

5.2. The Diophantine equation x* + 5°.41° = y"

Since n > 5, by using Lemma 3, 41 is primitive for L,. Thus, 41 = £1 (mod n) and we now see that the
only possibilitiesaren =5andd =1orn=5and d = 2.
Using (8) withn = 5, d = 2, we obtain

o(5u* — 20u*0* + 4vt) = 5941F, (14)

Therefore we only need to check v = £5%, v = +1.
In the first case the Diophantine equation is v(5u* — 20u*v* + 40*) = +41F. Dividing both sides by v*, we
obtain

5U* —20U2 + 4 = D, V?,
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where U = u/v, V = 41P1/0?, By = [B/2] and D; = +1, +41. Using MAGMA, we find three {5}-integral
points (0, 2), (2,2), (2, -2) on (14) with D; = 1, and none in the reamining cases. These points do not lead to
any solutions of equation (4).

In the second case the Diophantine equation is v(5u* — 20u?v? + 4v*) = 5% - 41F. We need to find integral
points on the curves v(5U* —20U% +4) = D,V?, for D; = +1, +5, +41, +205. MAGMA finds three solutions
(0,2),(2,2),(2,-2). These points do not lead either to any solutions of our original equation (4).

Using (8) with n = 5, d = 1, we obtain the relation

v(5u* — 20uv? + 4v*) = 5%41F,
In case v = 5%, we obtain 5u* — 10u?0? + v* = £41F. MAGMA then finds the {5}-integral points on
5U* —10U% + 1 = D, V? for D; = +1, +41,

which are (0,1) if D; = 1,(1,-2),(-1,-2) if D; = -1, and finally (2,1),(-2,1) if D; = 41. The point (2,1)
gives a new solution (x, y,4,b) = (38,5,0,2) of the equation (4) which is not conventient for us since it has
a=0.

In case v = +1, we obtain 5u* — 10u?v? + 4v* = 541 MAGMA finds the integral points on

5U* — 10U? + 1 = D1 Y? for Dy = 1, +5, +41, 205.

These points are (2,41), (=2,41) for D; = 41. The point (2, 1) gives the solution (x, y) = (38, 5) of (4) again.
This solution is not convenient for us since it has a = 0. This completes the proof of lemma. [
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