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Abstract. The main aim of this paper is to obtain a improved and generalized version of companion of
Ostrowski type integral inequalities for mappings whose first derivatives are of bounded variation. Some
previous results are also recaptured as special cases. New quadrature formulae are also provided.

1. Introduction

In 1938, Ostrowski [15] established the following interesting integral inequality associated with the
differentiable mappings.

Theorem 1.1. Let f : [a,b] — R be a differentiable mapping on (a, b) whose derivative f’ : (a,b) — R is bounded
on (a,b),ie. ‘f’ ‘m = sup f’(t)| < oco. Then, we have the inequality
te(a,b)

2
a+b
(- %)

(b—a)®

b-a)|

b
fo0- 5 [ s <| g+ 7. (1)

forall x € [a, b].

The constant 1 is the best possible.

Ostrowski inequality has applications in numerical integration, probability and optimization theory,
stochastic, statistics, information and integral operator theory. During the past few years, many authors
have studied on Ostrowski type inequalities for function of bounded variation, see for example ([1]-[3], [5]-
[13]). Uptil now, a large number of research papers and books have been written on Ostrowski inequalities
and their numerous applications.

The following definitions will be frequently used to prove our results.
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Definition 1.2. Let P :a = xg < x1 < ... < x, = b be any partition of [a,b] and let Af(x;) = f(xir1) — f(x;), then f
is said to be of bounded variation if the sum

i |Af ()|

i=1

is bounded for all such partitions.

Definition 1.3. Let f be of bounded variation on [a, b], and }, Af (P) denotes the sum }, |A f (xi)( corresponding to
i=1
the partition P of [a, b]. The number

b
\/ (F)=sup{) Af(P): P e P(la b))},

is called the total variation of f on [a, b] . Here P([a, b]) denotes the family of partitions of [a, b] .

In [10], Dragomir proved the following Ostrowski type inequalities related to functions of bounded
variation:

Theorem 1.4. Let f : [a,b] — R be a mapping of bounded variation on [a,b] . Then

[ (b—a)+ ——HV(f

holds for all x € [a, b]. The constant 3 is the best possible.

b
‘ff(t)dt—(b—a)f(x)

In [14], Liu proved the following Ostrowski type inequalities for functions with first derivatives of
bounded variation:

Theorem 1.5. Let f : [a,b] — R be such that f’ is a continuous function of bounded variation on [a,b]. Then for
any x € [a,b] and 6 € [0, 1] we have

ff(t)dt <b—a>[(1 f<>+9f(’+f(b)—<1—@>(x ””’)f()]l

b
< 11—6[4(x_b>2—49<b_a><b—x>+92<b—a>214<x—b>2—49(b—a>(b—x>—92<b—a>2ﬂy<f’)

fora <x <%t and
b
b
[ o= -0 a -0 50+ 6H0TE - 0)x- ”z—b)f'(x)]I

b
< 11_6[4(x—a)2—49(b—a)(x—a)+92(b—a)2|4(x—a)2—49(17—01)(96—”)—92(1’_”)2” \/(f')

for B <x <b.

In [7], authors gave the following Ostrowski type inequality:
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Theorem 1.6. Let f : [a,b] — R be such that f’ is a continuous function of bounded variation on [a,b] . Then we
have the inequality

b
L 1 1(. 3a+b
mff(f)dt—E[f(x)+f(a+b—x)]+§(x_ ”Z

)[f’(x) fla+b-]

1[5(x—-a)-2(x-a)(b—x)+({b-x)7 30 +b[]\" ,
< % e e 22|V

forany x € [a, ot

In [4], Budak and Sarikaya obtained the following Ostrowski type inequality in weighted form for the
mappings whose first derivatives are of bounded variation:

Theorem 1.7. Let w : [a,b] — R be nonnegative and continous and let f : [a,b] — R be differentiable mapping on
[a,b]. If f is of bounded variation on [a, b], then we have the weighted inequality

b b b
[f (u — x) w(u)du f’(x)+[fw(u)du]f(x)—fw(t)f(t)dt

a a a

x x b b
f(u - X) w(u)du] \/(f’) + [f(u - Xx) w(u)du] \/(f’)

forany x € [a, b].

IA

In [17], authors established a new version of Ostrowski’s type integral inequality by using a new type of
kernel with five sections. Then, Budak and Sarikaya obtained a companion of Ostrowski type inequalities
for mappings of bounded variation with the help of this 5-step kernel [8]. Recently, Qayyum et. al [16],
proved Ostrowski inequality using a 5-step quadratic kernel. In this paper, using this five step quadratic
kernel, we establish a new companion of Ostrowski type integral inequalities for functions whose first
derivatives are of bounded variation by the similar way that used in [8]. At the end, we apply our results
for new efficient quadrature rules. The results presented here would provide extensions of those given in

[7].

2. Derivation of companion of Ostrowski type integral inequalities
Before we prove our results for the 5-step quadratic kernel, we give the following lemma.

Lemma 2.1. Consider the kernel P(x, t) defined by Qayyum et al. in [16]

Lt-ay, te(a “ﬂ]

' 2
(- 3t)', pe (o«

P(x,t) = %(t—"zﬂ’)z, te(x,a+b—x] (2)
%(t—‘%%)z, te(a+b—x,%]

Le-0?,  te[=Z=p)
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forall x € [a “*b] then the following identity

b

f P(x, H)df'(t) 3)

a

_ ff(t)dt—b—[f(x)“‘f(”“"b x)+f(a+x) f(a+22b—x)

a

+(x_5“;3b){f’(a+b—X)—f'(x)}+%(x_SQIb){f,(LH_Zzb_x)—f'(%)}]’

Proof. By using (2), we have

holds.

b

f P(x, H)df'(t) 4)

a

o X a+b—x
%[f(t—a)zdf’(t)+f(t—3ﬂ+b) df'(t) + f (t—”ib) df (1)

atx X
2

a+2b—x

2 2 b
- f (t_“fb) aro+ [ e-vraro

a+b—x a+2b—x
2

1
E[Il +12+I3+I4+I5].

Integrating by parts, we obtain

L f (t —a)* df'(t) ()

2

= (t—a) f(tl —Zf(t—a)f’(t)dt

a

_ (x;a)f(a-i-_x)_( _ )f a+x +2ff(t)dt

Similarly, using integration by part, we have

f(t— 3””’) daf'(t) (6)

2

(x 3a+b)f()__( _a;b)zf,(g)

_2(x—Ba;b)f(x)+(x—a;b)f(a;x)+2ff(t)dt,

I
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a+b—x

f( a+b) af () )

2
(a;b—x) ffla+b-x)- (a+b )f(x)

I

a+b—x

—2(¥—x)f(a+b x) — 2(#—x)f(x +2ff(t)dt,

L = f(t—””’b) A (b ®)
1({a+b g ,(a+2b—x 3a+b g ,
Z(T_x)f( 5 )—( T fa+b—x)

e S Y

a+b—x

and

I5

f (t-bRdf () ©)

u+2b X

b
—_ 2 — —
e 4a) f,(u+22b x)_(x_a)f(”“‘z#).szf(t)dt.

a+2b—x
2

If we substitute the equalities (5)-(9) in (4), we get the required identity (3). O
Now using above identity, we state and prove the following theorem.

Theorem 2.2. Let f : [a,b] — R be such that f’ is a continuous function of bounded variation on [a, b]. Then we
have the inequality

(10)

(t)dt——[f(x +fl@a+b-x +f(a+x) f(a+22b_x)

+(x—5a;3b){f’(a+b—x)—f’(x)}+%(x—3a;b){f’(a+22b_x)—f’(¥)}
b 2 b 2 N2 b
< %max{(x—?’a; J (-] e 4”)}\/(1“),

where x € [ ”+b] and \/( f") denotes the total variation of f' on [a, b].
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Proof. From Lemma 2.1, we have

b

f P(x, df' (1)
< % f(t—a)zdf’(f) + f( SHb) daf'(t)] +

a+2b—x

1+b—x

+2b—x
2

It is well known that if g, f :

b
variation on [a, b], then f g(t)df(t) exists and

5310

(11)

a+b—x

| (t—ﬂ) af ()

X

> b
N f(t—“%) af | + f(t—b)2df’(t) .

: [a,b] — R are such that g is continuous on [4,b] and f is of bounded

b
f 9(af®) < sup lg(®)| v (12)
tela
By using (12) for each term in (11), we get
[e-ararw| < sup (¢ V<f> LA V(f) (13)
el oo
f(t—3“+b) df'(b) <supt€[a+x’](t—3a+b) \/(f) (14)
2 2 x
= max{(x— SQI b) ,}L(c%b —x) }M(f,),
a+h-x a+b u+b2u+bx 2 a+b-x
& )df(t) < [SU};_](f——) \/(f)—( -] Vi (15)
a+2b-x a+3b2 I 243 a+2bt
/ (t SELs ) irofs e t](t - ) ﬂyx(f (16)

~ max x_3a+b2 1 a+b
B 4 "4

1) } v (),

a+b—x
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and

b b 2 b
[ a-vrarols s w2\ =53\ () 7)

a+2b—x _ _
+2b—x te[ 2 /b] L+22h x w2
2

respectively. Using (13)-(17) in (11), we have the inequality

fb PG, af (1)

e oo -2 i Vi

+max{(x_ 3 4”’)2,}1(“; b —x)2}§<f'> L M:_X(fﬂ}
el e

Thus, the proof is completed. []

Remark 2.3. If we choose x = a in Theorem 2.2, we get the result proved by Budak et al. [7].

Corollary 2.4. Under the assumption of Theorem 2.2 with x = “£, then we have the following inequality

e )
_b3—2a {f,(a -;3b)_f,(3a;-b)}‘

b-a\’ ,
< —ZY(f)-

a+b
2

3

Corollary 2.5. Under the assumption of Theorem 2.2 with x = 3L then we get the inequality
( b b b b b
—al.(3a+ a+3 7a + a+7
I (e S N SR 09
b—a | _(a+3b ,(3a+b
S B
b
b-a ,
< = V.

Under assumption of of Theorem 2.2, we also have the following corollaries:
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Corollary 2.6. Let f € C?[a,b]. Then we have the inequality

2

o 22225

1 3a+b\ 1 b —a)?
< Emax{(x— ﬂ;‘ ) ,Z(a; —X) /(x 411) }‘f”

forall x € [a, “ﬂ’] , where ||.||(z,p1,1 15 the Li—norm, namely

(t)dt—— @)+ fla+b-x) + (2 a+2b-x (20)
ff |0 s A5 (5

[a,b],1

b

[abl1 f

a

1%

£ (1) dt.

Corollary 2.7. Let f’ : [a,b] — R be a Lipschitzian mapping with the constants L > 0. Then, we have the inequality

b
ff(t)dt_}’4;“[f(x)+f(a+b—x)+f(ﬂJZrX)+f(a+22b—x) (21)

+(x 5a+3b){f(+b O f (@) + %(x_3a;b){f,(a+22b—x)_f,(¥)}”

. L-a 3a+b\" 1(a+b ' (x—a)?
s 2 max X — 4 ,Z 2 -X| , 4

forall x € [a, ‘ib]

Proof. As f’ is L-Lipschitzian on [a, D], it is also of bounded variation. If P([a,b]) denotes the family of
divisions on [a, b], then

b
\/(f’) = Sup Z(f(xm) f/()| <L sup lem—xl L(b-a)

PeP([a,b i=0 PeP([a,b]) i=0

and the required result (21) is proved. [

3. Derivation of New Quadrature Rule

Our obtained inequalities have many applications but in this paper, we apply our result only for efficient
quadrature rule.

Let us consider the arbitrary division I, : @ = xp < x1 < ... < x, = b with I := x50 — x; and v(h) :=
max {h;| i =0,...,,n — 1}. Then the following Theorem holds:
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Theorem 3.1. Let f : [a,b] — R be such that f’ is a continuous function of bounded variation on [a,b] and
&i € [xz, x’+2x’“] (i=0,..,n—1). Then we have the quadrature formula:

fb f(dt

_ }Ln - [f(,gi)+f(xi+xi+1—éi)+f(Xi;€i)+f(%)]hi
i=0
+1 1(6 M){f,(xi+2xi+1—5i)_f/(a+5i)}h.
4 i=0 8 ? i |
J% = 1(&_ 3xi-zxi+l){f,(xi+2x2i+l —5i)_ff(xi;€i)}h,-+R(In,f/5)-

1]
[}

i
The remainder term R(I,, f, &) satisfies

IR, £, )| (22)

b
1 3Xi+xi+1)2 1(xi+xi+1 )2 (& —x) )
< = - _ o 2zt T .
= Dielonme) {max {(5 I I G ) I \/(f )

Proof. Applying Theorem 2.2 to interval [x;, x;+1], we have

Xit1

ff(t)df—%[f(éi)+f(xi+xi+1 )+f(xl+5t) f(xi+2x2i+1 —éi)

+’(éi 5% +83X1+1){f, (xi + 2x2i+1 - Ei) _f (ﬂ -;cfi)}
et )
Ly 25207 o 620

Summing the inequality (23) over i from 0 to n — 1, then we have

(23)

IA

IR(L,, £, €)|
n—1 Xi+1
< % > max{(éi—gxizxm)z,i(xi +2xi+1 _5) (51 Xi }\/(f)
<o 1 3x; + X1 \* 1 (X + Xina «—
< 3 o {le- ) G (-] STV )

IA

% max {max {(Ei 3y J;x,+1 )2 ’ }I (xl +2x,+1 ~ 5i)2 , %}} \/ ().

This completes the proof of the Theorem. [
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Corollary 3.2. Under the assumption of Theorem 3.1 with &; = x;, we have

b n-1
1 " (i) — f7 (i
Jro=3} [0+ st - LR v
where remainder term R(I,,, f) satisfies

m)%\"
Ra. £ < PO\ ().

4. Concluding Remark

In this paper, we presented an improved version of companion of Ostrowski type inequalities for func-
tion whose first derivatives are of bounded variation. A further study could be assess similar inequalities
by using different types of quadratic kernels.
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