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Abstract. Bijective maps on matrices over arbitrary fields with sufficiently many elements which preserve
Lie product are characterized.

1. Introduction and Statement of the Result

Let F be a field (i.e. a commutative division ring) and let Mn(F) be the set of all n × n matrices over
F. A map φ preserves commutativity if φ(A)φ(B) = φ(B)φ(A) whenever AB = BA, A,B ∈ Mn(F). If φ
is bijective and both φ and φ−1 preserve commutativity, then we say that φ preserves commutativity in
both directions. A map φ : Mn(F)→Mn(F) is a Lie product [A,B] = AB − BA preserving map if φ([A,B]) =[
φ(A), φ(B)

]
. Commutativity preserving maps are closely related to Lie product preserving maps. Namely,

preserving commutativity is the same as preserving zero Lie product. In last decades linear commutativity
preserving maps (see for example [3] and references therein) and recently also non-linear commutativity
preserving maps were extensively studied. In [16] Šemrl characterized maps on Mn(C), n ≥ 3, which
preserve commutativity in both directions (see also [9]). The same author considered in [15] injective,
continuous maps on Mn(C), n > 3, that preserve commutativity. Fošner [8] proved, using the real Jordan
canonical form, that an analogous result holds true for the set of real matrices Mn(R), n > 3. Dolinar et al.
classified in [7] maps on Mn(F), where F is an arbitrary field with sufficiently many elements and n ≥ 3,
which preserve commutativity in both directions.

In [16] Šemrl described the form of bijective, Lie product preserving maps on Mn(C) and Dolinar obtained
in [6] a similar result in a more general setting, omitting the assumption of bijectivity (see also [5]). The
techniques were mostly developed for the case of complex matrices using Jordan canonical form. The
question is whether these or similar techniques work also in the case of a general field F.

Let us provide some examples of Lie product preserving maps on Mn(F). The first example is a similarity
transformation A 7→ TAT−1 where T ∈ Mn(F) is an invertible matrix. Next, every map A 7→ A + ψ(A)I,
where I ∈Mn(F) is the identity matrix and ψ is a scalar function on Mn(F), is a Lie product preserving map.
The same holds true for maps of the following form: A 7→ −At where At denotes the transpose of A ∈Mn(F).
Given a field homomorphism σ : F→ F and a matrix A ∈Mn(F), we denote by Aσ the matrix obtained from
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A by applying σ to A entrywise. The map A 7→ Aσ also preserves Lie product. Note that when σ : F→ F
is bijective, i.e. a field automorphism, then the map A 7→ Aσ is also bijective. Our result claims that every
bijective, Lie product preserving map on Mn(F), where n ≥ 3 and F has at least 2n−1 elements, or n = 2 and
char F ,2, is a composition of these maps.

Theorem. Let F be a field and suppose φ : Mn(F)→Mn(F) is a bijective map satisfying

φ([A,B]) =
[
φ(A), φ(B)

]
(1)

for all A,B ∈ Mn(F). Then there exist an invertible matrix T ∈ Mn(F), a field automorphism σ : F→ F, and a
function ψ : Mn(F)→ F, where ψ(A) = 0 for all matrices of trace zero, such that:

(i) for n ≥ 3 and F with at least 2n−1 elements, either

φ(A) = TAσT−1 + ψ(A)I for all A ∈Mn(F),

or

φ(A) = −T(Aσ)tT−1 + ψ(A)I for all A ∈Mn(F);

(ii) for n = 2 and charF ,2,

φ(A) = TAσT−1 + ψ(A)I for all A ∈Mn(F).

2. Proof

We begin with some easy observations. Let F be a field and φ : Mn(F) → Mn(F) a map satisfying (1),
i.e., φ([A,B]) =

[
φ(A), φ(B)

]
for all A,B ∈ Mn(F). Note that φ(0) = φ([A,A]) =

[
φ(A), φ(A)

]
= 0, so if

BC = CB for B,C ∈Mn(F), then
[
φ(B), φ(C)

]
= φ([B,C]) = φ(0) = 0, and hence φ preserves commutativity. If

φ : Mn(F) → Mn(F) is bijective and satisfies (1), then φ−1 satisfies (1) as well since φ([A,B]) =
[
φ(A), φ(B)

]
implies [A,B] = φ−1

[
φ(A), φ(B)

]
and hence[

φ−1(C), φ−1(D)
]

= φ−1([C,D])

for all C,D ∈Mn(F). We may conclude that a Lie product preserving bijective map preserves commutativity
in both directions.

Let us mention that the proof of the theorem will follow some techniques and ideas used in the papers
mentioned in the introduction, in particular [16, Theorem 2.5] (see also [13]).

(i) We start with the case (i) in the Theorem, when n ≥ 3 and F has at least 2n−1 elements.
Step 1. Let A ∈Mn(F). Then for every idempotent of rank one P ∈Mn(F) there exists a rank one matrix

B ∈Mn(F) such that PA − AP = PB − BP.
As usually Ei j is the matrix with all entries equal to zero except the (i, j)-entry which is equal to one. Let

C =
[
ci j

]
∈Mn(F) be an arbitrary matrix and let

D =


1 c12 . . . c1n

c21 c21c12 . . . c21c1n
...

...
. . .

...
cn1 cn1c12 . . . cn1c1n

 ∈Mn(F).

Observe that D is of rank one and that E11C − CE11 = E11D −DE11. Let now P ∈ Mn(F) be any idempotent
of rank one. There exists an invertible matrix T ∈ Mn(F) such that TE11T−1 = P. As observed, for a matrix
T−1AT there exists a rank one matrix T−1BT such that

E11T−1AT − T−1ATE11 = E11T−1BT − T−1BTE11.
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Multiplying this equation from the left by T and from the right by T−1 we obtain PA − AP = PB − BP.
Step 2. For every rank one matrix A ∈Mn(F) we obtain that up to similarity, up to the ring automorphism

induced by the field automorphism σ, and up to the map A 7→ −At, if necessary, φ(A) = pA(A), where pA is
a polynomial with coefficients in F associated to A.

Recall that φ preserves commutativity in both directions. The main result in [7] states that there exist a
field automorphism σ : F→ F and an invertible matrix S such that one of the following holds:

φ(A) = SpA(Aσ)S−1 for all A ∈ Dn(F)∪I1
n(F);

φ(A) = SpA(Aσ)tS−1 for all A ∈ Dn(F)∪I1
n(F);

where to each A ∈ Mn(F) a polynomial pA with coefficients in F is associated, Dn(F) ⊆Mn(F) is the subset
of all diagonalizable matrices, and I1

n(F)⊆Mn(F) is the subset of all rank-one matrices.
Observe that the map κ : Mn(F) → Mn(F) defined with κ(A) = −At is bijective and that κ([A,B]) =

−(AB−BA)t = AtBt
−BtAt = [κ(A),κ(B)]. So in both cases by composing the mapφwith a ring automorphism

induced by the field automorphism σ, we may assume that

φ(A) = pA(A)

for every rank one matrix A ∈Mn(F).
Step 3. Assume that φ(A) = pA(A) for every rank one matrix A ∈ Mn(F), where pA is a polynomial with

coefficients in F associated to A. Then φ(A) = A + λAI, λA ∈ F, for every rank one matrix A ∈Mn(F).
First, let us recall that every A ∈ Mn(F) is similar over F to the direct sum of companion matrices of

appropriate polynomials (called the elementary divisors of A) with coefficients in F (see [10], page 156). So,
if A ∈Mn(F) is of rank one, then A is similar to the direct sum[

0 0
1 λ

]
⊕ 0n−2

where 0n−2 ∈ Mn−2(F) is the zero matrix and λ the trace of A. Obviously, if λ = 0, then A is similar to E12,
and if λ , 0, then A is similar to λE11. We may conclude that for a rank one matrix A ∈ Mn(F) there exists
an invertible matrix T ∈Mn(F) such that

A = TBT−1, where B = E12 or B = λE11 with λ ∈ F nonzero. (2)

So, A is a nilpotent matrix of rank one, or A is of the form λP where λ ∈ F and P ∈Mn(F) is an idempotent
matrix of rank one.

Suppose first that P ∈ Mn(F) is any rank one idempotent matrix and let λ ∈ F. Since φ(A) = pA(A) for
every A ∈Mn(F) of rank one and since P is a rank one idempotent matrix, there exist functionsαP, µP : F→ F
such that φ(λP) = αP(λ)P + µP(λ)I. We will show that the function αP is independent of the choice of an
idempotent, i.e. αP(λ) = α(λ). Let Q ∈ Mn(F) be an idempotent of rank one and suppose R ∈ Mn(F) is
another idempotent of rank one such that Q are R are orthogonal, i.e. QR = RQ = 0. Any commutative
subset of the set of all idempotent matrices in Mn(D), whereD is a (not necessarily commutative) division
ring and n ≥ 3, is simultaneously diagonalizable (see [17, Lemma 2.12]). Thus, there exists an invertible
matrix T ∈Mn(F) such that TQT−1 and TRT−1 are diagonal idempotents and hence their entries are equal to
0 except one diagonal entry which is equal to 1. Suppose TQT−1 = Eii and TRT−1 = E j j. Then clearly i , j.
Also, E j jEi j = 0 = Ei jEii and EiiEi j = Ei j = Ei jE j j. Let C = T−1Ei jT. Then C ∈ Mn(F) is a rank one matrix and
since i , j, C is a nilpotent matrix. Also, QC = C = CR and RC = 0 = CQ. By (2), N2 = 0 for every nilpotent
matrix N of rank one. So, since φ(A) = pA(A) for every rank one matrix A ∈ Mn(F), we may conclude that
φ(N) = λNN + νNI, λN, νN ∈ F, for every nilpotent matrix N ∈Mn(F) of rank one. On the one hand we have[

φ(λQ), φ(C)
]

= φ([λQ,C]) = φ(λ(QC − CQ)) = φ(λC) = φ(λ(CR − RC)) =

=
[
φ(C), φ(λR)

]
=

[
λCC + νCI, αR(λ)R + µR(λ)I

]
= λCαR(λ)C,

while on the other hand we have[
φ(λQ), φ(C)

]
=

[
αQ(λ)Q + µQ(λ)I, λCC + νCI

]
= αQ(λ)λCC.
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Since φ is an injective map, φ(0) = 0, and φ(C) = λCαR(1)C, we may conclude that λC , 0. It follows that
αR(λ) = αQ(λ).

Suppose now that rank one idempotent matrices Q,R ∈ Mn(F) are not orthogonal. If n ≥ 4, then it is
easy to see that there exists a rank one idempotent K ∈Mn(F) such that

KQ = QK = 0 = KR = RK.

If n = 3, then one can find (see [2, Proof of Theorem 10] and recall that two distinct rank one idempotents
are orthogonal if and only if they commute) either a rank one idempotent K ∈Mn(F) such that

KQ = QK = 0 = KR = RK

or two rank one idempotents K1,K2 ∈Mn(F) such that

QK1 = K1Q = K1K2 = K2K1 = K2R = RK2 = 0.

Thus, αQ(λ) = αK(λ) = αR(λ) in the former case and αQ(λ) = αK1 (λ) = αK2 (λ) = αR(λ) in the latter case. We
conclude that αP(λ) = α(λ) is independent of the choice of a rank one idempotent P.

We will now show that α(λ) = λ for every λ ∈ F. Since E11 and E11 + λE12 are idempotents of rank one,
we have

φ([E11,E11 + λE12]) =
[
φ(E11), φ(E11 + λE12)

]
=

=
[
α(1)E11 + µE11 (1)I, α(1)(E11 + λE12) + µE11+λE12 (1)I

]
= α(1)2λE12.

From φ([E11,E11 + λE12]) = φ(λE12) =
[
φ(E12), φ(λE22)

]
= λE12α(λ)E12, it follows λE12α(λ) = α(1)2λ. Here

λE12 , 0. So,

α(λ) = α(1)2λ−1
E12
λ. (3)

From

φ(E12) = φ([E11,E11 + E12]) = α(1)2E12

we obtain

φ(E12) = φ([E11,E12]) =
[
φ(E11), φ(E12)

]
=

[
α(1)E11 + µE11 (1)I, α(1)2E12

]
= α(1)3E12.

Since φ is injective and φ(0) = 0, we have φ(E12) , 0 and hence α(1) , 0. It follows that α(1) = 1 since
α(1)2 = α(1)3. From (3) we have 1 = λE12 and therefore α(λ) = λ. We proved that

φ(λP) = λP + µP(λ)I (4)

for every rank one idempotent matrix P ∈Mn(F).
Let now A ∈ Mn(F) be any rank one matrix. By (2) it follows that A is similar to E12 or to λE11 for some

nonzero λ ∈ F. In the latter case it immediately follows by (4) that φ(A) = A + λAI, λA ∈ F. In the former
case, since A = TE12T−1 and φ(P) = P + µP(1)I for every rank one idempotent matrix P ∈Mn(F), we have

φ(A) = φ
([

TE11T−1,TE11T−1 + TE12T−1
])

=
[
φ(TE11T−1), φ(TE11T−1 + TE12T−1)

]
=

[
TE11T−1,TE11T−1 + TE12T−1

]
= TE12T−1 = A.
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To conclude, φ(A) = A + λAI, λA ∈ F, for every rank one matrix A ∈Mn(F).
Step 4. Assume that φ(A) = A +λAI, λA ∈ F, for every rank one matrix A ∈Mn(F). Then φ(A) = A +λAI,

λA ∈ F, for every matrix A ∈Mn(F).
Let A ∈ Mn(F) be any matrix and P ∈ Mn(F) an idempotent of rank one. By Step 1 there exists a rank

one matrix B such that PA − AP = PB − BP. It follows

PA − AP = [P,B] = [P + λPI,B + λBI] =
[
φ(P), φ(B)

]
= φ([P,B]).

Since [P,A] = [P,B], we have

PA − AP = φ([P,A]) =
[
φ(P), φ(A)

]
=

[
P + λPI, φ(A)

]
= Pφ(A) − φ(A)P

and therefore

P(φ(A) − A) = (φ(A) − A)P. (5)

Recall that a matrix from Mn(F) which commutes with every rank one idempotent matrix from Mn(F) is
in the center of Mn(F). Equation (5) yields that φ(A) − A is a scalar matrix and hence there exists a scalar
λA ∈ F such that φ(A) = A + λAI for every matrix A ∈Mn(F).

Step 5. Assume that φ(A) = A + λAI, λA ∈ F, for every matrix A ∈ Mn(F). Then φ(A) = A + ψ(A)I for
every A ∈Mn(F), where ψ : Mn(F)→ Fwith ψ(A) = 0 for every matrix A of trace zero.

Let us define the functionψ : Mn(F)→ Fwithψ(A) = λA, soφ(A) = A+ψ(A)I for every matrix A ∈Mn(F).
Let A ∈Mn(F) be of trace zero. Then there exist matrices B,C ∈Mn(F) such that A = [B,C]. This observation
was proved by Shoda [14] for the case when F is a field of characteristic zero and Shoda’s result was
extended to fields of positive characteristic by Albert and Muckenhoupt [1]. Hence

A = [B,C] =
[
B + ψ(B)I,C + ψ(C)I

]
=

[
φ(B), φ(C)

]
= φ([B,C]) = φ(A).

Since φ(A) = A + ψ(A)I, we may conclude that ψ(A) = 0 for every trace zero matrix A.
To sum up, taking into account our assumptions that n ≥ 3 and F is a field with at least 2n−1 ele-

ments we obtain that a Lie product preserving bijective map φ : Mn(F) → Mn(F) is of the following form:
φ(A) = TAσT−1 + ψ(A)I for every A ∈ Mn(F), or φ(A) = −T(Aσ)tT−1 + ψ(A)I for every A ∈ Mn(F), where
ψ : Mn(F)→ Fwith ψ(A) = 0 for every matrix A of trace zero.

(ii) We continue the proof of the Theorem with the case (ii) when n = 2 and charF ,2. We will use some
ideas from the proof of Theorem 8.1 in [16]. First, let us prove the following characterization of nilpotent
matrices.

Step 6. Let F be a field with char F ,2, let N be the set of all nilpotent matrices in M2(F), and let
S ⊆ M2(F), such that for every S ∈ S there exists AS ∈ M2(F) with [AS,S] = S. Then N = S and therefore
φ(N) = N , since φ and φ−1 satisfy (1).

Suppose first S ∈ N . If S = 0, then clearly S ∈ S. Let S be a nonzero nilpotent matrix. Then S is of
rank one and similar to E12 ∈ M2(F). Since TE11T−1TE12T−1

− TE12T−1TE11T−1 = TE12T−1 holds for every
invertible matrix T, we may conclude that S ∈ S.

Conversely, let S ∈ S. Then there exists AS ∈ M2(F) such that [AS,S] = S, and therefore S is a trace zero
matrix. If S is of rank zero, then S = 0 and S ∈ N . If S is of rank one, then S is similar to the matrix[

0 0
1 λ

]
and λ is equal to the trace of S, hence λ = 0 and therefore S ∈ N . Suppose now that S ∈ S is of rank two.
Then there exists an invertible matrix T ∈M2(F) such that

S = T
[

0 λ1
1 λ2

]
T−1
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where λ1 , 0. Since S is a trace zero matrix, we may conclude that λ2 = 0. So,

T−1AST
[

0 λ1
1 0

]
−

[
0 λ1
1 0

]
T−1AST =

[
0 λ1
1 0

]
.

Let T−1AST =

[
b1 b2
b3 b4

]
. Then

[
b2 − λ1b3 b1λ1 − λ1b4

b4 − b1 b3λ1 − b2

]
=

[
0 λ1
1 0

]
and thus b1λ1 − b4λ1 = λ1 and b4 − b1 = 1. So, b1 − b4 = b4 − b1 since λ1 , 0. We have −1 = 1, a contradiction
with char F ,2. It follows that S ∈ S can not be of rank two.

Step 7. For every rank one idempotent P ∈M2(F) we obtain that φ(P) = P1 +µPI, where P1 is a rank one
idempotent and µP ∈ F, both depending on P.

Let N be a nilpotent of rank one, so N = TE12T−1 for some invertible matrix T ∈ M2(F). Let B ∈ M2(F),
such that BN−NB = N, and let C =

[ c1 c2
c3 c4

]
= T−1BT ∈M2(F). Then CE12−E12C = E12 and therefore c1 = c4 +1,

c3 = 0. It follows that

C =

[
1 c2
0 0

]
+ c4

[
1 0
0 1

]
= P̃ + c4I

where P̃ ∈ M2(F) is an idempotent of rank one and c4 ∈ F. We may conclude that every matrix B ∈ M2(F),
such that BN −NB = N for some nilpotent matrix N ∈M2(F) of rank one, may be written as

B = P̃1 + αI

where P̃1 ∈M2(F) is an idempotent of rank one and α ∈ F.
Let now P ∈M2(F) be an idempotent of rank one. Since P is similar to E11 and [E11,E12] = E12, it follows

PN −NP = N for some N ∈ N . Therefore φ(P)φ(N) − φ(N)φ(P) = φ(N). By Step 6, φ(N) is also a nilpotent
and therefore φ(P) may be written as

φ(P) = P1 + µPI

where P1 ∈M2(F) is an idempotent of rank one and µP ∈ F, both depending on P.
Step 8. Let P and Q be rank one idempotents and let φ(P) = P1 +µPI and φ(Q) = Q1 +µQI as in Step 7. If

P and Q have the same range space or the same null space, then the same is true for rank one idempotents
P1 and Q1.

Let P,Q ∈M2(F) be rank one idempotents. Suppose first that Im P = Im Q. As we showed in Step 7, there
exists a nilpotent matrix N ∈ M2(F) of rank one, such that PN −NP = N. Observe that Im P = Im N. Since
Im P = Im Q, it follows that P and Q are simultaneously similar to E11 and E11 + αE12, hence QN −NQ = N
and therefore

φ(P)φ(N) − φ(N)φ(P) = φ(N) and φ(Q)φ(N) − φ(N)φ(Q) = φ(N).

Since φ(P) = P1 + µPI and φ(Q) = Q1 + µQI, where P1,Q1 ∈ M2(F) are idempotents of rank one and φ(N) is
a nonzero nilpotent by Step 6, we obtain that Im P1 = Im φ(N) = Im Q1.

Suppose now Ker P = Ker Q. Similarly as in Step 7 we can show that there exists a nilpotent matrix N ∈
M2(F) of rank one, such that NP− PN = N. Since Ker P = Ker Q, it follows that P and Q are simultaneously
similar to E11 and E11 + αE21, hence NQ − QN = N and therefore

[
φ(N), φ(P)

]
= φ(N) =

[
φ(N), φ(Q)

]
.

Similarly as before we obtain that Ker P1 = Kerφ(N) = Ker Q1.
Step 9. For every rank one idempotent P ∈M2(F) and every λ ∈ Fwe obtain thatφ(λP) = σP(λ)P1 +ωλPI,

where a rank one idempotent P1 and a function σP : F→ F are both depending on P, and a scalar ωλP ∈ F
is depending on λ and P.
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Since [A,E11] = 0 implies A = αE11 + βI, α, β ∈ F, it follows that for a rank one idempotent P equation
[B,P] = 0 implies B is in the linear span of {P, I}. Recall that φ(P) = P1 + µPI, where P1 is a rank one
idempotent and µP ∈ F. From [λP,P] = 0 it follows that [φ(λP),P1 + µPI] = [φ(λP),P1] = φ(0) = 0. So

φ(λP) = σP(λ)P1 + ωλPI

with σP : F→ F and ωλP ∈ F. Note that σP(1) = 1 and σP(0) = 0.
Step 10. The function σP = σ, defined in Step 9, is multiplicative, additive and independent of rank one

idempotent P. In addition φ(λN) = σ(λ)φ(N) for every N ∈ N , λ ∈ F.
Let us first show that σP is independent of rank one idempotent P. Suppose P,Q ∈ M2(F) are rank one

idempotents with the same null space. As we showed in Step 8, there exists N ∈ N of rank one such that
[N,P] = N = [N,Q]. Let λ ∈ F. Then

[N, λP] = λN = [N, λQ]

and thus by Step 9,[
φ(N), σP(λ)P1

]
=

[
φ(N), σQ(λ)Q1

]
,

where P1 and Q1 are rank one idempotents. This yields σP(λ)
[
φ(N),P1

]
= σQ(λ)

[
φ(N),Q1

]
. Since [N,P] =

[N,Q] , 0, we have
[
φ(N),P1

]
=

[
φ(N),Q1

]
, 0 and thus σP = σQ. In a similar way we obtain the same

conclusion if P and Q have the same range space.
Suppose P and Q are rank one idempotent matrices which do not have the same null space nor the same

range space. Let first Im P , Ker Q. Then there exists a rank one idempotent R ∈M2(F) where Im P = Im R
and Ker Q = Ker R. Thus, σP = σR = σQ. Suppose now Im P = Ker Q. Then there exist rank one idempotents
R1 , P and R2, where Ker R1 , Im Q, such that Im P = Im R1, Ker R1 = Ker R2, Im R2 = Im Q and thus
σP = σR1 = σR2 = σQ. We may conclude that σp = σ is independent of P.

Let N ∈ M2(F) be a nilpotent matrix of rank one. Then, similarly as we showed in Step 7, there exists a
rank one idempotent P ∈ M2(F), such that Im P = Im N and PN − NP = N. Hence [λP,N] = λN for every
λ ∈ F. Recall that φ(λP) = σ(λ)P1 +ωλPI, λ ∈ F, and note that PN−NP = N implies

[
P1, φ(N)

]
= φ(N). Thus

φ(λN) =
[
φ(λP), φ(N)

]
=

[
σ(λ)P1, φ(N)

]
= σ(λ)φ(N).

Next we prove that σ is multiplicative. Let N be a nilpotent of rank one and let λ, µ ∈ F. Then

σ(λµ)φ(N) = φ(λµN) = σ(λ)φ(µN) = σ(λ)σ(µ)φ(N)

for every λ, µ ∈ F, hence σ is multiplicative.
Let us now prove that σ is also additive. There exist an invertible matrix T ∈ M2(F) such that φ(E11) =

TE11T−1 +µE11 I. We may assume, after composing φwith similarity transformation, that φ(E11) = E11 +µE11 I.
From [E11,E12] = E12 it follows that

φ(E12) =
[
φ(E11), φ(E12)

]
=

[
E11, φ(E12)

]
. (6)

Suppose φ(E12) =
[

a1 δ
a3 a4

]
. From (6) we obtain a1 = a4 = 0 and a3 = −a3. Since char F ,2, we may conclude

that a3 = 0, i.e. φ(E12) = δE12. Here δ , 0 since φ(0) = 0 and φ is injective. Let ψ : M2(F)→M2(F) be the map
defined as

ψ(A) =

[
1 0
0 δ

]
A

[
1 0
0 δ−1

]
.

Then ψ(φ(E12)) = ψ(δE12) = E12 and ψ(φ(E11)) = ψ(E11 + µE11 I) = E11 + µE11 I, thus we may assume that
φ(E12) = E12.
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Let α ∈ F and let φ(E11 + αE12) = P1 + µE11+αE12 I. Since [E11 + αE12,E12] = E12 and φ(E12) = E12, it follows
similarly as in Step 7, that φ(E11 +αE12) = (E11 + βE12) +µE11+αE12 I, for some β ∈ F. So, there exists a function
j : F→ F such that φ(E11 + αE12) = (E11 + j(α)E12) + µE11+αE12 I. From αE12 = [E11,E11 + αE12] we obtain

σ(α)E12 =
[
E11,E11 + j(α)E12

]
= j(α)E12,

hence j = σ. Also,
[
E11 + αE12,E11 + βE12

]
= (β − α)E12 which implies

[
E11 + σ(α)E12,E11 + σ(β)E12

]
= σ(β −

α)E12. Thus, σ(β)−σ(α) = σ(β−α). Since σ(0) = 0, we obtain that −σ(α) = σ(−α). So, σ(β+α) = σ(β)−σ(−α) =
σ(β) + σ(α) and therefore σ is also additive.

Step 11. We may assume that φ(E11 + αE12) − (E11 + αE12) and φ(E11 + αE21) − (E11 + αE21) are scalar
matrices for every α ∈ F.

Recall that φ is bijective, therefore it follows that σ is a field automorphism. Let us compose the map
φ with the map ψ : M2(F)→M2(F) defined with ψ(A) = Aσ−1

, A ∈ M2(F). Since φ(λP) = σ(λ)P1 + µλPI for
a rank one idempotent P, φ(λN) = σ(λ)φ(N) for N ∈ N , φ(E11 + λE12) = E11 + σ(λ)E12 + µE11+λE12 I, and
φ(E12) = E12, we may assume that σ is the identity, in particular

φ(E11 + αE12) − (E11 + αE12), α ∈ F, (7)

is a scalar matrix.
Similarly as for the function j defined in Step 10, we can see that there exists a function k : F→ F such

that φ(E11 + αE21) − (E11 + k(α)E21) is a scalar matrix. Assuming that σ is the identity, let us show that k is
also the identity. Since [E11 + E21,E11 − E12] = E11 − E12 + E21 − E22 is a nilpotent, it follows that

φ ([E11 + E21,E11 − E12]) = [E11 + k(1)E21,E11 − E12] =

[
k(1) −1
k(1) −k(1)

]
is also a nilpotent and hence k(1) = 0 or k(1) = 1. The former possibility, k(1) = 0, can not occur since φ is
injective. So, k(1) = 1. From E21 = [E11 + E21,E11] it follows

φ(E21) =
[
φ(E11 + E21), φ(E11)

]
= [E11 + k(1)E21,E11] = k(1)E21 = E21.

Also, for any α ∈ F we have αE21 = [E21, αE11] and αE21 = [E11 + αE21,E11]. By the former equation we
obtain

φ(αE21) =
[
φ(E21), φ(αE11)

]
= [E21, αE11] = αE21

and by the latter equation we get

φ(αE21) =
[
φ(E11 + αE21), φ(E11)

]
= [E11 + k(α)E21,E11] = k(α)E21.

It follows that k is the identity map and therefore

φ(E11 + αE21) − (E11 + αE21), α ∈ F, (8)

is a scalar matrix.
Step 12. For every rank one idempotent P ∈M2(F) we obtain that φ(P) − P is a scalar matrix.
Let P ∈M2(F) be a rank one idempotent. Then

P =

[
α β
γ 1 − α

]
with α, β, γ ∈ F and α(1 − α) = βγ. (9)

Let us consider three options: when α , 0, when α = 0 and P =

[
0 0
δ 1

]
, δ ∈ F, and when α = 0 and

P =

[
0 λ
0 1

]
, λ ∈ F. Note that for α = 1, β = 0, and γ = −δ we have[

α β
γ 1 − α

] [
0 0
δ 1

]
= 0 =

[
0 0
δ 1

] [
α β
γ 1 − α

]
.
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Similarly, for α = 1, β = −λ, and γ = 0 we have[
α β
γ 1 − α

] [
0 λ
0 1

]
=

[
0 λ
0 1

] [
α β
γ 1 − α

]
.

So, every rank one idempotent is of the form (9) with α , 0, or it is orthogonal to an idempotent of this
form with α , 0.

First, suppose P ∈M2(F) is of the form (9) with α , 0. If γ = 0, then α(1 − α) = 0 and hence α = 1. So, in

this case P =

[
1 β
0 0

]
and by (7), φ(P) − P is a scalar matrix. Let now γ , 0. An idempotent of the form (9)

with α , 0 has the same range space as
[

1 0
α−1γ 0

]
and the same null space as

[
1 α−1β
0 0

]
. By (8) and (7)

we obtain that

φ

([
1 0

α−1γ 0

])
−

[
1 0

α−1γ 0

]
and φ

([
1 α−1β
0 0

])
−

[
1 α−1β
0 0

]
are scalar matrices. Since every idempotent is uniquely determined by its range space and its null space,
we may conclude by Step 8 that φ(P) − P is a scalar matrix.

Second, suppose R ∈ M2(F) is a rank one idempotent that is orthogonal to a rank one idempotent P
of the form (9) with α , 0, i.e. RP = PR = 0. We will show that then φ(R) − R is a scalar matrix. Let
us first prove that for rank one idempotents M,N ∈ M2(F), we have [M,N] = 0 and M , N if and only if
MN = 0 = NM. If MN = NM = 0, then clearly [M,N] = 0 and M , N. Conversely, let [M,N] = 0 and M , N.
From MN = NM we may conclude that either Im M = Ker N and Im N = Ker M, and hence MN = 0 = NM,
or Im M = Im N which implies MN = N and NM = M, and therefore M = NM = MN = N, a contradiction.

Since RP = PR = 0, it follows that [R,P] = 0 and hence
[
φ(R), φ(P)

]
= 0. Also, Im R = KerP and

Im P = KerR. We already know that φ(P) − P is a scalar matrix and that φ(R) − R1 is also a scalar matrix
for some rank one idempotent matrix R1 ∈ M2(F). Thus, [R1,P] =

[
φ(R), φ(P)

]
= 0. Here R1 , P since

Im R , Im P and thus by Step 8, Im R1 , Im P. It follows that Im R1 = KerP and Im P = KerR1 which implies
R1 = R. We may conclude that φ(R) − R is indeed a scalar matrix.

Step 13. Assume that φ(P) − P is a scalar matrix for every rank one idempotent P ∈ Mn(F). Then
φ(A) = A +ψ(A)I for every A ∈Mn(F), where ψ : Mn(F)→ Fwith ψ(A) = 0 for every matrix A of trace zero.

By Step 9 it follows that φ(λP) − λP is a scalar matrix for every rank one idempotent P ∈ M2(F) and
every scalar λ ∈ F. In the same way as in the last paragraph of Step 3 we also obtain that φ(N) = N for every
rank one nilpotent N, so φ(A) − A is a scalar matrix for every rank one matrix A ∈ M2(F). As we showed
in Step 4, it follows that φ(A) − A is a scalar matrix for every A ∈ M2(F). Thus, there exists the function
ψ : M2(F)→ F, such that

φ(A) = A + ψ(A)I

for every matrix A ∈M2(F) and as we showed in Step 5, ψ(A) = 0 for every matrix A ∈M2(F) of trace zero.
Taking into account our assumptions, a bijective Lie product preserving map φ : M2(F) → M2(F) is of

the form:

φ(A) = TAσT−1 + ψ(A)I

for every A ∈ M2(F). Here σ : F→ F is a filed automorphism, and ψ : M2(F) → F maps all trace zero
matrices to zero.
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