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Abstract. In this paper, we continue the study of the pseudo B-Fredholm operators of Boasso, and the
pseudo B-Weyl spectrum of Zariouh and Zguitti; in particular we find that the pseudo B-Weyl spectrum is
empty whenever the pseudo B-Fredholm spectrum is, and look at the symmetric differences between the
pseudo B-Weyl and other spectra.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space and B(X) denotes the Banach algebra of all bounded
linear operators on X. Berkani [6] has defined T ∈ B(X) to be a “B-Fredholm operator” if there is an integer
n ≥ 0 for which the range R(Tn) = Tn(X) is closed, while the restriction Tn to R(Tn) is Fredholm in the usual
sense, and then T to be “B-Weyl” if also the Fredholm operator Tn has index zero. The “B-Fredholm” and
“B-Weyl” spectrum of T ∈ B(X) are now defined in the obvious way, as the Fredholm and Weyl spectrum
of Tn. Berkani [4] also showed that T is B-Fredholm iff it has a direct sum decomposition T = T1 ⊕ T0 with
T1 Fredholm and T0 nilpotent; further [5] this decomposition respects the index: T is B-Weyl iff T1 is Weyl.
Boasso [7] has used the decomposition to extend the Berkani concept to “pseudo B” Fredholm and Weyl
operators, T = T1 ⊕ T0 ∈ B(X) for which T1 is Fredholm, respectively Weyl, while T0 is only quasinilpotent,
see also [28]. The pseudo B-Fredholm and pseudo B-Weyl spectrum are defined by

σpBF(T) = {λ ∈ C : T − λI is not pseudo B-Fredholm}.

σpBW(T) = {λ ∈ C : T − λI is not pseudo B-Weyl}.

For T ∈ B(X) we denote by T∗, R(T), N(T), σ(T), respectively the adjoint, the range, the null space and
the spectrum of T. Recall that T ∈ B(X) is said to have the single valued extension property at λ0 ∈ C
(SVEP for short) if for every open neighbourhood U ⊆ C of λ0, the only analytic function f : U −→ X
which satisfies the equation (T − zI) f (z) = 0 for all z ∈ U is the function f ≡ 0. An operator T is said to
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have the SVEP if T has the SVEP for every λ ∈ C. Obviously, every operator T ∈ B(X) has the SVEP at ev-
eryλ ∈ ρ(T) = C\σ(T), hence T and T∗ have the SVEP at every point of the boundary ∂(σ(T)) of the spectrum.

An operator T ∈ B(X) is said to be semi-regular, if R(T) is closed and N(T) ⊆ R∞(T) =
⋂

n≥0 R(Tn).
The corresponding spectrum is the semi-regular spectrum σse(T) defined by σse(T) = {λ ∈ C : T −
λI is not semi-regular }, see [1].

In the other hand, recall that an operator T ∈ B(X) admits a generalized Kato decomposition, ( GKD
for short ), if there exists two closed T-invariant subspaces X1, X2 such that X = X1 ⊕ X2, T1 = T |X1 is
semi-regular and T0 = T |X2 is quasi-nilpotent, in this case T is said a pseudo Fredholm operator. If we
assume in the definition above that T0 = T |X2 is nilpotent, then T is said to be of Kato type. Clearly,
every semi-regular operator is of Kato type and a quasi-nilpotent operator has a GKD, see [18, 21] for more
information about generalized Kato decomposition.

Recall that T ∈ B(X) is said to be quasi-Fredholm if there exists d ∈N such that

1. R(Tn) ∩N(T) = R(Td) ∩N(T) for all n ≥ d;
2. R(Td) ∩N(T) and R(T) + N(Td) are closed in X.

An operator is quasi-Fredholm if it is quasi-Fredholm of some degree d. Note that semi-regular operators
are quasi-Fredholm of degree 0 and by results of Labrousse [18], in the case of Hilbert spaces, the set
of quasi-Fredholm operators coincides with the set of Kato type operators. For every bounded operator
T ∈ B(X), let us define the generalized Kato spectrum as follows :

σGK(T) := {λ ∈ C : T − λI does not admit a generalized Kato decomposition}.

It is know that σGK(T) is always a compact subsets of the complex plane contained in the spectrum σ(T) of
T [13, Corollary 2.3]. Note that σGK(T) is not necessarily non-empty, see [13, 14] for more information about
σGK(T).

In [4], Berkani proved that every B-Fredholm operator in Hilbert space is a quasi-Fredholm operator.
The proof is based on the decomposition of quasi-Fredholm operators of Labrousse [18] which was proved
only for Hilbert-spaces operators. This gap was subsequently filled by Müller in [26, Theorem 7] and the
result holds in more general setting of Banach space.

As a continuation of [7] and [28], in section two, we prove that every pseudo B-Fredholm operator is a
pseudo-Fredholm operator. Also, we study the relationships between the class of pseudo B-Fredholm and
other class of operator. we characterize when the pseudo B-Fredholm spectrum is empty or most countable.
In section tree, we study the components of the complement of the pseudo B-Fredholm spectrum σpBF(T), to
obtain a classification of the components by using the constancy of the subspaces quasi-nilpotent part and
analytic core. In the last section, we show that the symmetric difference σse(T)∆σpBF(T) is at most countable.

2. The Class of Pseudo B-Fredholm Operators

In the following theorem we prove that every pseudo B-Fredholm operator is pseudo Fredholm.

Theorem 2.1. Let T ∈ B(X). If T is pseudo B-Fredholm, then T is pseudo Fredholm.

Proof. Let T ∈ B(X). If T is pseudo B-Fredholm operator, then there exists two closed subsets M and N of X
such that X = M ⊕N and T = T1 ⊕ T2 with T1 = T|M is a Fredholm operator and T2 = T|N is quasi-nilpotent.
Since T1 is Fredholm then T admits a Kato decomposition, hence there exists M′, M′′ two closed subsets
of M such that M = M′ ⊕M′′, T1 = T′1 ⊕ T′′1 with T′1 = T1|M′ is a semi-regular operator and T′′1 = T′1|M′′ is
nilpotent. Then X = M′ ⊕M′′

⊕N, and T = S ⊕ R where S = T′1 is a semi-regular operator and R = T′′1 ⊕ T2
is a quasi-nilpotent operator, hence T is a pseudo Fredholm operator.

The following example (Müller [25]) shows that the pseudo B-Fredholm operators form a proper subclass
of the pseudo Fredholm operators.
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Example 2.2. Let H be the Hilbert space with an orthonormal basis (ei, j), where i and j are integers such that i j ≤ 0.
Define operator T ∈ B(H) by :

Tei, j =

{
0 if i = 0, j > 0

ei+1, j Otherewise

We have N(T) =
∨
j>0

{e0, j} ⊂ R∞(T) and R(T) is closed, then T is a semi-regular operator but T is not a Fredholm

operator, since dimN(T) = ∞.
Let Q a quasinilpotent operator in H which is not nilpotent and no commute with T, then S = T ⊕ Q is a pseudo
Fredholm operator but is not pseudo B-Fredholm operator, hence the class of pseudo B-Fredholm operator is a proper
subclass of pseudo Fredholm operator.

Remark 2.3. In [28, Remark 2.5] and [8, Proposition 1.2 ], If T is a bilateral shift on l2(N), we have :

1. T is pseudo B-Weyl if and only if T is Weyl or T is quasi-nilpotent operator.
2. T is pseudo Fredholm if and only if T is semi-regular or T is quasi-nilpotent operator.

By the same argument we can prove :

1. T is pseudo B-Fredholm if and only if T is Fredholm or T is quasi-nilpotent operator.
2. T is generalized Drazin if and only if T is invertible or T is quasi-nilpotent operator.

Corollary 2.4. Let T ∈ B(X). Then

σGK(T) ⊂ σpBF(T) ⊂ σpBW(T)

Lemma 2.5. [22] Let T ∈ B(X) and let G a connected component of ρse(T) = C\σse(T). Then

G \ σ(T) , ∅ =⇒ G ∩ σ(T) = ∅

Lemma 2.6. [8] Let T ∈ B(X).
σse(T) \ σGK(T) is at most countable

Since σse(T) \ σpBF(T) ⊂ σse(T)\σGK(T), we can easily obtain that:

Corollary 2.7. Let T ∈ B(X).
σse(T) \ σpBF(T) is at most countable.

Proposition 2.8. Let T ∈ B(X). Then the following statements are equivalent :

1. σpBF(T) is at most countable
2. σpBW(T) is at most countable
3. σ(T) is at most countable

Proof. 1) =⇒ 3) Suppose that σpBF(T) is at most countable then ρpBF(T) is connexe, by corollary 2.7 ρpBF(T) \
ρse(T) is at most countable. Hence ρse(T) ∩ ρpBF(T) = ρpBF(T) \ (ρpBF(T) \ ρse(T)) is connexe. By lemma 2.5
σ(T) = σse(T) ∪ σpBF(T). Therefore σ(T) = σpBF(T) ∪ (ρpBF(T) \ ρse(T)) is at most countable.
3) =⇒ 1) Obvious.
2) =⇒ 3) If σpBW(T) is at most countable then ρpBW(T) is connexe, since every pseudo B-Weyl operator
is a pseudo B-Fredholm operator by corollary 2.7 ρpBW(T) \ ρse(T) is at most countable. Hence ρse(T) ∩
ρpBW(T) = ρpBW(T) \ (ρpBW(T) \ ρse(T)) is connexe. By lemma 2.5 σ(T) = σse(T) ∪ σpBW(T). Therefore
σ(T) = σpBW(T) ∪ (ρpBW(T) \ ρse(T)) is at most countable.
3) =⇒ 2) Obvious.

Corollary 2.9. Let T ∈ B(X), if σGK(T) is at most countable. Then:
T is a spectral operator if and only if T is similar to a paranormal operator.
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Proof. See [23, Theoerem 2.4 and Corollary 2.5]

Let T ∈ B(X). The operator range topology on R(T) is the topology induced by the norm ||.||T defined
by ||y||T := inf

x∈X
{||x|| : y = Tx}. For a detailed discussion of operator ranges and their topology we refer the

reader to [11].
T is said to have uniform descent for n ≥ d if R(T) + N(Tn) = R(T) + N(Td) for n ≥ d. If in addition, R(Tn) is
closed in the operator range topology of R(Td) for n ≥ d, then T is said to have topological uniform descent
(TUD for brevity ) for n ≥ d. The topological uniform descent spectrum :

σud(T) = {λ ∈ C,T − λI does not have TUD}

Let T ∈ B(X), the ascent of T is defined by a(T) = min{p ∈N : N(Tp) = N(Tp+1)}, if such p does not exists we
let a(T) = ∞. Analogously the descent of T is d(T) = min{q ∈ N : R(Tq) = R(Tq+1)}, if such q does not exists
we let d(T) = ∞ [20]. It is well known that if both a(T) and d(T) are finite then a(T) = d(T) and we have the
decomposition X = R(Tp) ⊕ N(Tp) where p = a(T) = d(T). The descent and ascent spectra of T ∈ B(X) are
defined by :

σdes(T) = {λ ∈ C, T − λI has not finite descent}

σac(T) = {λ ∈ C, T − λI has not finite ascent }.

On the other hand, a bounded operator T ∈ B(X) is said to be a Drazin invertible if there exists a positive
integer k and an operator S ∈ B(X) such that

ST = TS, Tk+1S = Tk and S2T = S.

This is also equivalent to the fact that T = T1 ⊕ T2; where T1 is invertible and T2 is nilpotent. Recall that
an operator T is Drazin invertible if it has a finite ascent and descent. The concept of Drazin invertible
operators has been generalized by Koliha [17]. In fact T ∈ B(X) is generalized Drazin invertible if and only
if 0 < accσ(T) the set of all points of accumulation of σ(T), which is also equivalent to the fact that T = T1⊕T2
where T1 is invertible and T2 is quasinilpotent. The Drazin and generalized Drazin spectra of T ∈ B(X) are
defined by :

σD(T) = {λ ∈ C, T − λI is not Drazin invertible}

σ1D(T) = {λ ∈ C, T − λI is not generalized Drazin}

We denote by, σe
des(T), σrGD(T) and σlGD(T) respectively the essential descent, right generalized Drazin

and left generalized Drazin spectra of T. According to corollary 2.8, [8, Theorem 3.3] and [16, corollary 3.4],
we have the following:

Corollary 2.10. Let T ∈ B(X). Then the following statements are equivalent

1. σ(T) is at most countable;
2. σpBF(T) is at most countable;
3. σpBW(T) is at most countable;
4. σud(T) is at most countable;
5. σGK(T) is at most countable;
6. σGD(T) is at most countable;
7. σlGD(T) is at most countable;
8. σrGD(T) is at most countable;
9. σD(T) is at most countable;

10. σse(T) is at most countable;
11. σBF(T) is at most countable;
12. σBW(T) is at most countable;
13. σdes(T) is at most countable;
14. σe

des(T) is at most countable;
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In [15], the showed that an operator with TUD for n ≥ d, K(T) = R∞(T) and H0(V) = N∞(V), where K(T)
and H0(T) are the analytic core and the quasinilpotent part of T. For a pseudo B-Fredholm operator, these
properties do not necessarily hold. Indeed: let X be the Banach space of continuous functions on [0, 1],
denoted by C([0, 1]), provided with the infinity norm. We define by V, the Volterra operator, X by :

V f (x) :=
∫ x

0
f (x) dx.

V is injective and quasi-nilpotent. In addition, N∞(V) = {0}, K(V) = {0} and we have R∞(V) = { f ∈
C∞[0, 1] : f (n)(0) = 0, n ∈N}, thus R∞(V) is not closed. Hence:

1. K(V) , R∞(V)
2. H0(V) , N∞(V)

Note that V is a compact operator, then R(V) is not closed.

Theorem 2.11. There exists a pseudo B-Fredholm operator T such that :

1. K(T) , R∞(T),
2. H0(T) , N∞(T),
3. R(T) is not closed.

Proposition 2.12. Let T ∈ B(X). Then the following statements are equivalent

1. σpBF(T) is empty
2. σpBW(T) is empty
3. σGK(T) is empty
4. σ(T) is finite

Proof. 3)⇐⇒ 4) see [8, Theorem 3.3].
1) =⇒ 4) If σpBF(T) is empty then σ(T) = ρpBF(T) \ ρse(T). By corollary 2.7 ρpBF(T) \ ρse(T) is at most countable
and this set is bounded, hence it is finite.
4) =⇒ 1) Suppose that σ(T) is finite then every λ0 ∈ σ(T) is isolated, then X = H0(T − λ0) ⊕ K(T − λ0),
[27, Theorem 4] (T − λ0)pH0(T−λ0) is quasi-nilpotent and (T − λ0)pK(T−λ0) is surjective, hence (T − λ0)pK(T−λ0) is
Fredholm. Indeed, λ0 is an isolated point, then T has the SVEP at λ0, hence (T − λ0)pK(T−λ0) has the SVEP at
0 and it is surjective by [1, corollary 2.24] (T −λ0)pK(T−λ0) is bijective. Thus every λ0 ∈ σ(T), T −λ0I is pseudo
B-Fredholm, so σpBF(T) is empty.
2)⇐⇒ 4) similar to 1)⇐⇒ 4).

A bounded operator T ∈ B(X) is said to be a Riesz operator if T − λI is a Fredholm operator for every
λ ∈ C\{0}.

Corollary 2.13. Let T ∈ B(X) a Riesz operator, then the following statements are equivalent

1. σpBF(T) is empty,
2. σpBW(T) is empty,
3. σGK(T) is empty,
4. σ(T) is finite,
5. K(T) is closed,
6. K(T∗) is closed,
7. K(T) is finite-dimensional,
8. K(T − λ) is closed for all λ ∈ C,
9. codimH0(T) < ∞,

10. codimH0(T∗) < ∞,
11. T = Q + F, with Q,F ∈ B(X), QF = FQ = 0, σ(Q) = {0} and F is a finite rank operator.
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Proof. Direct consequence of Proposition 2.12 and [9, Theorem 2.3] and [24, Corollary 9]

In the following, we will prove that if T is with finite descent, then T is pseudo B-Fredholm if and only
if T is a B-Fredholm operator.

Proposition 2.14. Let T ∈ B(X) with finite descent. Then T is a pseudo B-Fredholm if and only if T is a B-Fredholm.

Proof. Obviously if T is B-Fredholm then T is pseudo B-Fredholm.
If T is a pseudo B-Fredholm then T = T1 ⊕ T2 with T1 is Fredholm operator and T2 is quasinilpotent. Since
T has finite descent then T1 and T2 have finite descent. We have T2 is quasinilpotent with finite descent
implies that is a nilpotent operator. Thus T is a B-Fredholm operator.

3. Classification of the Components of Pseudo B-Fredholm Resolvent

We begin this section by the following lemmas which will be needed in the sequel.

Lemma 3.1. Let T ∈ B(X) a pseudo B-Fredholm, then there exists ε > 0 such that for all |λ| < ε, we have:

1. K(T − λ) + H0(T − λ) = K(T) + H0(T).
2. K(T − λ) ∩H0(T − λ) = K(T) ∩H0(T).

Proof. By Theorem 2.1, T is a pseudo Fredholm operator, hence we conclude by [8, Theorem 4.2] the
result.

The pseudo B-Fredholm resolvent set is defined as ρpBF(T) = C\σpBF(T).

Corollary 3.2. Let T ∈ B(X) a pseudo B-Fredholm operator, then the mappings

λ −→ K(T − λ) + H0(T − λ), λ −→ K(T − λ) ∩H0(T − λ) are constant on the components of ρpBF(T).

We denote by σap(T) and σsu(T) respectively the approximate point spectrum and the surjectivity spectrum
of T.

Lemma 3.3. Let T ∈ B(X) a pseudo B-Fredholm operator. Then the following statements are equivalent:

1. T has the SVEP at 0,
2. σap(T) does not cluster at 0.

Proof. Without loss of generality, we can assume that λ0 = 0.
2)⇒ 1) See [1].
1)⇒ 2) Suppose that T is a pseudo B-Fredholm operator, then there exists two closed T-invariant subspaces
X1 ,X2 ⊂ X such that X = X1 ⊕ X2, TpX1 is Fredholm, TpX2 is quasi-nilpotent and T = TpX1 ⊕ TpX2 . Since TpX1

is Fredholm, then TpX1 is of Kato type by [2, Theorem 2.2] there exists a constant ε > 0 such that for all
λ ∈ D∗(0, ε), λI − T is bounded below. Since TpX2 is quasi-nilpotent, λI − T is bounded below for all λ , 0.
Hence λI − T is bounded below for all λ ∈ D∗(0, ε). Therefore σap(T) does not cluster at λ0.

By duality we have :

Lemma 3.4. Let T ∈ B(X) a pseudo B-Fredholm operator. Then the following statements are equivalent:

1. T∗ has the SVEP at 0,
2. σsu(T) does not cluster at 0.

Theorem 3.5. Let T ∈ B(X) and Ω a component of ρpBF(T). Then the following alternative holds:

1. T has the SVEP for every point of Ω. In this case, σap(T) does not have limit points in Ω, every point of Ω is
not an eigenvalue of T execpt a subset of Ω which consists of at most countably many isolated points.

2. T has the SVEP at no point of Ω. In this case, every point of Ω is an eigenvalue of T.
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Proof. 1) Assume that T has the SVEP at λ0 ∈ Ω. By [1, Theorem 3.14] we have K(T−λ0)∩H0(T−λ0) = K(T−
λ0)∩H0(T − λ0) = {0}. According to corollary 3.2, we have K(T−λ0)∩H0(T − λ0) = K(T−λ)∩H0(T − λ) = {0}
for allλ ∈ Ω. Hence K(T−λ)∩H0(T − λ) = {0} and therefore T has the SVEP at everyλ ∈ Ω [1, Theorem 3.14].
By Lemma 3.3, σap(T) does not cluster at any λ ∈ Ω. Consequently every point of Ω is not an eigenvalue of
T execpt a subset of Ω which consists of at most countably many isolated points.
2) Suppose that T has the SVEP at not point of Ω. From [1, Theorem 2.22], we have N(T − λ) , {0}, for all
λ ∈ Ω, hence every point of Ω is an eigenvalue of T.

Theorem 3.6. Let T ∈ B(X) and Ω a component of ρpBF(T). Then the following alternative holds:

1. T∗ has the SVEP for every point of Ω. In this case, σsu(T) does not have limit points in Ω, every point of Ω is
not a deficiency value of T execpt a subset of Ω which consists of at most countably many isolated points.

2. T∗ has the SVEP at no point of Ω. In this case, every point of Ω is a deficiency value of T.

Proof. 1) Assume that T∗ has the SVEP at λ0 ∈ Ω, by [1, Theorem 3.15] we have K(T − λ0) + H0(T − λ0) = X.
According to corollary 3.2, we have K(T − λ0) + H0(T − λ0) = K(T − λ) + H0(T − λ) = X for all λ ∈ Ω. Hence
K(T − λ) + H0(T − λ) = X and therefore T has the SVEP at every λ ∈ Ω [1, Theorem 3.15]. By lemma 3.4,
σsu(T) does not cluster at any λ ∈ Ω. Consequently every point of Ω is not a deficiency value of T execpt a
subset of Ω which consists of at most countably many isolated points.
2) Suppose that T∗ has the SVEP at no point of Ω. Assume that there exists a λ0 ∈ Ω such that T − λ0 is
surjective, then T∗ − λ0 is injective this implies that T∗ has the SVEP at λ0. Contraduction and hence every
point of Ω is a deficiency value of T.

Remark 3.7. We have σpBF(.) ⊂ σ1D(.), this inclusion is proper. Indeed: Consider the operator T defined in l2(N) by

T(x1, x2, ....) = (0, x1, x2, ...), T∗(x1, x2, ....) = (x2, x3, ...).

Let S = T ⊕ T∗. Then σ1D(S) = {λ ∈ C; |λ| ≤ 1} and we have 0 < σpBF(S). This shows that the inclusion
σpBF(S) ⊂ σ1D(S) is proper.

Next we obtain a condition on an operator such that its pseudo B-Fredholm spectrum coincide with the
generalized Drazin spectrum.

Theorem 3.8. Suppose that T ∈ B(X) and ρpBF(T) has only one component. Then

σpBF(T) = σ1D(T)

Proof. ρpBF(T) has only one component, then ρpBF(T) is the unique component. Since T has the SVEP on
ρ(T) ⊂ ρpBF(T). By Theorem 3.5, T has the SVEP on ρpBF(T). Similar T∗ also has the SVEP on ρpBF(T) by
Theorem 3.6. ( This since ρ(T∗) = ρ(T) ⊂ ρpBF(T)). From Lemma 3.3 and Lemma 3.4, σ(T) does not cluster at
any λ ∈ ρpBF(T). Therefore ρpBF(T) ⊂ isoσ(T) ∪ ρ(T) = ρ1D(T), hence ρpBF(T) = ρ1D(T).

4. Symmetric Difference for Pseudo B-Fredholm Spectrum

Let in the following we give symmetric difference between σpBF(T) and other parts of the spectrum. Denoted
by ρ f K(T) = {λ ∈ C,K(T − λ) is not closed }, σ f K(T) = C \ ρ f K(T) and ρcr(T) = {λ ∈ C,R(T − λ) is closed },
σcr(T) = C\ρcr(T) the Goldberg spectrum. Most of the classes of operators, for example, in Fredholm theory,
require that the operators have closed ranges. Thus, it is natural to consider the closed-range spectrum or
Goldberg spectrum of an operator.

Proposition 4.1. If λ ∈ σ∗(T) is non-isolated point then λ ∈ σpBF(T), where ∗ ∈ { f K, cr}.

Proof. Let λ ∈ σ∗(T) an isolated point. Suppose that T − λ is a pseudo B-Fredholm, by Lemma 2.6 there
exists a constant ε > 0 such that for all µ ∈ D∗(λ, ε), µ − T is semi-regular. Then R(T − µ) and K(T − µ) are
closed for all µ ∈ D∗(λ, ε), then λ is an isolated point of σ∗(T), contradiction.
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Corollary 4.2. σ∗(T)\σpBF(T) is at most countable, where ∗ ∈ { f K, cr}.

Proposition 4.3. Let T ∈ B(X) such that σcr(T) = σ(T) and every λ is non-isolated in σ(T). Then

σ(T) = σcr(T) = σpBF(T) = σpBW(T) = σe(T) = σse(T) = σap(T)

Proof. Since every λ ∈ σ(T) = σcr(T) is non-isolated then by Proposition 4.1, we have σ(T) = σcr(T) ⊆
σpBF(T) ⊆ σpBW(T) ⊆ σe(T) ⊆ σ(T) and since σ(T) = σcr(T) ⊆ σse(T) ⊆ σap(T) ⊆ σ(T), we deduce the statement
of the theorem.

Proposition 4.4. Let T ∈ B(X). The symmetric difference σse(T)∆σpBF(T) is at most countable.

Proof. By corollary 2.7, σse(T)\σpBF(T) is at most countable. We have σe(T)\σse(T) consists of at most count-
ably many isolated points (see [1, Theorem 1.65] and σpBF(T)\σse(T) ⊆ σe(T)\σse(T), hence σpBF(T)\σse(T) is at
most countable. Since

σse(T)∆σpBF(T) = (σse(T)\σpBF(T))
⋃

(σpBF(T)\σse(T))

Therefore σse(T)∆σpBF(T) is at most countable.
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