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Abstract. In this paper, we study warped product bi-slant submanifolds of cosymplectic manifolds. It
is shown that there is no proper warped product bi-slant submanifold other than pseudo-slant warped
product. Finally, we give an example of warped product pseudo-slant submanifolds.

1. Introduction

In [6], Cabrerizo et al. introduced the notion of bi-slant submanifolds of almost contact metric manifolds
as a generalization of contact CR-submanifolds, slant and semi-slant submanifolds. They have obtained
non-trivial examples of such submanifolds. One of the class of such submanifolds is that of pseudo-slant
submanifolds [8]. We note that the pseudo-slant submanifolds are also studied under the name of hemi-slant
submanifolds [19].

Warped product submanifolds have been studied rapidly and actively, since Chen introduced the notion
of CR-warped products of Kaehler manifolds [10, 11]. Different types of warped product submanifolds
have been studied in several kinds of structures for last fifteen years (see [2, 15, 18, 20, 22]). The related
studies on this topic can be found in Chen’s book and a survey article [12, 13].

Recently, warped product submanifolds of cosymplectic manifolds were studied in ([1],[15], [20–22]). In
this paper, we study warped product bi-slant submanifolds of cosymplectic manifolds. We prove the non-
existence of proper warped product bi-slant submanifolds of a cosymplectic manifold. Finally, we give an
example of special class of warped product bi-slant submanifolds known as warped product pseudo-slant
submanifolds studied in [23].

2. Preliminaries

Let (M̃, 1) be an odd dimensional Riemannian manifold with a tensor fieldϕ of type (1, 1), a global vector
field ξ (structure vector field and a dual 1-form η of ξ such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, 1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y) (1)
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for any X,Y ∈ Γ(TM̃), then M̃ is called an almost contact metric manifold [4], where Γ(TM̃) denotes the set
all vector fields of M̃ and I being the identity transformation on TM̃. As a consequence, the dimension
of M̃ is odd (= 2m + 1), ϕ(ξ) = 0 = η ◦ ϕ and η(X) = 1(X, ξ). The fundamental 2-form Φ of M̃ is defined
Φ(X,Y) = 1(X, ϕY). An almost contact metric manifold (M̃, ϕ, ξ, η, 1) is said to be cosymplectic if [ϕ,ϕ] = 0
and dη = 0, dΦ = 0, where [ϕ,ϕ](X,Y) = ϕ2[X,Y] + [ϕX, ϕY] − ϕ[ϕX,Y] − ϕ[X, ϕY] and d is an exterior
differential operator.

Let ∇̃ denotes the Levi-Civita connedtion on M̃ with respect to the Riemannian metric 1. Then in terms
of the covariant derivative of ϕ, the cosymplectic structure is characterized by the relation (∇̃Xϕ)Y = 0, for
any X,Y ∈ Γ(TM̃) [16]. From the formula (∇̃Xϕ)Y = 0, it follows that ∇̃Xξ = 0.

Let M be a Riemannian manifold isometrically immersed in M̃ and denote by the same symbol 1 the
Riemannian metric induced on M. Let Γ(TM) be the Lie algebra of vector fields in M and Γ(T⊥M), the set
of all vector fields normal to M. Let ∇ be the Levi-Civita connection on M, then the Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + h(X,Y) (2)

and

∇̃XN = −ANX + ∇⊥XN (3)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the normal bundle T⊥M and
AN is the shape operator of M with respect to N. Moreover, h : TM×TM→ T⊥M is the second fundamental
form of M in M̃. Furthermore, AN and h are related by

1(h(X,Y),N) = 1(ANX,Y) (4)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M).
For any X tanget to M, we write

ϕX = TX + FX, (5)

where TX and FX are the tangential and normal components of ϕX, respectively. Then T is an endomor-
phism of tangent bundle TM and F is a normal bundle valued 1-form on TM. Similarly, for any vector field
N normal to M, we put

ϕN = BN + CN, (6)

where BN and CN are the tangential and normal components of ϕN, respectively. Moreover, from (1) and
(5), we have

1(TX,Y) = −1(X,TY), (7)

for any X,Y ∈ Γ(TM).
A sumanifold M is said to be ϕ-invariant if F is identically zero, i.e., ϕX ∈ Γ(TM), for any X ∈ Γ(TM). On

the other hand, M is said to be ϕ-anti-invariant if T is identically zero i.e., ϕX ∈ Γ(T⊥M), for any X ∈ Γ(TM).
By the analogy with submanifolds in a Kaehler manifold, different classes of submanifolds in an almost

contact metric manifold were considered. Throughout the paper we consider the structure vector field ξ is
tangent to the submanifold otherwise it is a C-totally real submanifold.

(1) A submanifold M of an almost contact metric manifold M̃ is called a contact CR-submanifold [1] of M̃
if there exist a differentiable distribution D : p → Dp ⊂ TpM such that D is invariant with respect
to ϕ, i.e., ϕ (D) = D and the complementary distribution D⊥ is anti-invariant with respect to ϕ,
i.e., ϕ (D⊥) ⊂ T⊥M and TM has the orthogonal decomposition TM = D ⊕ D⊥ ⊕ 〈ξ〉, where 〈ξ〉 is a
1-dimensional distribution which is spanned by ξ.
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(2) A submanifold M of an almost contact metric manifold M̃ is said to be slant [7], if for each non-zero
vector X tangent to M such that X is not proportional to 〈ξ〉, the angle θ(X) between ϕX and TpM is a
constant, i.e., it does not depend on the choice of p ∈ M and X ∈ TpM − 〈ξp〉. A slant submanifold is
said to be proper slant if θ , 0 and , π

2 .

(3) A submanifold M of an almost contact metric manifold M̃ is called semi-slant [6], if it is endowed
with two orthogonal distributionsD andDθ, such that TM = D⊕Dθ

⊕ 〈ξ〉whereD is invariant with
respect to ϕ and Dθ is proper slant, i.e., θ(X) is the angle between ϕX and Dθ

p is constant for any
X ∈ Dθ

p and p ∈M.

(4) A submanifold M of a an almost contact metric manifold M̃ is said be pseudo-slant (or hemi–slant)
[8], if it is endowed with two orthogonal distributions D⊥ and Dθ such that TM = D⊥ ⊕ Dθ

⊕ 〈ξ〉,
whereD⊥ is anti-invariant with respect to ϕ andDθ is proper slant.

We note that on a slant submanifold if θ = 0, then it is an invariant submanifold and if θ = π
2 , then it

is an anti-invariant submanifold. A slant submanifold is said to be proper slant if it is neither invariant nor
anti-invariant.

It is known that [7] if M is a submanifold of an almost contact metric manifold M̃ such that ξ ∈ TM, then
M is a slant submanifold with slant angle θ if and only if

T2 = cos2 θ
(
−I + η ⊗ ξ

)
(8)

The following relations are the consequences of (8) as

1(TX,TY) = cos2 θ
(
1(X,Y) − η(X)η(Y)

)
, (9)

1(FX,FY) = sin2 θ
(
1(X,Y) − η(X)η(Y)

)
(10)

for any X,Y ∈ Γ(TM). Another characterization of a slant submanifold of an almost contact metric manifold
is obtained by using (5), (6) and (8) as

BFX = sin2 θ
(
−X + η(X)ξ

)
, CFX = −FTX (11)

for any X ∈ Γ(TM).
In [6], Cabrerizo et al defined and studied bi-slant submanifolds of almost contact metric manifolds as

follows:

Definition 2.1. Let M̃ be an almost contact metric manifold and M a real submanifold of M̃. Then, we say that M is
a bi-slant submanifold if there exists a pair of orthogonal distributionsD1 andD2 on M such that

(i) The tangent space TM admits the orthogonal direct decomposition TM = D1 ⊕D2 ⊕ 〈ξ〉.
(ii) TD1 ⊥ D2 and TD2 ⊥ D1

(iii) For any i = 1, 2, Di is a slant distribution with slant angle θi.

Let d1 and d2 denote the dimensions of D1 and D2, respectively. Then from the above definition, it is
clear that

(i) If d1 = 0 or d2 = 0, then M is a slant submanifold.
(ii) If d1 = 0 and θ2 = 0, then M is invariant.

(iii) If d1 = 0 and θ2 = π
2 , then M is an invariant submanifold.

(iv) If neither d1 = 0 nor d2 = 0 and θ1 = 0, then M is a semi-slant submanifold with slant angle θ2.
(v) If neither d1 = 0 nor d2 = 0 and θ1 = π

2 , then M is a pseudo-slant submanifold with slant angle θ2.

A bi-slant submanifold of an almost contact metric manifold M̃ is called proper if the slant distributions
D1,D2 are of slant angles θ1, θ2 , 0, π2 .

We refer to [6] and [14] for non-trivial examples of bi-slant submanifolds.
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3. Warped product bi-slant submanifolds

In [3], Bishop and O’Neill introduced the notion of warped product manifolds as follows: Let M1 and M2
be two Riemannian manifolds with Riemannian metrics 11 and 12, respectively, and a positive differentiable
function f on M1. Consider the product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and
π2 : M1 ×M2 → M2. Then their warped product manifold M = M1 × f M2 is the Riemannian manifold
M1 ×M2 = (M1 ×M2, 1) equipped with the Riemannian structure such that

1(X,Y) = 11(π1?X, π1?Y) + ( f ◦ π1)212(π2?X, π2?Y)

for any vector field X,Y tangent to M, where ? is the symbol for the tangent maps. A warped product
manifold M = M1 × f M2 is said to be trivial or simply a Riemannian product manifold if the warping function
f is constant. Let X be an unit vector field tangent to M1 and Z be an another unit vector field on M2, then
from Lemma 7.3 of [3], we have

∇XZ = ∇ZX = (X ln f )Z (12)

where ∇ is the Levi-Civita connection on M. If M = M1 × f M2 be a warped product manifold then M1 is a
totally geodesic submanifold of M and M2 is a totally umbilical submanifold of M [3, 10].

Definition 3.1. A warped product M1 × f M2 of two slant submanifolds M1 and M2 with slant angles θ1 and θ2 of
a cosymplectic manifold M̃ is called a warped product bi-slant submanifold.

A warped product bi-slant submanifold M1 × f M2 is called proper if both M1 and M2 are proper slant
submanifolds with slant angle θ1, θ2 , 0, π2 of M̃. A warped product M1 × f M2 is contact CR-warped
product if θ1 = 0 and θ2 = π

2 discussed in [22]. Also, a warped product bi-slant submanifold M = M1 × f M2
is pseudo-slant warped product if θ2 = π

2 [23].
In this section, we investigate the geometry of warped product bi-slant submanifolds of the form

M1 × f M2 of a cosymplectic manifold M̃, where M1 and M2 are slant submanifolds of M̃. It is noted that on
a warped product submanifold M = M1 × f M2 of a cosymplectic manifold M̃ if the structure vector field ξ
is tangent to M2, then warped product is simply a Riemannian product (trivial) [15]. Now, throughout we
consider the structure vector field ξ is tangent to the base manifold M1.

First, we give the following lemma for later use.

Lemma 3.2. Let M = M1 × f M2 be a warped product bi-slant submanifold of a cosymplectic manifold M̃ such that
ξ is tangent to M1, where M1 and M2 are slant submanifolds of M̃. Then

1(h(X,Y),FV) = 1(h(X,V),FY) (13)

for any X,Y ∈ Γ(TM1) and V ∈ Γ(TM2).

Proof. For any X,Y ∈ Γ(TM1) and V ∈ Γ(TM2), we have

1(h(X,Y),FV) = 1(∇̃XY,FV)

= 1(∇̃XY, ϕV) − 1(∇̃XY,TV)

= −1(∇̃XϕY,V) + 1(∇̃XTV,Y).

Then from (2), (5) and (12), we obtain

1(h(X,Y),FV) = −1(∇̃XTY,V) − 1(∇̃XFY,V) + (X ln f ) 1(TV,Y).

Last term in the right hand side of above relation vanishes identically by the orthogonality of the vector
fields, thus we have

1(h(X,Y),FV) = 1(TY, ∇̃XV) + 1(AFYX,V).

Again from (12), (4) and the orthogonality of vector fields, we get the desired result.
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Lemma 3.3. Let M = M1 × f M2 be a warped product bi-slant submanifold of a cosymplectic manifold M̃ such that
ξ is tangent to M1, where M1 and M2 are proper slant submanifolds of M̃ with slant angles θ1 and θ2, respectively.
Then

1(h(X,Z),FV) = 1(h(X,V),FZ) (14)

for any X ∈ Γ(TM1) and Z,V ∈ Γ(TM2).

Proof. For any X ∈ Γ(TM1) and Z,V ∈ Γ(TM2), we have

1(∇̃XZ,V) = (X ln f ) 1(Z,V). (15)

On the other hand, we also have

1(∇̃XZ,V) = 1(ϕ∇̃XZ, ϕV) = 1(∇̃XϕZ, ϕV).

Using (5), we derive

1(∇̃XZ,V) = 1(∇̃XTZ,TV) + 1(∇̃XTZ,FV) + 1(∇̃XFZ, ϕV).

Then from (1), (2), (12), (9) and the cosymplectic characteristic, we find that

1(∇̃XZ,V) = cos2 θ2 (X ln f )1(Z,V) + 1(h(X,TZ),FV) − 1(∇̃XϕFZ,V).

By using (6), we arrive at

1(∇̃XZ,V) = cos2 θ2 (X ln f )1(Z,V) + 1(h(X,TZ),FV) − 1(∇̃XBFZ,V) − 1(∇̃XCFZ,V).

Then from (11), we obtain

1(∇̃XZ,V) = cos2 θ2 (X ln f )1(Z,V) + 1(h(X,TZ),FV) + sin2 θ2 1(∇̃XZ,V) + 1(∇̃XFTZ,V).
= (X ln f )1(Z,V) + 1(h(X,TZ),FV) − 1((X,V),FTZ). (16)

Then from (15) and (16), we compute

1(h(X,TZ),FV) = 1((X,V),FTZ)

Interchanging Z by TZ and using (8), we obtain

cos2 θ2 1(h(X,Z),FV) = cos2 θ2 1((X,V),FZ).

Since M is proper, then cos2θ2 , 0, thus from the above relation we get (14), which proves the lemma
completely.

Theorem 3.4. There does not exist any proper warped product bi-slant submanifold M = M1× f M2 of a cosymplectic
manifold M̃ such that M1 and M2 are proper slant submanifolds of M̃.

Proof. When the structure vector field ξ is tangent to M2, then warped product is trivial. Now, we consider
ξ ∈ Γ(TM1) and for any X ∈ Γ(TM1) and Z,V ∈ Γ(TM2), we have

1(h(X,Z),FV) = 1(∇̃ZX,FV) = 1(∇̃ZX, ϕV) − 1(∇̃ZX,TV).

Using (1), (2), (5), (12) and the cosymplectic characteristic equation, we derive

1(h(X,Z),FV) = −1(∇̃ZϕX,V) − (X ln f ) 1(Z,TV)

= −1(∇̃ZTX,V) − 1(∇̃ZFX,V) − (X ln f ) 1(Z,TV).
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Again, from (2), (3), (4) and (12), we find that

1(h(X,Z),FV) = −(TX ln f ) 1(Z,V) + 1(AFXZ,V) − (X ln f ) 1(Z,TV)
= −(TX ln f ) 1(Z,V) + 1(h(Z,V),FX)
− (X ln f ) 1(Z,TV). (17)

Interchanging Z by V in (17) and using (1), we obtain

1(h(X,V),FZ) = −(TX ln f ) 1(Z,V) + 1(h(Z,V),FX)
+ (X ln f ) 1(Z,TV). (18)

Then from (17), (18) and Lemma 3.3, we arrive at

(X ln f ) 1(Z,TV) = 0. (19)

Interchanging Z by TZ in (19) and using (9), we get

cos2 θ2(X ln f ) 1(Z,V) = 0. (20)

Since M is proper, then cos2 θ2 , 0, thus from (20) we conclude that f is constant. Hence, the theorem is
proved completely.

From relation (20) of Theorem 3.4, if M is not proper and θ1 = π
2 , then M is a pseudo-slant warped

product of the form Mθ1 × f M⊥ and this a case which has been discussed in [23] for its characterisation and
inequality.

Now, we give an example of such warped products.

Example 3.5. LetR7 be the Euclidean 7-space endowed with the standard metric and cartesian coordinates
(x1, x2, x3, y1, y2, y3, t) and with the canonical structure given by

ϕ

(
∂
∂xi

)
=

∂
∂yi

, ϕ

(
∂
∂y j

)
= −

∂
∂x j

, ϕ

(
∂
∂t

)
= 0, 1 ≤ i, j ≤ 3.

If we assume a vector field X = λi
∂
∂xi

+µ j
∂
∂y j

+ν ∂∂t ofR7, then ϕX = λi
∂
∂yi
−µ j

∂
∂x j

and ϕ2(X) = −λi
∂
∂xi
−µ j

∂
∂y j

=

−X + ν ∂∂t . Also, we can see that 1(X,X) = λ2
i + µ2

j + ν2 and 1(ϕX, ϕX) = λ2
i + µ2

j , where 1 is the Euclidean

metric tensor of R7. Then, we have 1(ϕX, ϕX) = 1(X,X) − η(X)ξ, where ξ = ∂
∂t and hence (ϕ, ξ, η, 1) is an

almost contact structure on R7. Consider a submanifold M of R7 defined by

φ(u, v, w, t) = (u cos v, u sin v, w, w cos v, w sin v, 2u, t), v , 0,
π
2

for non-zero u and w. The tangent bundle TM of M is spanned by

Z1 = cos v
∂
∂x1

+ sin v
∂
∂x2

+ 2
∂
∂y3

,

Z2 = −u sin v
∂
∂x1

+ u cos v
∂
∂x2
− w sin v

∂
∂y1

+ w cos v
∂
∂y2

Z3 =
∂
∂x3

+ cos v
∂
∂y1

+ sin v
∂
∂y2

, Z4 =
∂
∂t
.
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Then, we have

ϕZ1 = cos v
∂
∂y1

+ sin v
∂
∂y2
− 2

∂
∂x3

,

ϕZ2 = −u sin v
∂
∂y1

+ u cos v
∂
∂y2

+ w sin v
∂
∂x1
− w cos v

∂
∂x2

ϕZ3 =
∂
∂y3
− cos v

∂
∂x1
− sin v

∂
∂x2

, ϕZ4 = 0.

Clearly, the vector fields ϕZ2 is orthogonal to TM. Then the anti-invariant and proper slant distributions of

M respectively areD1 = Span{Z2} andD2 = Span{Z1,Z3}with slant angle θ = cos−1
(

1
√

10

)
such that ξ = Z4 is

tangent to M. Hence, M is a proper pseudo-slant submanifold of R7. Furthermore, it is easy to se that both
the distributionsD1 andD2 are integrable. We denote the integral manifolds ofD1 andD2 by M⊥ and Mθ,
respectively. Then the metric tensor 1 of the product manifold M of M⊥ and Mθ is

1 = 5 du2 + 2 dw2 + dt2 +
(
u2 + w2

)
dv2

= 1Mθ +
(√

u2 + w2
)2
1M⊥ .

Thus M is a warped product pseudo-slant submanifold ofR7 of the form Mθ × f M⊥ with warping function
f =
√

u2 + w2 such that ξ is tangent to Mθ.
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